説明

Fターム[4D006PC67]の内容

半透膜を用いた分離 (123,001) | 利用分野、用途 (6,199) | バイオリアクタ (101)

Fターム[4D006PC67]に分類される特許

41 - 60 / 101


分子分離用構造体の製造方法は、複数のテンプレート材料を供給することを含む。テンプレート材料は、生体分子、バイオポリマー、ポリマー、またはこれらの組み合わせから選択される。分子分離用構造体を製造するのに適しているふるい材料を、テンプレート材料のまわりに供給する。テンプレート材料を、分子分離に適した細孔を残すような配列状態にて配置する。テンプレート材料を、ふるい材料中に細孔を残すように、そして分子分離に適した構造体を作製するように除去する。 (もっと読む)


濾過素子およびその製造方法、および水処理装置を提供する。濾過素子は透水性支持体(1)と有機質濾過膜(2)を含み、前記透水性支持体(1)の表面に有機性材料層(3)を有し、前記有機質濾過膜(2)は前記有機性材料層(3)の表面を被覆し、かつ前記有機性材料層(3)と結合し、前記有機質濾過膜(2)の孔径が0.0015μm〜20μmである。濾過素子の製造方法は、透水性支持体(1)の表面に有機性材料層(3)を形成する工程、有機質濾過膜(2)材料を有機溶媒に溶解し、1%〜10%の膜液を調製する工程、および透水性支持体(1)に前記膜液を塗布し、有機性材料層(3)上に有機質濾過膜(2)を形成する工程を含む。
(もっと読む)


有効量のタンニン含有ポリマーを混合液体に加えることを含む、膜型生物反応器(MBR)系の混合液体をコンディショニングする方法が開示される。また、有効量のタンニン含有ポリマーをMBRの混合液体に加えることを含む、MBR系の流れを改良する方法も開示される。有効量のタンニン含有ポリマーは、他の水溶性汚泥ろ過能改良用ポリマー又は汚泥ろ過能改良用無機凝集剤と別々に又はこれらと組み合わせてMBRの混合液体に加えてもよい。1つの実施形態において、タンニン含有ポリマーはタンニンとカチオン性モノマーの水可溶性又は分散性コポリマーである。別の実施形態において、タンニン含有ポリマーはタンニン、カチオン性モノマー、及び少なくとも1種のモノマーの水可溶性又は分散性ポリマーである。 (もっと読む)


本発明は、式Iの構造単位を有するポリスルホンを含有する膜に水流を接触させる水濾過方法及び装置に関する。
【化1】


(式中、XはOH、NR又はORであり;R及びRはそれぞれ独立に水素、C−C5000脂肪族基、C−C12脂環式基、C−C12芳香族基、ポリペプチド又はこれらの組合せであり、或いはR及びRは互いに結合して5又は6員脂肪族環又は5員芳香環を形成し;RはC−C20脂肪族基、C−C12脂環式基、C−C12芳香族基又はこれらの組合せであり;B’及びC’はそれぞれ独立にニトロ基、C−C20脂肪族基、C−C12脂環式基、C−C12芳香族基又はこれらの組合せであり;q及びrはそれぞれ独立に0〜4である。)本発明はまた、式Iの構造単位を有するポリスルホンを含有する膜にガス流を接触させるガス分離方法及び装置に関する。 (もっと読む)


【課題】
浸漬型膜分離装置において、運転中に散気によって生じる平膜エレメントの振動を抑制し、平膜エレメントの摩耗を防止できるエレメント配列固定具を提供する。
【解決手段】
平板状支持板の両面もしくは片面にシート状の分離膜を配した平膜エレメントの複数枚が、エレメント保持枠体内に収容された膜分離装置において、前記平膜エレメントの上部に設置されるエレメント配列固定具であって、該エレメント保持枠体と固定可能な剛性板と、該剛性板に隣接し該平膜エレメントと接触する弾性部材とを有し、かつ、該弾性部材が、該平膜エレメント間の各間隙に進入するエレメント間隙凸部と、該エレメント間隙凸部との間の該平膜エレメント上部に接する凹部に、エレメント間隙凸部よりも高さが低い固定用凸部を有することを特徴とするエレメント配列固定具。 (もっと読む)


