説明

Fターム[3G301ND21]の内容

Fターム[3G301ND21]の下位に属するFターム

Fターム[3G301ND21]に分類される特許

1 - 20 / 385



【課題】誤判定を防止して十分な検出精度を確保する。
【課題手段】本発明に係る気筒間空燃比ばらつき異常検出装置は、多気筒内燃機関における各気筒の吸気弁の作用角を可変にする作用角可変機構と、各気筒の回転変動に関するパラメータX(i)を検出し、この検出されたパラメータに基づき気筒間空燃比ばらつき異常の有無を検出する異常検出手段とを備える。異常検出手段は、パラメータの検出時における作用角Sが所定の大作用角領域にあるとき(ステップS207:イエス)には正常判定を保留し、パラメータの検出時における作用角が、大作用角領域よりも小作用角側の所定の小作用角領域にあるとき(ステップS207:ノー)には正常判定(ステップS208)を実行可能である。 (もっと読む)


【課題】燃料供給ポンプの圧送行程における圧送期間を調量弁で制御する燃料供給システムにおいて、調量弁に対する制御指令値をエンジン回転数に対するフィードバック量の特性に応じて学習し、コモンレール内の圧力を目標圧力に適切に追従させるポンプ制御装置を提供する。
【解決手段】燃料供給ポンプを駆動するカムのクランク軸に対する回転位相のばらつきに起因する角度誤差と、圧送期間を制御する調量弁の閉弁応答遅れのばらつきに起因する時間誤差とにより、圧送量の誤差は生じる。角度誤差はエンジン回転数に関わらず一定であり、時間誤差はエンジン回転数に応じて変化する。符号200で示すフィードバック制御の積分項は角度誤差と時間誤差とを表わしており、ポンプ制御装置は、エンジン回転数NE1、2と、そのときの積分項1、2の値とを表わす2点から積分項の一次式を求めて角度誤差と時間誤差とに分離し、調量弁の通電開始タイミングを学習する。 (もっと読む)


【課題】高価な空気過剰率センサを追加することなく、燃料供給システムの異常を診断することができる内燃機関の燃料噴射の異常判定方法を提供する。
【解決手段】NOxセンサ21の酸素濃度値から算出した実空気過剰率と、吸気通路5に設けたMAFセンサ22で検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率との偏差値を算出し、現学習値を、偏差値がゼロになるように補正して、新たな学習値を算出し、インジェクタ3からの燃料噴射に際しては、現指示燃料噴射量を学習値で補正して、燃料噴射を行い、学習値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定する。 (もっと読む)


【課題】内燃機関の制御装置に関し、燃料の吹き抜けを抑制してエンジン出力,排気性能を向上させる。
【解決手段】気筒20内に燃料を噴射する筒内噴射弁11と、吸気ポート17に燃料を噴射するポート噴射弁12とを有する内燃機関10の制御装置1に、筒内噴射弁11から噴射される筒内噴射量を算出する噴射量算出手段5を設ける。また、ポート噴射弁12から噴射されるポート噴射量を制御するポート噴射制御手段2と、吸気弁27及び排気弁28がともに開弁状態となる重複期間を制御する重複期間制御手段4とを設ける。
さらに、筒内噴射量に基づいて、ポート噴射弁12からのポート噴射量及び重複期間をともに変更する変更手段6を設ける。 (もっと読む)


【課題】高価な空気過剰率センサを追加することなく、燃料供給システムの異常を診断することができる内燃機関の燃料噴射の異常判定方法と内燃機関を提供する。
【解決手段】NOxセンサ21の酸素濃度値から算出した実空気過剰率と、吸気通路5に設けたMAFセンサ22で検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率との偏差値を算出し、現コモンレール圧と現指示燃料噴射量に対応する現学習値を、偏差値がゼロになるように補正して、新たな学習値を算出し、インジェクタ3からの燃料噴射に際しては、指示燃料噴射量とコモンレール圧をベースとする通電時間マップに記憶され、現指示燃料噴射量と現コモンレール圧Pに対応する現噴射時間を学習値で補正して、燃料噴射を行い、学習値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定する。 (もっと読む)


