説明

Fターム[3L211BA32]の内容

車両用空気調和 (23,431) | 目的、効果 (7,012) | 環境への配慮(エコロジー) (873) | 省動力、省電力 (844)

Fターム[3L211BA32]の下位に属するFターム

Fターム[3L211BA32]に分類される特許

41 - 60 / 589


【課題】OBCとモーターの廃熱を室内暖房とモーターの予熱に活用することで電気自動車の燃費を向上させる電気自動車の廃熱管理システム及び管理方法を提供する。
【解決手段】冷却水の流れを制御するウォーターポンプ、ウォーターポンプの冷却水ラインの出口側で並列に分岐されたOBC冷却水ラインとモーター冷却水ライン、及び、ウォーターポンプ冷却水ラインの入口側とOBC冷却水ライン及びモーター冷却水ラインの出口側合流地点とにそれぞれ並列に連結されたヒーターコア冷却水ラインとラジエーター冷却水ライン、を含み、ウォーターポンプ冷却水ラインの出口側とOBC冷却水ライン及びモーター冷却水ラインの分岐される入口側とは第1バルブで連結され、OBC冷却水ライン及びモーター冷却水ラインの出口側合流地点とヒーターコア冷却水ライン及びラジエーター冷却水ラインとは第2バルブで連結される。 (もっと読む)


【課題】車両の暖房性能と除湿性能を向上させ、外部凝縮機の外部積霜を防止する車両用ヒートポンプシステムおよびその制御方法を提供する。
【解決手段】冷媒ラインを通して循環する冷媒を利用して車両の室内の冷房および暖房を調節するためのエアコン手段を有している。エアコン手段は、外部凝縮機と、外気の流入を調節する開閉ドアのあるHVACモジュールと、圧縮器と、アキュムレータと、圧縮器からの冷媒を内部凝縮機や外部凝縮機に選択的に供給する第1バルブと、内部凝縮機を通過した冷媒の供給を膨張させる第1膨張バルブと、第1膨張バルブで膨張した冷媒を蒸発器やアキュムレータに選択的に供給する第2バルブと、第2バルブを通過した冷媒を膨張させる第2膨張バルブと、内部凝縮機を通過した冷媒を蒸発器やアキュムレータにバイパスさせるバイパスラインと、第2バルブと連結された冷媒ラインに冷媒を選択的に供給する第3バルブとを有している。 (もっと読む)


【課題】無理のないプレ空調を実施することのできる車両用空調装置を提供すること。
【解決手段】車両外部の電源からの供給電力で充電される蓄電池と共に搭載されて当該車室内の空調をする車両用空調装置であって、蓄電池の充電残量(SOC)を検出する残量検出部と、空調装置を含む車両全体を統括制御するHEVコントローラ25と、を備えて、このHEVコントローラは、蓄電池の充電中に車室内の空気温度を調節するプレ空調を実施する際に、蓄電池の充電残量が所定量よりも大きい場合に車室内の空調の実施を許可するとともに、その充電残量の変化量を取得して該変化量に基づいて車室内の空調に利用する電力量を調整する。 (もっと読む)


【課題】エンジンの燃費悪化を防止し、バッテリによるモータ駆動力確保と暖房用電気ヒータの暖房性能確保できる電気駆動車両の暖房装置を提供する。
【解決手段】エンジン1と、ジェネレータ2と、メインバッテリ3と、このメインバッテリ3と電気的に接続されたサブバッテリ12と、モータ4と、暖房用電気ヒータ6と、メインバッテリ3とサブバッテリ12との間に設けられたDC/DCコンバータ10と、制御手段7とを備え、メインバッテリ3の充電状態(SOC)が設定値A1よりも低いとき、メインバッテリ3からサブバッテリ12への電力供給を遮断し、メインバッテリ3の充電状態(SOC)が設定値A1よりも高いとき、メインバッテリ3からサブバッテリ12への電力供給を許容している。 (もっと読む)


【課題】車内の快適性に影響する外的要因を考慮することで、乗員の快適性を維持しつつカーエアコンの省エネルギを達成する。
【解決手段】ECU10は、記憶部12から車室内の快適な空気条件に関する快適情報を取得する。また、各種センサ類22〜27から車内外の温度、湿度、日照、降水等に関する現状情報を取得する。そして、取得した快適情報と現状情報とを対比する所定の演算により、車室内の快適な空気条件を保つことが可能な範囲内でカーエアコンの運転状態を所定の低消費状態に切替えることを許容する許容時間を算出する。一方、ナビゲーション装置21から、自車両が現在地から目的地に到達するまでの予測所要時間を取得する。そして、前記予測所要時間と前記許容時間とを比較し、予測所要時間が許容時間以下となったことを条件に、カーエアコンの運転状態を低消費状態に切替える。 (もっと読む)


