説明

Fターム[4D006KE02]の内容

半透膜を用いた分離 (123,001) | 制御 (5,047) | 流量、流速 (998) | 供給液流量(流速)、供給ガス流量(流速) (340)

Fターム[4D006KE02]に分類される特許

121 - 140 / 340


【課題】サテライト処理場の汚水処理装置で保有する再利用水の貯水量を管理することを目的としている。
【解決手段】本発明の汚水処理装置10は、下水道幹線12を流れる汚水の一部を取水手段14により取水して生物処理する膜分離活性汚泥手段30と、前記汚水を高度膜処理する高度膜処理手段40と、前記膜分離活性汚泥手段30の処理水を貯水する膜処理水槽50と、前記高度膜処理手段40の処理水を貯水する高度膜処理水槽60と、前記膜処理水槽50及び高度膜処理水槽60の水位を測定する水位センサー70と、前記水位センサー70の水位データに基づいて前記取水手段14の取水量を制御する動力制御手段80と、を備えたことを特徴としている。 (もっと読む)


脱塩装置からイオン性化学種を除去する方法は、(a)脱塩装置と沈殿ユニットを含む閉鎖ループ内に洗浄液流を循環させ、この洗浄液流は少なくとも5cm/秒の線速度で脱塩装置を通って流れ、脱塩装置を通過後より多くの塩分を含むようになり、(b)沈殿ユニット内での沈殿により洗浄液流から硫酸カルシウムの一部分を除去して、約1.0〜約3.0の範囲の、脱塩装置に入る洗浄液流中の硫酸カルシウムの過飽和度を得ることを含んでなる。 (もっと読む)


【課題】 過剰に大きな貯留槽のための巨大なスペースを要せず、しかも、安定して所定量の淡水を効率よく得ることができる淡水生成装置を提供することを課題とする。
【解決手段】 本発明は、海水よりも低塩濃度の低塩濃度廃水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第1処理部と、該第1処理部にて生成した濃縮水を希釈用として海水に混合して混合水とし、該混合水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第2処理部とを備え、各処理部にて分離された透過水が淡水として得られる淡水生成装置であって、前記第1処理部には、流入した低塩濃度廃水の流入量を測定する流量測定手段が備えられてなり、得られた測定値に基づいて、前記第1処理部及び前記第2処理部でのろ過処理量を制御できるように構成されていることを特徴とする淡水生成装置を提供する。 (もっと読む)


【課題】初期導入費用および維持管理費用を低く抑えることができるろ過ユニットを備え、小型でろ過水の濁りを抑えることのできるろ過装置を提供する。
【解決手段】デプスフィルタ10およびそれを収容する筐体9を含み、原水RWをろ過する一次ろ過ユニット4を有するろ過装置1であって、筐体9が、デプスフィルタ10に原水RWを供給する原水供給口18と、ろ過水の取出口16と、デプスフィルタ10に逆洗用の流体を供給する流体供給口24と、デプスフィルタ10を逆洗した流体Aおよび原水RWを排出する排出口22を有し、デプスフィルタ10を形成するろ過膜の孔径が1〜25μmであり、さらに、ろ過水取出口16に接続されるろ過水通路8と排出口22に接続される排出通路14とを連通させる連通路15と、連通路15を開閉する第5自動開閉弁MV5を備えている。 (もっと読む)


【課題】 淡水を効率良く安定して得ることができる淡水生成装置を提供することを課題とする。
【解決手段】 海水よりも低塩濃度の低塩濃度廃水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第1処理部と、該第1処理部で生成された濃縮水を海水に混合して混合水とし、該混合水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第2処理部とを備え、各処理部にて分離された透過水が淡水として得られる淡水生成装置であって、
前記第1処理部には、前記低塩濃度廃水の塩濃度を測定する第1塩濃度測定手段が備えられ、得られた測定値に基づいて、前記第1処理部で得られる透過水の生成量と、前記第2処理部で得られる透過水の生成量とが制御されるように構成されていることを特徴とする淡水生成装置を提供することにある。 (もっと読む)


【課題】海中に生息するプランクトンを可能な限り損傷させることなく船外へ戻すことができ、かつ小型で処理コストを低く抑えることのできるバラスト水製造装置におけるろ過システムを提供する。
【解決手段】船舶Sのバラスト水製造装置におけるろ過システム1であって、船舶S内に取り込まれた原水RWをろ過してバラストタンク6へ供給するろ過ユニット4と、ろ過ユニット4におけるろ過膜を形成するデプスフィルタ10に圧縮空気Aを供給して洗浄する気体供給通路12と、ろ過ユニット4に接続され、デプスフィルタ10を洗浄した圧縮空気Aを、デプスフィルタ10内の原水RWとともに船舶Sの外部へ排出する排出通路14とを備え、デプスフィルタ10を形成するろ過膜の孔径が1〜25μmである。 (もっと読む)


