説明

Fターム[3D246GB33]の内容

ブレーキシステム(制動力調整) (55,256) | 目的、効果−制御機能 (5,653) | クルーズコントロール (351)

Fターム[3D246GB33]の下位に属するFターム

Fターム[3D246GB33]に分類される特許

61 - 80 / 150


【課題】加速中に前方車両が直前に車線変更した場合や、低速走行の前方車両が直前に車線変更した場合でも、車速の急変を生じないオートクルーズ制御となす。
【解決手段】S11で通常のオートクルーズ用の基本加減速度ABを計算する。S12では、隣接車線走行中の左右前方車両が自車線へ車線変更する可能性(車線変更度PL,PR)を演算する。S13では、左右前方車両と自車との間における時間的車間距離(自車が前方車両に到達するまでの時間)TYL,TYRを演算する。S14では、左右前方車両の車線変更度PL,PR、および、左右前方車両との間の時間的車間距離TYL,TYRから、左前方車両を考慮した場合の加速度上限値ALと、右前方車両を考慮した場合の加速度上限値ARとを求め、両者のうちの小さい方を最終的な加速度上限値Aとする。S17では、ABを自車が発生するようアクセルペダルやブレーキ装置を駆動する。 (もっと読む)


【課題】 ポンプの吸入抵抗を抑制しつつ低μ路面での減圧性能を得ることが可能なブレーキ装置を提供すること。
【解決手段】 マスタシリンダと回転式ポンプの吸入側をつなぐ吸入油路に、マスタシリンダ圧とポンプ吸入側の圧力に関連して開閉動作を行うゲートイン弁を備えた。 (もっと読む)


【課題】擦れや汚れ等のために路面の白線種別を認識できない場合でも、その白線種別を容易に推定して、自律的な車両制御を行えるようにする。
【解決手段】路面状態検出装置1として、リアカメラ6と、自車両の走行車線を区分する白線の種別を認識する白線種別認識部8と、白線種別記憶部9、および白線種別推定部10と、白線種別に基づいて車両制御を行う車両制御装置とを備えている。自車両の現在の走行車線を区分する白線種別を画像処理によりリアルタイムで認識し、その認識した白線種別を走行履歴のかたちで白線種別記憶部9に記憶しておく。白線種別を認識ができないときには、白線種別推定部10が白線種別記憶部9に記憶されている過去の白線種別を現在の白線の種別として推定し、それに基づいて速度制御を行う。 (もっと読む)


【課題】車両挙動の悪化を防止し、適切な制御を行える車両制御装置を提供する。
【解決手段】 車両制御装置1は、先行車両に対する追従走行の制御を行う車両制御ECU2を備える。車両制御ECU2は、先行車両との距離が設定車間距離となる地点を演算する設定車間距離到達地点演算部22、設定車間距離となる地点での車両挙動を予測する車両挙動状態予測部23、予測された車両挙動が不安定になるかを判定する車両挙動安定判定部24を有する。車両制御ECU2は、車両挙動状態予測部23により予測した結果に応じて、設定車間距離となる地点及びそれ以後における追従走行の制御特性を変更する。 (もっと読む)


【課題】 特別な部品を追加することなく、自動ブレーキ制御を実行中にブレーキ操作がなされた場合でも操作フィーリングを向上できるブレーキ制御装置を提供すること。
【解決手段】 ブレーキ操作力の増加を検出する操作力増加検出手段と、ブレーキ液を貯留可能なリザーバ15と、マスタシリンダM/Cとホイルシリンダ5を連通し、ゲートアウト弁1が設けられた第1通路10と、マスタシリンダM/Cとホイルシリンダ5を連通し、ポンプPが設けられた第2通路(吸入通路11及び吐出通路12)と、ホイルシリンダ5とリザーバを連通し、減圧弁8が設けられた減圧通路13と、リザーバとポンプPの吸入側を連通する掻き出し通路14と、第2通路においてマスタシリンダM/CとポンプPの間に設けられたゲートイン弁2と、を有し、操作力の増加が検出されると、ポンプPを駆動し、ゲートアウト弁1を閉じ、ゲートイン弁2及び減圧弁を開くこととした。 (もっと読む)