【課題】一度PV法によるエタノールの分離に使用した後で長期保管しても、分離性能が低下しにくいゼオライト膜を製造する。
【解決手段】種付け用ゾル並びに支持体を、耐圧容器内に入れ、前記耐圧容器内を加熱して前記支持体の表面にゼオライト種結晶を生成させる種結晶生成工程と、前記ゼオライト種結晶を成長させて支持体の表面にゼオライト膜を形成する膜形成工程と、前記ゼオライト膜を加熱処理することにより、構造規定剤を除去する加熱処理工程と、水とエタノールとの混合溶液を、前記支持体の表面に形成されたゼオライト膜に透過させる透過処理工程と、前記透過処理工程後、膜形成用ゾル並びに前記ゼオライト膜が表面に形成された前記支持体を、耐圧容器内に入れ、前記耐圧容器内を加熱して前記支持体の表面に形成された前記ゼオライト膜を更に成長させる膜再形成工程とを有するゼオライト膜の製造方法。 (もっと読む)


【課題】 液体の濾過のための装置を提供する。
【解決手段】 この装置は、複数の膜カーテン(2)を含み、各カーテンは毛管膜(5)の単一列から形成されている。この装置はさらに、膜カーテンの下端(毛管膜の下端)に設けられかつ少なくとも一つの膜カーテンの毛管膜に結合された少なくとも一つの下部ヘッダー(3)、及び各膜カーテンのための個々の上部ヘッダー(4)を含む。上部ヘッダーは膜カーテンの上端に設けられかつその毛管膜に結合されている。隣接膜カーテン(41,42)の上部ヘッダーは異なる高さに配置され、前記隣接膜カーテン(2)の毛管膜(5)は異なる長さを持つ。 (もっと読む)


少なくとも2つの逆電気強化透析(REED)膜スタックを含む逆電気強化透析(REED)システムにおける液体組成物のプロセスパラメータの制御のための方法およびシステムであって、いずれか1つの膜スタックにおける電場の方向を、他の膜スタックの電流逆転に対して、非同時的な時間間隔でもって逆転させる、方法およびシステム。
(もっと読む)


液体組成物のpHおよび標的イオンレベルを制御する方法、より具体的には、反応器において生じる低分子荷電種を抽出するための逆電気強化透析(REED)の使用。より一層具体的には、本発明は、バイオリアクタにおけるpH制御方法および阻害物質制御方法に関する。 (もっと読む)


本発明は、ポリマー/ポリマー混合マトリックス膜、および、かかる膜の、ガス分離用途における使用に関する。より詳細には、本発明は、固有の微多孔度を有する可溶性ポリマーを微多孔性充填剤として取り込んでいるポリマー/ポリマー混合マトリックス膜の調製に関する。固有の微多孔度を有するこれらポリマー充填剤は、広い接触可能な表面積、2nm未満の大きさの相互に連結した微細孔、ならびに、高い化学的および熱的安定性などの、従来の微多孔性材料の挙動に類似した挙動を示すが、加えて、良好な溶解度および加工容易性などの、従来のポリマーの性質を有する。これら混合マトリックス膜に対するガス分離実験は、天然ガスからのCO2除去について、劇的に向上したガス分離性能を示す。本発明に従って調製した混合マトリックス膜は、次の組み合わせのガスの分離においても使用することができる:水素/メタン、二酸化炭素/窒素、メタン/窒素、および、例えばプロピレン/プロパンなどのオレフィン/パラフィン。 (もっと読む)


【課題】有機性固形物から効率よく短期間で還元糖リッチ溶液やエタノールを製造する方法を提供する。
【解決手段】醗酵タンク本体と、タンク下方に設けられた固定濾過体と、該固定濾過体の上方に設けられ、上下動可能な可動濾過体と、醗酵タンク本体上部に設けられたエア導入部と、醗酵タンク本体に設けられた温度制御手段とを備える醗酵装置に、有機性固形物と微生物製剤を投入し、低位置にある可動濾過体上に載置された有機性固形物を加温水中浸漬状態で固液混合醗酵させ、次いで上方の高位置に移動させた可動濾過体上の有機性固形物にエアを吹き込みながら固体醗酵させると同時に、固体醗酵により生じる熱を可動濾過体下方の培養液に利用させながら液体醗酵させた後、可動濾過体を再度低位置に移動させ、低位置にある可動濾過体上の有機性固形物部分を冷却しながら固液混合醗酵させる。 (もっと読む)