【課題】水素分離性能に優れるとともに、耐久性にも優れた水素分離装置を提供する。
【解決手段】原料入口3と、水素出口4と、残原料出口5と、並びに原料入口3から水素出口4及び残原料出口5まで通じる流体流路6と、を有する反応容器2と、流体流路に設けられて、原料入口3及び残原料出口5に通じる第1流路7と水素出口4に通じる第2流路8とに流体流路6を隔て、原料流体に含まれる水素を選択的に透過する水素選択透過性金属膜12を有し、水素選択透過性金属膜12を通じて第1流路7側から第2流路8側へ水素を選択的に透過する水素選択透過部11と、原料入口3にて第1流路7と連通し、水素選択透過性金属膜12の表面での酸素の濃度が0.1%以上5.0%未満となるように原料流体を調製しつつ、原料流体を原料入口から第1流路7内に供給する原料流体供給部31と、を備える水素分離装置1とする。 (もっと読む)


【課題】分離前燃料の芳香族成分の含有率に関係なく分離膜の劣化を正確に判断することができる燃料分離装置を提供する。
【解決手段】燃料中の芳香族成分を高オクタン価燃料として分離する分離膜を具備し、分離膜の分離能力に影響する複数のパラメータのうちの特定パラメータTを除いて固定した場合において(ステップ105)、特定パラメータの変化量(T2−T1)に対する分離膜の高オクタン価燃料の分離速度の変化量(Q2−Q1)の比を算出し(ステップ109)、この比に基づき分離膜の劣化を判断する(ステップ110)。 (もっと読む)


【課題】 無機性廃水を活用しつつ、淡水等の浄化水を効率良く得ることができる海水淡水化方法を提供することを課題とする。
【解決手段】 逆浸透膜装置を用いたろ過処理によって海水を淡水化する海水淡水化方法であって、
無機性廃水を沈殿分離して得られる上澄水たる沈殿処理水を希釈水として海水に混合する混合工程と、該混合工程により得られた混合水を前記逆浸透膜装置に供給してろ過処理する混合水処理工程とを実施して海水を淡水化することを特徴とする海水淡水化方法を提供することにある。 (もっと読む)


【課題】純水タンクに貯留される純水を常に所望の高純度に維持し、斯かる高純度の純水を常時外部機器に給水することができる純水製造システムを実現する。
【解決手段】純水装置のオン・オフ制御を行う(S1)。水位センサ12で現在水位を検知し(S2)、タイマが所定時間を計時したか否かを判断し、所定時間が経過すると水位変動があったか否かを判断する(S3→S4)。そして、水位変動がある場合は純水装置のオン・オフ制御を行う一方(S4→S1)、水位変動がない場合、処理水タンクの水位が循環ポンプの停止水位未満のときは、純水装置を強制的に駆動させる一方、水位が循環ポンプの停止水位以上のときは、循環ポンプを駆動させ、前記停止水位に低下した時点で循環ポンプを停止し、純水装置を強制的に駆動させ、その後純水装置のオン・オフ制御を行って上述の処理を繰り返す。 (もっと読む)


【課題】使用状態の情報を使用者に対して分かり易く表示することができる浄水器を提供する。
【解決手段】原水を受け入れる原水流入口と、原水を濾過するフィルタカートリッジと、濾過済みの浄水を吐出する吐出口と、使用状態を示す情報を表示する表示手段とを備える浄水器であって、原水の濾過流量を検出する流量検出手段と、流量検出手段によって検出された前記濾過流量に応じた速さで移動する波模様画像を表示手段に描画する制御手段とを備えた。 (もっと読む)


【課題】逆浸透膜を備える水処理装置において、水処理を良好に行なえるようにする。
【解決手段】逆浸透膜5によって原水を浄水と濃縮水とに分離する水処理装置1において、逆浸透膜5を振動させる振動部3を備える。これにより、逆浸透膜5への異物成分の付着の抑制や付着した異物成分の除去を行うことができる。 (もっと読む)


【課題】 濾過成分に関する第一要求水質および溶存酸素に関する第二要求水質を満たしつつ、システムの省エネを実現する水質改質システムを提供すること。
【解決手段】 互いに並列接続された複数の濾過膜部10,10,…と、各濾過膜部10,10,…毎に設けられ被処理水を各濾過膜部10,10,…へ供給するポンプ11と、各濾過膜部10,10,…の下流側に接続される脱気膜部8と、各ポンプ11を制御する制御部13,20とを備える水質改質システムであって、各ポンプ11が回転数制御可能に構成され、制御部13,20は、各濾過膜部10,10,…による濾過成分に関する処理水の水質が第一要求水質以上を満たすとともに、脱気膜部8による溶存酸素に関する処理水の水質が第二要求水質以上を満たす処理水流量の範囲で各ポンプ11の回転数を制御する。 (もっと読む)