【課題】運転支援の機能を運転者が適切に利用することができる運転支援装置を提供すること。
【解決手段】本発明に係る車両の制御により運転者の運転を支援する運転支援装置は、運転支援制御中における運転者の操作介入に基づいて、運転支援制御を制限する運転支援制限手段と、運転支援制御の信頼度を検出する信頼度検出手段と、信頼度に応じて運転支援制限手段の作動条件を変更する作動条件変更手段と、を備えることを特徴とする。 (もっと読む)


【課題】ナビゲーションシステムによる経路誘導の終了によりカーブ手前で減速制御が終了する場合でも、該カーブに対して有効に減速させる。
【解決手段】車両用加減速制御装置は、ナビゲーション装置14による車両の経路誘導時に、その誘導経路を基に、車両前方のカーブを検出するナビゲーション情報処理部43と、ナビゲーション情報処理部43が検出したカーブに対応して車両を減速制御する目標車速演算部42等と、車両からみてナビゲーション装置14の経路誘導終了地点よりも遠方に制御対象のカーブが存在するときには、減速制御の制御内容を、該経路誘導終了地点に対応したものに変更する目標車速指令値演算部45と、を備える。 (もっと読む)


【課題】ハイブリッド自動車のオートクルーズ制御装置及び車両の自動制動制御装置に関し、減速制御時における段付き感を解消しドライブフィーリングを向上させる。
【解決手段】車両の走行速度Vを車速検出手段2で検出し、これを巡航速度V0にするのに要求される要求制動力Fを要求制動力算出手段1aで算出する。
また、電動発電機の回生制動により所定の最大制動力を上限として任意の大きさの制動力を発生させる回生ブレーキ手段3と、不連続な大きさの所定制動力FBを段階的に発生させる補助ブレーキ手段4とを設ける。
制動制御手段1cにおいて、回生ブレーキ手段3及び補助ブレーキ手段4による制動制御を重複させるに際し、要求制動力Fが予め設定された第一所定値F1以上である場合には、補助ブレーキ手段4で所定制動力FBを発生させるとともに要求制動力Fから所定制動力FBを減じた大きさの制動力を回生ブレーキ手段3に負担させる。 (もっと読む)


【課題】制御開始から下り坂開始点を過ぎるまでの目標速度を線形で徐々に減速させ、燃料カットと噴射を繰り返すことなく、省燃費で且つ円滑な運転フィーリングが得られる省燃費運転システムの提供。
【解決手段】車両の位置を特定する車両位置特定装置(2)と、車両進行方向に存在する下り坂のデータを記憶する記憶装置(11)と、車両(1)の速度(車速V)を計測する車速計測装置(3)と、制御装置(10)とを有し、該制御装置(10)は、車両の速度(V)と、下り坂のデータとから車両(1)の目標速度(要求車速Vd)を決定(演算)する機能を有する。 (もっと読む)


【課題】車両の走行状況に応じて適切に走行制御を再開する。
【解決手段】目標車軸トルク生成部52は、車速維持演算部51により演算された目標加速度を実現するための目標車軸トルクとして、車両の走行に対する走行抵抗を加味したフィードフォワード成分が含まれた目標車軸トルクを算出する。制動調停部58は、目標車軸トルク生成部52から入力される目標車軸トルクと、ブレーキドライバモデル57により演算された運転者のブレーキ操作量に対応する要求制動車軸トルクのうち、減速量が大きい方のトルクを選択して制動要求トルク実現部59へ出力する。また、要求制動車軸トルクが目標車軸トルクを上回っている(減速量が大きい)状態では、ブレーキオーバライド信号をFBトルク演算部62へ出力する。制動要求トルク実現部59は、制動調停部58から入力した車軸トルクを実現するための制御信号をブレーキECU40へ出力する。 (もっと読む)