【課題】高圧の液体においても耐圧性が大きく膜の形態を保持することができ、高温の有機溶媒性液体において膜の寸法変化がなく、膜の寸法安定性を確保することが可能なブレード強化中空糸膜を提供する。
【解決手段】本発明は、ブレード強化中空糸膜に関し、管状のブレードの表面に活性層を形成した中空糸膜において、ブレードを金属線と高分子繊維を混合して編造したところにその特徴がある。本発明によれば、膜の耐圧性により高圧下における分離工程に中空糸膜を使用することができ、膜の寸法安定性により高温下における有機溶媒分離に中空糸膜を使用することができるだけではなく、膜の伝導性により中空糸膜を種々の応用分野に適用することができるという効果がある。 (もっと読む)


生物学的に処理された廃水は、混合液として処理タンクから下流のろ過タンクの底部部分まで導き出される。下流のろ過タンクは、ろ過タンクの略全横断面領域にわたって延びている、少なくとも1つの浸漬膜モジュールを有する。混合液は、ろ過タンクの底部に受容される混合液の略全量が膜モジュールを通過し、ろ過タンクの底部から上向きに膜モジュールに導出され、透過物流れを生成する。膜モジュールからの残りの混合液は、処理タンクに再循環される。ろ過タンク中の混合液は、一般的に、膜モジュールを1回通過すると、処理タンクまでリサイクルされて戻り、処理タンクへの第1の戻り以外に膜モジュールを通って戻ってリサイクルされることは無い。
(もっと読む)


【課題】オゾン処理と生物処理を用いて有機物を除去する水処理方式において、オゾン処理の効率を向上することにより、高い有機物除去性能を有する経済性の高い水処理システムを提供する。
【解決手段】マイクロバブル生成装置1Aで被処理水中に生成したオゾンマイクロバブルを、オゾン反応槽11Aに注入する。この被処理水を、生物反応槽21Aの生物活性炭層23に形成した生物膜で処理し、有機物をさらに分解、吸着処理する。オゾンマイクロバブルは酸化力と反応性が高いため、効率良く有機物を分解するとともに、生物難分解性有機物を生物易分解性有機物に変性させることができる。また、反応性が高いため処理後の溶存オゾン濃度が低減され、生物・活性炭処理槽21Aの微生物の健全性を維持できる。これによって、被処理水中の有機物除去効率と維持管理性が向上し、水処理の経済性が向上する。 (もっと読む)


【課題】被処理水の硝酸性窒素濃度が変動した場合であっても、被処理水の硝酸性窒素濃度を常時目標濃度以下に低減する方法を提供する。
【解決手段】少なくとも脱窒菌が担持されている担体と、非多孔性膜を少なくとも一部に備える密封構造の容器内に脱窒菌のエネルギー源となる電子供与体6が充填されている電子供与体供給装置とを含み、担体が電子供与体供給装置の非多孔性膜部分の周りに配置されているバイオリアクター8を被処理水10に浸漬し、バイオリアクター8では電子供与体6が脱窒菌に供給されて脱窒処理が行われ、被処理水10に含まれる硝酸性窒素の濃度が低減される排水処理方法において、被処理水10の硝酸性窒素濃度がバイオリアクター8の脱窒処理能力を超えたとき、電子供与体供給装置からの電子供与体6の供給とは別に、電子供与体6を被処理水10に直接添加し、被処理水10の硝酸性窒素濃度を目標濃度以下に低減するようにした。 (もっと読む)