【課題】制御パラメータの学習点数を増加させることなく、制御パラメータを用いた制御の精度を向上させる。
【解決手段】圧力Pと関連付けて遅れ時間tdをマップMに記憶させておき、圧力および遅れ時間の検出値PK,tdKに基づき、マップ中の遅れ時間td1の値を更新して学習することを前提とする。そして、学習に用いられた圧力検出値PKに対応する遅れ時間を、マップ中の複数の遅れ時間td1’,td3から線形補間して算出し、その算出値tdKαと遅れ時間の検出値tdKとの誤差である補間誤差ΔtdKを学習しておく。そして、現状の圧力PJに対応した遅れ時間tdJαを、マップ中の複数の遅れ時間td1’,td3から線形補間して算出し、その算出した遅れ時間tdJαを、学習しておいた補間誤差ΔtdKに基づき補正する。そして、この補正された遅れ時間tdJに基づき燃料噴射弁を制御する。 (もっと読む)


【課題】吸気絞り弁が設けられている場合において、吸気パラメータを精度よく算出することができる内燃機関の吸気パラメータ算出装置を提供する。
【解決手段】吸気パラメータ算出装置1は、ECU2を備える。ECU2は、誤差KTHERRCORを、誤差モデル式(8)により算出し(ステップ2)、補正係数KTHCORを、誤差KTHERRCORと値1の和の逆数として算出し(ステップ3)、式(11)によって算出した基本通過空気量GAIRTHNを、補正係数KTHCORで補正することにより、通過空気量GAIRTHを算出する(ステップ6)。誤差モデル式(8)のモデルパラメータAは、モデル式値KTHCALと詰まり係数KCLSで補正した補正後マップ値KTH_Fとの比KTHERRを用い、式(15)〜(19)の均等重み付けのオンボード同定演算により算出される(ステップ48〜53)。 (もっと読む)


【課題】空燃比のインバランスに対して空燃比F/B制御の学習精度を維持する。
【解決手段】
排気経路に少なくとも一つの空燃比検出手段を備えると共に、該空燃比検出手段により検出された空燃比を複数の気筒における燃料噴射量にフィードバックすることを含む所定の空燃比F/B制御により前記燃料噴射量が決定される内燃機関を制御する内燃機関の制御装置(100)は、前記空燃比F/B制御に係るF/B制御量を学習する学習手段と、前記検出された空燃比に基づいて前記複数の気筒における空燃比のインバランス度を推定する推定手段と、前記推定されたインバランス度が前回値との間に所定以上の偏差を有する場合において、前記学習手段における前記F/B制御量の学習値を初期化する初期化手段と、前記学習値が初期化された後に、前記学習値の更新速度を標準値に対し向上させる更新速度変更手段とを具備する。 (もっと読む)


【課題】安価で、且つインジェクタによる燃料の噴射量を高精度に制御することができるインジェクタ制御装置を提供すること。
【解決手段】水晶発振回路11を有し所定のパルス幅のパルス信号である噴射指令信号を出力するマイコン10と、RC発振回路21を有しインジェクタ50のアクチュエータに対する通電を行う制御IC20とを備えるインジェクタ制御装置であって、マイコン10は、制御IC20のRC発振回路21によって生成された内部クロックを用いて計時された到達時間を、水晶発振回路11によって生成された内部クロックを用いて計時された到達時間と同等になるように補正するための補正係数を学習するとともに、インジェクタの開弁時間が開弁時間狙い値となるように、補正係数によって補正された補正済到達時間に応じて噴射指令信号のパルス幅を補正する。 (もっと読む)