【課題】安全性を確保しつつ運転者に与える違和感を軽減した運転支援装置を提供する。
【解決手段】
車間制御ECU20が、自車両を設定車速又は設定車間距離に従って走行させるACC制御を実行し、ドライバー意識・状態検出センサ48等が、運転者が運転に不適正な運転不適状態であることを検出し、車間制御ECU20がACC制御を実行しているときに、ドライバー意識・状態検出センサ48等が運転者が運転不適状態であることを検出したときは、自車両の加速を抑制する加速抑制制御を実行し、加速抑制制御中に車間制御ECU20は、運転者のアクセル操作があったときは加速抑制制御を続行し、当該アクセル操作後に再度のアクセル操作があり、運転者が居眠りや意識低下の状態にないことが明らかであるときは加速抑制制御を解除する。これにより、安全性を確保しつつ運転者に与える違和感を軽減することができる。 (もっと読む)


【課題】自動ブレーキ作動中にブレーキペダルの操作が行われた際における、運転者に対するペダル違和感を低減する。
【解決手段】所定作動条件で、マスタシリンダ10とホイールシリンダとを接続するブレーキ配管23に介装した制御弁及びポンプ17を制御して上記ホイールシリンダの液圧を自動制御する。その自動制御が作動中に、運転者がブレーキペダル22を踏込むと、踏込み速度に応じて、上記ポンプ17による、上記マスタシリンダ10からの単位時間当たりの作動液吸込み量を増大する方向に補正する。 (もっと読む)


【課題】補助ブレーキを作動させた後に主ブレーキの制動を解除しても、車体に発生するキックバックが少なく、快適な乗り心地を得ることができるようにする。
【解決手段】主ブレーキ10の制動により自車両が停車している状態で、補助ブレーキ17が制動動作した場合、VDC_ECU2は、目標ブレーキ液圧Pbfを、自車両の停車状態を保持することのできる第1の液圧値Pbf1まで急減圧し(S11〜S13)、その後緩減圧させて主ブレーキによる制動を解除する(S14)。目標ブレーキ液圧Pbfが第1の液圧値Pbf1以下となったときは、ブレーキ液圧が緩減圧されるため、従来のような急減圧される場合に比し、車両に発生するキックバックを低減することができる。 (もっと読む)


本発明は、少なくとも1系統のブレーキシリンダ(2)を有し、該ブレーキシリンダ(2)を操作することによって自動車の少なくとも1つの車輪にブレーキ力を作用させることができる、自動車用のブレーキシステム(1)に関する。ブレーキシリンダ(2)は、設定ブレーキ検出手段(24)から連結解除された倍力シリンダ(8)と機械的に作用接続されており、該倍力シリンダ(8)は、設定ブレーキ検出手段(24)によって検出された運転者の要望に応じてブレーキシリンダ(2)を操作するために液圧式に制御可能である。本発明はさらにブレーキシステム(1)を有する自動車に関する。
(もっと読む)


【課題】電気ブレーキから空気ブレーキへの切替によってブレーキ力が急変するような場合であっても、空気ブレーキへの切替後にブレーキの効き具合を迅速に検知することができ、その結果として停止位置の精度を向上させることができる定位置停止制御装置1を提供する。
【解決手段】定位置停止制御装置1は、電気ブレーキから空気ブレーキへの切替速度域において、ブレーキ指令決定手段25によるブレーキ指令を保持する。これにより、定位置停止制御装置1は、空気ブレーキの立ち上がり完了時に、前記ブレーキ指令に対して整定状態となる制御するとともに、空気ブレーキの立ち上がり完了後に短時間で空気ブレーキの効き具合を検知できるように制御する。 (もっと読む)