【課題】
空気中や水中に浮遊する微細な粉塵や菌やウイルス等も除去可能な高い濾過精度を有しかつ圧力損失の低いフィルターを提供する。
【解決手段】
熱可塑性樹脂からなる繊維を含んでなり、繊維径1〜500nmのナノファイバーを0.5〜70質量%含んでなる厚さ50μm以上の濾過層を有し、空気流速3.2m/minにおける平均粒径0.3μmの粒子に対する捕集効率が90%以上であり、かつ、空気流速3.2m/minにおける初期圧力損失が980Pa以下であることを特徴とするフィルター。 (もっと読む)


【課題】
平膜を用いた膜分離モジュールにおいて孔拡散の特徴(孔の目詰りがない)と濾過の特徴(被処理液量の減少と物質の膜透過速度の任意設定の可能性)とを共々持つ孔拡散・濾過法を実現し、かつ(被処理液中に混在する)粗大粒子による目詰りを効率的に防止するモジュールを提供する。
【解決方法】
(1)
平膜として多段多層構造膜を用い被処理液側に平均孔径のより大きな多層構造膜を順次設定し(2)膜平面を垂直に設定し、(3)被処理液側には3個以上の液流出入口を持ち(4)拡散液側には2個以上の流出入口を設け、かつ(5)被処理液側の充填液量が拡散液側の充填液量を大きくした膜分離モジュール。 (もっと読む)


【課題】
生理活性物質等を分離精製できる膜として、効率的に溶液中から特定する微粒子を除去しつつ有用タンパク質等の透過率の向上や目詰まりの抑制を可能とする濾過用分離膜を提供すること。
【解決方法】
有用タンパク質等を含む溶液の多段濾過の機構を利用して微粒子を高度に除去しつつタンパク質を分離精製を行う際に、同一モジュール内に多層構造を持ち、空孔率が65%以上で膜表面と膜裏面との平均孔径比が1対3以上の多孔性平膜複数枚を直接重ね合わせた事実上一体化した多段積多層膜であり、さらに、膜の素材が再生セルロース製平膜の多段積多層膜である。 (もっと読む)


【課題】消化された汚泥の廃棄に必要なコストおよび資源を低減することによって、汚泥消化に著しい利点をもたらす廃水処理プロセスに関わる濾過装置を提供する。
【解決手段】少なくとも1つの膜モジュールと液体への空気注入装置とを具備し、前記膜モジュールは、複数の多孔性膜を有し、活性汚泥を含む基質を前記膜の外表面と接触させて処理し、処理水を前記膜の管腔から除去するようにしてなるメンブレンバイオリアクタと、嫌気性環境下で働くようにしてなる生物学的汚泥処理槽であって、プロセス液が消化され、また消化されたプロセス液の少なくとも一部が前記メンブレンバイオリアクタに返送され、さらに前記メンブレンバイオリアクタ内の前記基質の少なくとも一部が送られるようにしてなる生物学的汚泥処理槽とを備えるものとする。 (もっと読む)


主にエタノールと水との混合物を脱水するための方法は、第2の部分供給流(4)が蒸発器流入流として蒸発器ユニット(31)に向けられる一方で還流として蒸留塔(32)に向けられる第1の部分供給流(3)に分かれさせ、蒸発器ユニットの上部を蒸発器流出流(6)として離れさせる。蒸留塔(32)からの上部吐出流(7)は戻されて過圧で蒸発器流出流(6)と混合されて混合流(8)となり、圧縮器ユニット(33)内で、水分を多く含む透過液流(14)と実質的に水分を含まないエタノールの形態の透過物流(11)とに分かれる、脱水ユニット(34)に流入する混合圧縮流(10)に圧縮される。透過物流(14)は、濃縮器(39)内で低圧で濃縮された後、透過液流(15)はポンプ(42)によって、熱交換器(36)によって外部熱エネルギを供給される蒸留塔(32)に供給される流れ(16)へと加圧され、ここで水分を多く含む底吐出流(18)と、エタノールを多く含む上部吐出流(7)とに分かれる。透過物流(11)は、プロダクト流(12)として排出される前に、蒸発器ユニット(31)の透過物熱交換器(37)で熱源として用いられる。
(もっと読む)


41 - 60 / 101