【課題】エンジン10の燃焼制御システムのコストを低減させることのできる制御装置を提供する。
【解決手段】ECU64内のパワートランジスタの直近に、第1のサーミスタを設ける。この第1のサーミスタによれば、エンジン10の運転状態と連動する温度を検出することができる。そして、第1のサーミスタによって検出される温度に基づき、エンジン10の温度を推定する。詳しくは、第1のサーミスタによって検出される温度が高いほど、エンジン10の温度を高く推定する。そして、推定されたエンジン10の温度に基づき、燃料噴射弁30による燃料噴射制御を行う。 (もっと読む)


【課題】LPGエンジンについて、コストの高騰を伴うことなく使用するLPGの組成をその都度判定して、良好な空燃比制御を実行できるようにする。
【解決手段】LPGエンジンの排気管に設けた排気性状検出手段を介して排気の状態を連続的に検知することによりフィードバック制御で燃料噴射量を調整する空燃比制御装置が行う空燃比制御方法において、その空燃比制御装置が、所定の操作を行うことにより排気性状検出手段の出力信号に変化を生じさせ、この変化を基に所定の判定方法で現在使用しているLPGの燃料組成を判定し、その後の制御に反映させることを特徴とするものとした。 (もっと読む)


【課題】運転者の運転特性に応じて内燃機関の制御パラメータを最適化することが可能な内燃機関の制御装置を提供する。
【解決手段】規定された走行モードでの筒内状態量変化に基づいて定められた状態量変化最大基準値ΔXb-aveに対する実際の走行状態での筒内状態量変化により求められた状態量偏差平均値ΔXaveの比として運転者過渡度Rtを算出する。運転者過渡度Rtが1以上である場合には、筒内酸素濃度を高くするようにEGRバルブの開度を比較的小さく設定しておく。一方、運転者過渡度Rtが1未満である場合には、この運転者過渡度Rtが小さいほど、筒内酸素濃度を低くするようにEGRバルブの開度を比較的大きく設定しておく。これにより、過渡運転時に失火を招くことがなく、且つ気筒内の酸素濃度をより低く設定することで排気エミッションの改善が図れる。 (もっと読む)


【課題】従来に比してより信頼性の高いラムダセンサの応答性の良否判断を可能とする。
【解決手段】車両が減速状態にあって、エンジン回転数が所定範囲内にある場合に(S110)、エンジンの一つの気筒に対して微小噴射を行い、その際のラムダセンサ13の出力信号に対して周波数解析を施して周波数スペクトルを得(S112,S114)、その周波数スペクトルの所定周波数において、所定レベルを越えるスペクトルが生じている場合、ラムダセンサ13の極希薄領域の応答性に問題無しと判定する(S118)一方、所定レベルを超えるスペクトルが生じていない場合にはラムダセンサ13の極希薄領域の応答性に問題有りと判定する(S120)よう構成されてなるものである。 (もっと読む)


【課題】燃焼指標を使用して、火花点火型内燃エンジンの異常燃焼の検出および特徴づけの方法を提供する。
【解決手段】燃焼状態を表す信号から推測可能な燃焼指標が選択される。各次元が燃焼指標の1つに対応している多次元空間が定められ、閉じた面が、正常な燃焼に対応する点を囲み、異常な燃焼に対応する点を囲まないように、空間内で定められる。それから、エンジン周期の各燃焼について、周期の燃焼がこの多次元空間内の点で表される。面に対するこの点の位置が求められ、燃焼の異常な特性がこれらから推測される。この点と面との間の距離が求められ、異常な特性の深刻さがこれらから推測される。最後に、異常な特性の深刻さの関数として検出される異常燃焼の進行が制御される。 (もっと読む)