【課題】道路の勾配変化によって車両前方の見通しが損なわれる場合において、適切な時点(地点)にて運転者に的確な情報を提供し、又は、車両が安定して走行できるように車両を制御すること。
【解決手段】車両前方にある道路の勾配情報Kr,Prに基づいて、車両の運転者が道路の前方を見通せない区間(見通し不可区間)が車両前方に存在するか否かが判定され、見通し不可区間が存在すると判定された場合、勾配情報に基づいて見通し不可区間の終了地点(見通し地点Pm)が設定される。この見通し地点Pmと現在の車両位置Pvhとに基づいて、運転者に対する報知制御、車両の速度制御、及び、車両の操舵比制御のうち少なくとも1つ以上の制御が実行される。これらの制御実行に使用されるパラメータは、見通し地点Pmの前方にある道路のカーブ情報Rc,Pc、勾配情報に基づいて調整される。 (もっと読む)


【課題】 様々な条件で走行する車両に対して、種々の走行状態あるいは周囲環境に対応する動特性モデルを選択することができ、適切な動特性モデルにより定位置停止制御の精度を向上させることができる。
【解決手段】 車両運転装置としての自動列車運転装置2は、車両としての列車1の運転を制御するための複数の動特性モデルを保持する動特性モデル保持部を有している。自動列車運転装置2は、複数の動特性モデルのうち当該車両の走行状態あるいは周囲環境を監視する動特性モデル切換部を有する。自動列車運転装置2の動特性モデル切換部は、上記のような監視の結果として得られる当該車両の走行状態あるいは周囲環境に応じた最適な動特性モデルを適宜選択する。自動列車運転装置2は、上記動特性モデル切換部が選択した最適な動特性モデルに基づいて制御指令部が当該車両の走行を制御する。 (もっと読む)


【課題】運転者による制動操作に基づくことなく自車両に停止保持のための制動力を付与した場合において、何らかの理由でアクセルペタルが踏まれたとしても、自車両をより安定させて停止保持させることが可能な走行制御装置を提供する。
【解決手段】ブレーキECU32が付与する制動力により自車両が停止させられたときに、停止保持判定部22及びバックアップ制御判定部25が停止保持の要否を判定し、停止保持の必要があると判定したときに、パーキングブレーキ33が運転者による制動操作に基づくことなく制動力を付与する。パーキングブレーキ33により自車両が停止保持させられたときに、バックアップ制御判定部25及びエンジンECU32が自車両のエンジンのスロットル開度の増大を制限する。これにより、何らかの理由でアクセルペタルが踏まれたとしても、自車両をより安定させて停止保持させる。 (もっと読む)


【課題】車両がカーブを通過する際において、円滑な速度制御を達成できる車両の速度制御装置を提供すること。
【解決手段】カーブ内にて、車両の減速が完了する地点の基準となる基準地点Pcr、車速の維持が完了する地点の基準となる基準地点Pca、及び、車両の加速制限が完了する地点の基準となる基準地点Pcsが設定される。自車位置Pvhと基準地点Pc#との間の相対距離Lvh#がそれぞれ演算される。車両がPcrを通過するまではLvhrに基づいて演算される目標車速Vto1が、車両がPcrを通過した後はLvhaに基づいて演算される目標車速Vto2が、車両がPcaを通過した後はLvhsに基づいて演算される目標車速Vto3が、目標車速Vtoとして決定される。運転者が加速操作を行わない場合、車速が自車位置における目標車速Vtoを超えないように調整される。 (もっと読む)


【課題】連続する2つのカーブを通過する際において運転者の感覚に合致した違和感の少ない速度制御を達成できる車両の速度制御装置を提供すること。
【解決手段】連続カーブ車速制御において、目標車速特性Vtoが、第1カーブの目標特性Vto1、カーブ間の目標特性Vtoz、第2カーブの目標特性Vto2が順に繋げられて構成される。第1、第2カーブの目標特性Vto*は、地点Pcr*まで減少して地点Pcr*にて適性車速Vqo*となり、その後、地点Pca*までVqo*に維持され、その後、地点Pca*から増大する特性a*−b*−c*−d*に決定される。カーブ間に対する制限車速Vqolが、適正車速Vqo*のうち大きい方にカーブ間距離に基づいて演算される増分Vupが加算されて演算される。このVqolに基づいてカーブ間の目標特性Vtozが特性X-Yに決定される。車速が目標車速特性Vtoに基づいて調整される。 (もっと読む)


61 - 80 / 150