【課題】 システムの性能を最適化し、各分離膜部の膜の詰りや劣化を均一化できる水質改質システムを提供すること。
【解決手段】 互いに並列接続された複数の分離膜部9,9,…,被処理水を前記各分離膜部9,9,…へ供給するポンプ10および分離膜部9,9,…の運転台数を制御する制御手段12,19とを備える水質改質システムであって、各分離膜部9,9,…の膜性能を検出する膜性能検出手段を備え、制御手段12,19は、運転台数増または減と判定したとき、膜性能が高い分離膜部9,9,…を優先して運転および/または運転中の膜性能が低い分離膜部を優先して停止する。 (もっと読む)


【課題】水系に対し元の水系と異なる成分を添加したり生じさせたりすることなく、水系のスケール防止を行うことができる水処理装置を提供する。
【解決手段】浴槽1の循環ライン6にストレーナ2、ポンプ3及び砂濾過器4が設けられている。ライン6から配管8に分岐した水は、フィルタ10に通水されて異物粒子が除去された後、薬注装置11からスケール防止剤が添加され、逆浸透膜分離装置13に送られる。逆浸透膜分離装置13の透過水は、加熱装置15へ送られ、加温された後、温泉水が添加され、浴槽1に戻る。弁7,9、ポンプ12及び加熱装置15を制御し、硬度計18の検出硬度が0〜80程度となり、温度計19の検出温度が約44℃程度となるように逆浸透膜分離装置13への通水量及び加熱装置15の出力を制御する。 (もっと読む)


【目的】RO膜から排出される濃縮水を原水タンクに戻して浄水化する浄化システムにおいて、原水タンク内のTDS濃度を自動監視して、低価格且つ高効率に、より清浄な浄水を得ることのできるRO浄水器を提供することである。
【構成】RO膜装置9と活性炭槽7、8、10による浄水化の進行に伴い、浄水供給管24を通じて浄水タンク26に順次、浄水の移送が行われる。浄水供給管24に流れる浄水に対して、浄水センサ25によりTDS濃度が計測され、その計測値Ctが読み取られる。次に、浄水TDS濃度Ctと基準濃度C0の比較が行われる。この比較により浄水TDS濃度Ctが基準濃度C0より大きくなったとき、駆動信号4により送水ポンプ4の駆動を停止させると共に、原水2及びRO膜装置9の交換を促す警報処理を行う。 (もっと読む)


【課題】運転時の省エネルギー化を実現し、かつ、大量処理によっても比抵抗の高い良好な水質の脱イオン水が得られるEDI。
【解決手段】陰極側小脱塩室152と陽極側小脱塩室154とで構成された脱塩室150と、脱塩室150の両側にアニオン交換膜146又はカチオン交換膜142を介して設けられた濃縮室130とが、陰極と陽極との間に配置され、陽極側小脱塩室154には、アニオン交換体155を含むイオン交換体が充填され、陰極側小脱塩室には、低塩基性アニオン交換体153を含むアニオン交換体と、カチオン交換体151との混床形態でイオン交換体が充填され、陰極側小脱塩室152を流通した水を陽極側小脱塩室154に流す送水手段を設ける。 (もっと読む)


【課題】 各逆浸透膜部毎の処理水の水質を安定化したり、システムの省エネを実現する水質改質システムを提供すること。
【解決手段】 被処理水中の不純物を除去して処理水を機器2へ供給する互いに並列接続された複数の逆浸透膜部9,9,…と、前記各逆浸透膜部9毎に設けられ被処理水を前記各逆浸透膜部9へ供給する回転数制御可能なポンプ10と、前記各ポンプ10の回転数を個別に制御する制御手段19とを備えることを特徴とする水質改質システム。 (もっと読む)


【課題】制御部に交換の必要が生じた場合でも部品交換時期を正確に判断することができる水処理装置を提供する。
【解決手段】演算部24は、流量センサ9の検出値に基づいて浄水カートリッジ7の寿命情報を演算し、電解槽11の通電時間に基づいて電解槽11の寿命情報を演算する。記憶部25は、演算部24が演算した寿命情報を記憶する。パネル部21は、表示部22と操作部23とを備え、記憶部25に記憶した寿命情報の表示部22への読み出し、及び操作部23から入力した寿命情報を記憶部25へ記憶させるために使用される。また、操作部23から使用開始日及び保守作業日を入力した際には、演算部24で電解槽11の寿命情報を演算し、記憶部25へ記憶させる。 (もっと読む)


【課題】生物反応槽と膜分離槽間の汚泥液循環に要する動力を削減し、より効率的に膜分離処理を行う構造とする。
【解決手段】汚泥液を収容した生物反応槽20と別途に、膜モジュール40を縦向きに複数配置した膜分離槽30を設け、両槽を下部の汚泥液供給管60および上部の汚泥液返送管70で接続し汚泥液を循環させる。汚泥液供給管60は、膜分離槽30の内部まで貫入し、膜モジュール40の下部に延びて開口部62が上向きに開放し、この開口部62に膜モジュール40に向けて空気を噴出する空気供給口81を設け、噴出する空気により汚泥液を汚泥液供給管60から吐出させて循環させる。 (もっと読む)


121 - 140 / 340