【課題】再生用の加熱手段の電力消費を抑えて、暖房時の除湿が行える車両用空調装置を提供することを目的とする。
【解決手段】予冷熱交換器27を通過した外気と除湿部24で除湿された内気を混合され第一車内熱交換器8で加熱された混合空気の一部を、第二の風路切替手段10により、再生風路12へ流入させ、再生部25を通過した後の混合空気を、蒸発器として熱交換する第三車内熱交換器13により除湿してから車内へ戻して除湿暖房を行う。よって、車内の暖房用に加熱され除湿された空気の一部を除湿手段26の再生に用いることで、別の加熱手段を設けなくてもよく、除湿された空気を除湿手段26の再生に用いているので、除湿しない空気に比べてより低温で再生可能であり、ヒートポンプの電力消費が抑えられる。また、再生部25を通過した後の混合空気から第三車内熱交換器13で水蒸気潜熱を回収するので、ヒートポンプの暖房負荷を低減できる。 (もっと読む)


【課題】燃料電池、あるいはハイブリッド車用エンジンにおける少ない廃熱を有効に利用しつつ、簡素な構成で好適な空調を可能とし、燃料電池あるいはエンジンの温度を一定に保つことのできる車両用空調装置を提供する。
【解決手段】車両用空調装置において、燃料電池車の燃料電池111、あるいはハイブリッド車のエンジンを冷却する冷却回路110の冷却水を加熱源として空調用空気を加熱するヒータコア116と、ヒータコア116に対して、空調用空気の流れ方向の上流側に配設されて、ヒートポンプサイクル120を循環する冷媒を加熱源として空調用空気を加熱する加熱用熱交換器122と、冷却水の温度TFCに応じて、加熱用熱交換器122によって加熱される空調用空気の温度目標値として設定される目標加熱温度TAVOを変化させるようにヒートポンプサイクル120の作動を制御する制御部140とを設ける。 (もっと読む)


【課題】 電動車両に具備される空調装置は電力消費が大きく、蓄電池容量に限定された電気エネルギーのみで走行する電動車両において、当該装置は一充電走行距離等、性能面を脅かす要素となっているが、快適性確保のために必須の装置でもあり、技術上の要点のひとつである。
【解決手段】 回生制動装置に付随して空調装置を具備し、回生制動装置の発生する電力で駆動することで、通常空気中に熱として放散せざるを得ない制動時の運動エネルギーを再利用することとなり、電気エネルギーの節約が可能になる。
なおかつ、所定の熱容量を有する冷媒等に一時的に蓄熱する構造とすることにより、空調装置の消費電力は、室温調整の強弱とは直接無関係となり、常に安定となり、当該回生制動装置の動作が安定する。
同時に、冷媒等に蓄熱された熱量は所定の時間差をもって供用可能であるため、制動時以外でも室温調整が可能である。 (もっと読む)


【課題】再生用の加熱手段の電力消費を抑えて、省エネ効果のある車両用空調装置を提供することを目的とする。
【解決手段】第一の風路切替手段6により、顕熱交換器17を通過した外気と除湿部14で除湿された内気を混合し、この混合した外気と内気の一部を、第二の風路切替手段11により、内気排出風路21へ流入させ、外気導入時の除湿暖房を行うことで、除湿手段16の再生を行うのに、車内暖房用に除湿され加熱された空気を用いる。よって、再生のための別の加熱手段を設ける必要がない。また、除湿された空気を用いて再生を行うので、相対湿度を再生に必要な値まで下げるために昇温する空気の温度が、除湿されていない状態の空気を用いて再生を行うよりも低温でよい。 (もっと読む)


【課題】
車室内に入射した太陽光によって、高温になるダッシュボードやアッパバックパネルの上面を冷却して、車室内の空気を効率良く冷却する車室内用冷却装置とそれを搭載する車両を提供する。
【解決手段】
車室3内に入射する太陽光Sによって温度が上昇するダッシュボード4の上面を、内部に冷却水Wを流す水冷パネル10で形成し、前記水冷パネル10の表面上で冷却された空気Aを、車室3内の端部側10aから車室内の中央側10b、つまり、フロント側5から運転席6に向けて移動させる電動ファン30を、ダッシュボード4内部に備えたエアコン(車両用空調装置)とは別に設けて構成される。 (もっと読む)