【課題】パイロット噴射量補正処理において生ずる補正誤差が噴射特性へ及ぼす悪影響を極力抑圧し、より信頼性の高いパイロット噴射を可能とする。
【解決手段】無噴射状態において微小噴射量の複数の噴射を行い、その際生ずるエンジン回転変動に対応する周波数成分に基づいて、燃料噴射弁の基準となる基準通電時間と実際通電時間との差分を学習することで、通電時間、通電タイミングの補正を行うパイロット燃料噴射量補正制御が実行されるよう構成されてなるコモンレール式燃料噴射制御装置において、学習値として得られた基準通電時間と前記微少噴射の際の通電時間との差分を、所定の演算式により算出された分割率にしたがって分割し、基準通電時間の前後に配し補正通電時間を得ることで補正誤差が噴射特性へ及ぼす悪影響を抑圧可能としてなるものである。 (もっと読む)


【課題】誤学習時における各学習値の修正を適正に行うことのできる内燃機関の吸気量制御装置を提供する。
【解決手段】この装置は、アイドル運転時における吸気量を学習するISC学習制御処理とスロットル機構の流量特性を学習するスロットル特性学習処理とを実行する。吸気量の調節制御を、ISC学習制御処理を通じて学習したISC学習値とスロットル特性学習処理を通じて学習したスロットル特性学習値とに基づき実行する。アイドル運転時に所定レベル以上の機関回転速度NEの変化が生じたときに(S11:YES)、スロットル特性学習値の直近の更新時における更新量が判定値J1以上であるときには(S12:YES)、各学習値のうちのスロットル特性学習値のみを修正する(S13)。更新量が判定値J1未満であるときには(S12:NO)、各学習値のうちのISC学習値のみを修正する(S14)。 (もっと読む)


【課題】 複数のアクチュエータへの電圧供給用としてコンデンサを有する昇圧回路を用いて、複数のアクチュエータによる内燃機関の適切な制御を実行できるとともに、製造コストを抑制することができる内燃機関の制御装置を提供することを目的とする。
【解決手段】 車両Vに搭載された内燃機関2を、電源VBから供給された電圧により駆動される複数のアクチュエータ4〜6によって制御する内燃機関の制御装置1であって、検出された車両Vの運転状態に応じて、複数のアクチュエータ4〜6の優先順位を決定し、決定した優先順位に応じて、複数のアクチュエータ4〜6への電圧供給用としてコンデンサC2を有する昇圧回路15により昇圧された電圧を、複数のアクチュエータ4〜6のうちの少なくとも1つに供給し、複数のアクチュエータ4〜6の少なくとも1つを駆動する。 (もっと読む)


【課題】アイドル運転が行われなくても、調量弁の特性学習を行うことができる蓄圧式燃料噴射装置を得る。
【解決手段】内燃機関1の停止に基づく回転数降下中に(S100)、調量弁14を予め設定された一定の弁開度に制御してコモンレール2に高圧燃料を供給する(S130)。そして、燃料圧センサ7によりコモンレール2の燃料圧を検出して、回転数降下中の燃料圧の降下速度を測定する(S140)。内燃機関1の回転数降下速度が予め設定された基準内で(S150)、かつ、燃料圧降下速度が予め設定された基準圧力降下速度よりも早いときには(S170)、調量弁14を供給増量側に補正し(S180)、基準圧力降下速度よりも遅いときには(S190)、調量弁14を供給減量側に補正する学習を行う(S200)。 (もっと読む)


【課題】燃料噴射量変更終了直後の回転ズレを抑制する。
【解決手段】多気筒内燃機関の気筒間空燃比ばらつき異常検出装置は、アイドル運転時に所定の対象気筒の燃料噴射量を変更し、少なくとも変更後の対象気筒の回転変動に基づき気筒間空燃比ばらつき異常を検出する。アイドル運転時に実際の回転数を目標アイドル回転数に一致させるようアイドル回転制御を実行する。燃料噴射量変更時には、実際の回転数と目標アイドル回転数との差分に基づく補正量Δθ、補正量に応じた学習値θg、およびこれらのうちの少なくとも一方を補正する補正値θaに基づき、目標開度θtを算出する。算出された目標開度に一致するようバルブ開度を制御する。 (もっと読む)


1 - 20 / 385