説明

Fターム[4G048AD03]の内容

重金属無機化合物 (15,216) | 形状、構造 (2,899) | 形状(外形が明示されたもの) (2,113) | 粉末状、粒状 (1,697)

Fターム[4G048AD03]の下位に属するFターム

Fターム[4G048AD03]に分類される特許

181 - 200 / 982


【課題】本発明は、製造時間とコストを下げることが可能な、リチウム含有電極材料の焼結方法を提供する。
【解決手段】粒状のリチウム化合物とMの混合物を蓋付きの金属容器内に入れる手順と、300〜700℃の温度範囲と500〜900℃の温度範囲の二段階で金属容器を加熱し内部の混合物を熱処理する手順と、熱処理後の混合物を粉砕(研磨)して粉体状のリチウム含有電極材料を得る手順とによってなり、その内、前記Mは、Fe、P、Co、Ni、Mn、V、C元素及びその酸化物或いは化合物である。 (もっと読む)


【課題】 透磁率およびキュリー温度が高く、透磁率の温度変化率の絶対値が小さいフェライト焼結体およびこれを備えるノイズフィルタを提供する。
【解決手段】 Fe,Zn,Ni,Cuを含有し、FeをFe換算で48モル%以上51モル%以下、ZnをZnO換算で29モル%以上31モル%以下、NiをNiO換算で14モル%以上16モル%以下、CuをCuO換算で5モル%以上7モル%以下の組成範囲からなる主成分100質量部に対し、TiをTiO換算で0.05質量%以上0.15質量%以下含有
し、Fe−Zn−Ni−Cu結晶の粒界に前記Tiを含む化合物が分散して存在しているフェライト焼結体である。 (もっと読む)


【課題】本発明の目的は、稀少金属元素を含有せず、しかも、資源豊富なFeを含有し、エネルギー密度の高いナトリウム二次電池を与えることのできる複合金属酸化物を提供することにある。
【解決手段】α−NaFeO型の結晶構造であり、(104)面の面間隔が2.16オングストローム以上2.18オングストローム未満である以下の式(1)で表される複合金属酸化物。
Na(FexNiyMn1-x-y)O2 (1)
(ここで、xは0.1以上0.6以下であり、yは0を越え0.9未満である。) (もっと読む)


【課題】
硬度が低く、かつ、放熱性及び絶縁性に優れた低導電性酸化亜鉛粒子、それを有する放熱性樹脂組成物、放熱性グリース、放熱性塗料組成物を得る。
【解決手段】
酸化亜鉛粒子を、Mg、Co、Ca及びNiからなる群より選択される少なくとも一つの金属化合物により表面処理して得られたものであり、メジアン径(D50)が1〜10000μmであることを特徴とする低導電性酸化亜鉛粒子。 (もっと読む)


【課題】 タップ密度が大きいニッケル−コバルト−マンガン系複合酸化物及びその簡便な製造方法を提供する
【解決手段】
ニッケル原子、コバルト原子及びマンガン原子を含み、タップ密度が3.0g/ml以上であることを特徴とするニッケル−コバルト−マンガン系複合酸化物。該ニッケル−コバルト−マンガン系複合酸化物は、アルミニウム原子、マグネシウム原子及びチタン原子から選ばれる1種以上の原子を含んでいても良い。好ましくは電融法で製造される。 (もっと読む)


【課題】非鉄製錬にて発生する煙灰から、銅とヒ素とを効率よく分離出来、且つ、Na及びKが殆ど含まれないヒ素溶液を提供出来る結晶性ヒ酸鉄原料液の製造方法を提供する。
【解決手段】銅とヒ素とを含む煙灰をスラリーとして、当該スラリーのpH値を3〜4の範囲とし、銅を当該スラリーの液に浸出し、ヒ素を残渣とする浸出工程を有し、当該残渣からヒ素溶液を得る処理方法において、当該浸出工程の前に、当該スラリーのpH値を2以下に保持して予備浸出する工程を有する煙灰からの結晶性ヒ酸鉄原料液の製造方法。 (もっと読む)


【課題】リチウムイオン二次電池の正極活物質として用いた場合に、高エネルギー密度を有し、充放電容量が高く、しかも、サイクル特性にすぐれるリチウムマンガン複合酸化物粒子状組成物とその製造方法を提供する。
【解決手段】一般式(I)
Lix Mn1-a-b Cra b y
(式中、MはB、Mg、Al、Si、Sc、Ti、V、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、Hf、Ta、Pb及び希土類元素よりなる群から選ばれる少なくとも1種の元素を示し、x、y、a及びbはそれぞれ、
0.8≦x≦1.2、
1.8≦y≦2.4、
0<a≦0.2、
0.01≦b≦0.2
を満たす数である。)
で表される複合酸化物であって、晶系が単斜晶である複合酸化物からなるか、又は晶系が単斜晶である複合酸化物と晶系が斜方晶である複合酸化物との混合物からなり、X線回折におけるI(斜方晶)/I(単斜晶)にて定義される強度比Rが0〜0.3の範囲にあることを特徴とするリチウムマンガン複合酸化物粒子状組成物が提供される。 (もっと読む)