【課題】コンプレッサ22の駆動に伴うエンジン10の燃料消費量を低減させることのできる車両用空調制御装置を提供する。
【解決手段】エバポレータ28で熱交換された空気の温度(実エバ温度)をその目標値に制御すべく、コンプレッサ22等が通電操作されるエアコンシステムが車両に搭載される。ここで、雨滴検出装置54の備える冷却装置によって窓ガラス48の内表面が強制的に冷却されて上記内表面に結露が発生するタイミングにおける窓ガラス48の温度及び車室内温度に基づき、車室内湿度を算出する。そして、算出される車室内湿度が低いほど、上記目標値を高く設定する処理を行い、コンプレッサ22の駆動エネルギを低減させる。 (もっと読む)


【課題】乗員が意図しない空調作動によって乗員に違和感を与えてしまうことを抑制する。
【解決手段】圧縮機11、室内蒸発器26、室内凝縮器12、室外熱交換器16を有し、室内蒸発器26にて冷媒を蒸発させて送風空気を除湿冷却するとともに、室内凝縮器12にて冷媒を放熱させて送風空気を加熱する除湿暖房モードと、室内凝縮器12にて冷媒を放熱させて送風空気を加熱する暖房モードとを切り替え可能に構成された冷凍サイクル10と、乗員の操作により圧縮機11を含む空調機器の省動力化を優先するか否かを設定するための省動力優先設定手段60bと、暖房モードから除湿暖房モードへの切り替えを許可するか否かを判定する除湿暖房許可判定手段S63と、を備え、除湿暖房許可判定手段S63は、省動力優先設定手段60bで省動力化を優先する設定がされていない場合に、除湿暖房モードへの切り替えを許可しない。 (もっと読む)


【課題】エンジン自動停止時における送風機の風量を低下させるようにしても乗員が不快感を感じ難くし、エンジンが空調の影響によって再始動されてしまうのを抑制し、エンジンが自動停止している時間をできるだけ長くする。
【解決手段】送風機と熱交換器と日射センサとを有する空調装置と、所定のエンジン停止条件が成立したときにエンジンを自動停止させるとともに、所定のエンジン再始動条件が成立したときに該自動停止させたエンジンを再始動させるエンジン自動停止制御装置とを備えた車両の制御装置は、エンジンの自動停止中でかつ空調装置の作動中において、冷房時には、暖房時よりも風量が多くなるように送風機を制御するとともに、日射センサにより検出された日射量が所定日射量以上である場合には、所定日射量よりも少ない場合に比べて風量が多くなるように上記送風機を制御するように構成されている(ステップSD2)。 (もっと読む)


【課題】圧縮機停止時の冷却継続における電力消費を抑えることが可能な車両用空調装置を提供すること。
【解決手段】冷媒通路10に圧縮機20、凝縮器30、減圧器40、蒸発器50を備えた冷凍サイクル60と、蒸発器50の出口側に設けられて冷媒を貯留可能なアキュームレータ70と、アキュームレータ70に貯留された冷媒を、バイパス通路11を介して蒸発器50に供給可能な冷媒ポンプ80と、圧縮機20の停止時に、冷媒ポンプ80を駆動させてアキュームレータ70に貯留した冷媒を蒸発器50に供給する冷却継続処理を実行する空調制御回路100と、を備えた車両用空調装置であって、空調制御回路100は、冷却継続処理の実行時に、液冷媒センサ91の検出に基づいてアキュームレータ70内の液冷媒が無くなったときに冷媒ポンプ80の駆動を停止させることを特徴とする車両用空調装置とした。 (もっと読む)


【課題】暖房性能及び効率と除湿性能を向上させ、かつ極低温時には外部結露を防止する車両用ヒートポンプシステム及びその制御方法を提供する。
【解決手段】車両に構成されて冷却ラインを通して電装品に冷却水を供給及び循環させるクーリング手段と、車両室内の冷暖房を調節するように冷媒ラインによって連結するエアコン手段とを含む車両用ヒートポンプシステムにおいて、クーリング手段は車両の前面に構成されて、ウォータポンプによって冷却ラインに沿って冷却水を循環させ、供給される冷却水を外気との熱交換によって冷却させるラジエータと、ラジエータに風を送風するクーリングファンとを含み、冷却ラインと連結して冷却水が循環し、モードによって電装品から発生する廃熱源を選択的に利用して冷却水の水温を変化させ、エアコン手段の冷媒ラインと連結して流入した冷媒を冷却水と熱交換させる熱交換器をさらに含むことを特徴とする。 (もっと読む)


【課題】冷房運転時は1段膨張サイクルとし、低回転時には低圧気筒を休止又はバイパスし高圧気筒のみで運転する2段圧縮式圧縮機を備えた車両用空調装置を提供する。
【解決手段】低圧圧縮機構(7)と高圧圧縮機構(9)を有する圧縮機(20)によって作動するヒートポンプシステムが、暖房時には、前記圧縮機(20)へ中間圧冷媒の流入を行う2段圧縮冷凍サイクルを構成し、かつ、冷房時には、1段圧縮1段膨張冷凍サイクルを構成するような冷媒回路を具備し、冷房時に、前記圧縮機(20)を駆動する電動モータ(5)の回転数(n)が、モータ効率の悪い所定値以下の範囲においては、前記高圧圧縮機構(9)のみで冷媒を圧縮させ、前記所定値より大きい範囲では、前記低圧圧縮機構(7)と前記高圧圧縮機構(9)の両方で冷媒を圧縮させたことを特徴とする。 (もっと読む)


【課題】圧縮機停止時にも冷房が可能でありながら、装置の負荷を軽減可能な車両用空調装置を提供すること。
【解決手段】冷媒通路10に圧縮機20、凝縮器30、減圧器40、蒸発器50を備えた冷凍サイクル60と、蒸発器50の出口側に設けられて冷媒を貯留可能なアキュームレータ70と、を備え、冷媒通路10の冷媒を前記アキュームレータ70へ導く蒸発器バイパス通路11と、減圧器40の下流の第1冷媒遮断弁81と、蒸発器バイパス通路11に設けた第2冷媒遮断弁82と、車両の走行状態を検出する走行状態検出部90の検出に基づいてアイドリングストップを実行する直前の状態であるか否かを判定する直前判定部と、を備え、空調制御回路100は、直前判定部が、直前の状態と判定した際に蒸発器バイパス通路11を介して液冷媒をアキュームレータ70へ導くよう両冷媒遮断弁81,82を作動させることを特徴とする車両用空調装置とした。 (もっと読む)


【課題】エアコンON時の燃料カットリカバー時期とエアコンOFF時の燃料カットリカバー時期との間にコンプレッサON要求があったときにおいても、燃料カット期間を延長させ得る装置を提供する。
【解決手段】減速時燃料カット中かつ冷凍サイクルの作動要求時には減速時燃料カット中かつ冷凍サイクルの作動非要求時より早い燃料カットリカバー時期に燃料カットを解除して燃料カットリカバーを行う燃料カットリカバー実行手段を備え、コンプレッサ作動・非作動制御手段は、減速時燃料カット中に、コンプレッサの非作動状態でコンプレッサの作動要求時の燃料カットリカバー時期を過ぎたときには、その後コンプレッサの非作動要求時の燃料カットリカバー時期までにコンプレッサの作動要求があっても、前記燃料カットリカバーを行うことを禁止してコンプレッサの非作動状態を継続する(図3のS1〜S7)。 (もっと読む)


【課題】通常走行域において一層高いモータ効率が得られる電気自動車を提供する。
【解決手段】大きな駆動力が要求される発進加速モードの場合には、エアコン用コンプレッサ12の回転の回転をブレーキB1により停止させた状態で第1駆動モータMG1および第2駆動モータMG2を作動させてそれらの出力を共に用いて駆動輪38、40を回転駆動し、通常走行モードでは、ブレーキB1を解放させて専ら第2駆動モータMG2の出力で車両の駆動輪38、40を回転駆動する。このとき、1つの第2駆動モータMG2を用いて常用される通常の加速走行を行うので、高いモータ効率が得ら、電気自動車の走行距離が長くなり、或いは蓄電装置が小型となるという効果が得られる。 (もっと読む)


【課題】磁気冷凍システムのCOPの向上を図る。
【解決手段】磁気作業物質30に磁場が印加された後に、熱交換容器31aの低温側出入口313側から高温側出入口312側へ冷媒を移動させ、磁場の印加により生ずる磁気作業物質30の温熱によって昇温した冷媒を、高温側冷媒回路4を介して加熱用熱交換器13に流入させる。また、磁気作業物質30から磁場が除去された後に、熱交換容器31aの高温側出入口312側から低温側出入口313側へ冷媒を移動させることで、磁場の除去によって生ずる磁気作業物質30の冷熱によって降温した冷媒を、低温側冷媒回路5を介して冷却用熱交換器12に流入させる。これにより、磁気作業物質30に生ずる温熱により昇温した冷媒および磁気作業物質30に生ずる冷熱により降温した冷媒を、加熱用熱交換器13および冷却用熱交換器12に直接流入させることで、磁気冷凍システムのCOPの向上を図る。 (もっと読む)


41 - 60 / 589