【課題】光電変換層と透明導電膜間、透明導電膜と導電性反射膜間の接触抵抗を低下させ、発電の際の太陽電池における直列抵抗を低下させることにより、太陽電池の変換効率を向上させ得る太陽電池用の複合膜の形成方法及び複合膜並びに透明導電膜形成用組成物を提供する。
【解決手段】導電性酸化物微粒子はInとSn又はZnを構成元素とするSn又はZnドープの酸化インジウムであるか、ZnとIn、Sn、Al、Ga又はGeを構成元素とするIn、Sn、Al、Ga又はGeドープの酸化亜鉛であるか、或いはSnとIn、Ga、Al又はSbを構成元素とするIn、Ga、Al又はSbドープの酸化スズであり、導電性酸化物微粒子は構成元素と異なる種類の添加元素を更に含み、添加元素の含有割合は導電性酸化物微粒子中の構成元素及び添加元素の合計100モル%に対し、0.01〜20モル%であることを特徴とする。 (もっと読む)


【課題】高い容量および良好なサイクル特性を有する非水電解質二次電池および正極の製造方法を提供する。
【解決手段】正極活物質は、リチウム含有層状酸化物からなる。リチウム含有層状酸化物は、空間群P6mcに属するLiNaMnCo2±αおよび空間群Cmcaに属するLiNaMnCo2±αのいずれか一方または両方を含む。リチウム含有層状酸化物は、上記LiNaMnCo2±αを固溶体もしくは混合物またはその両方として含む。上記LiNaMnCo2±αにおいては、0.5≦A≦1.2、0<B≦0.01、0.40≦x≦0.55、0.40≦y≦0.55、0.80≦x+y≦1.10、0≦α≦0.3である。 (もっと読む)


【課題】本発明の目的は原料コストが安く、電池抵抗が低減され、高温保存特性が向上した非水電解質二次電池用正極活物質及び非水電解質二次電池を提供することである。
【解決手段】スピネル構造のマンガン酸リチウムからなる非水電解質二次電池用正極活物質において、前記マンガン酸リチウムはリチウムホウ素複合酸化物及びリチウムタングステン複合酸化物を有することを特徴とする非水電解質二次電池用正極活物質、及びそれを用いた非水電解質二次電池。 (もっと読む)


【課題】 焼成工程における原料中の熱伝導を促進し、それにより焼成時間の短縮、及び、原料充填量の増加を実現して低製造コストで高品質のリチウムイオン電池用正極活物質を製造する。
【解決手段】 リチウムイオン電池用正極活物質の製造方法は、リチウムイオン電池用正極活物質前駆体であるリチウム含有炭酸塩に対してヒーター加熱とマイクロ波加熱との併用により焼成を行う工程を含む。 (もっと読む)


【課題】リチウムイオン二次電池等に用いられている活物質は、従来、固体状の金属化合物を高温で加熱する方法で製造されているが、得られた活物質粒子が溶着するような高温加熱が必要なため、得られた活物質粒子が相互に融着して粒径が大きくなり、二次電池の入出力特性を悪くする原因となっていた。本発明は従来法に比べ、より低温で加熱して活物質を製造することができ、従来に比して粒径が小さく、しかも得られる活物質の粒径を調整することができる電極活物質の製造方法を提供する。
【解決手段】本発明は、アルカリ金属化合物と、遷移金属化合物と、遷移金属化合物の熱分解開始温度における加熱重量減少率が100重量%未満である高分子物質とを含む活物質形成溶液を、遷移金属化合物の熱分解開始温度以上の温度で加熱することを特徴とする電極活物質の製造方法である。 (もっと読む)


【課題】カソード還元法により良好な電流応答が得られるとともに、安価なステンレス板を使用することができる、電荷貯蔵材料、触媒、吸着材、イオン交換体として有用な高い結晶性を有する層状マンガン酸化物の製造方法を提供する。
【解決手段】アルカリ金属イオン共存下で過マンガン酸イオン(MnO)を電気化学的に還元することを特徴とするマンガン酸化物の製造方法である。添加するアルカリ金属イオンの過マンガン酸イオンに対する濃度比は10〜100の範囲にする。また、電極に印加する電位は+0.17〜−0.04V(対銀/塩化銀電極)の範囲にする。また、電極基板としてステンレス鋼やステンレス鋼よりも貴な金属からなる電極基板、酸化インジウムスズ(ITO)被覆ガラス電極および炭素電極の群から選ばれる少なくとも1種の電極基板を使用することができる。 (もっと読む)


【課題】表面に水分吸着の原因となる水酸基や分極部位が少なく、水分吸着が抑制されることで低吸水性化が可能な無機粒子、この無機粒子とポリ(メタ)アクリレートとを複合化した場合に相分離や凝集等の不具合が生じる虞が無く、低吸水性で透明な複合体を得ることができる無機粒子と無機粒子ポリ(メタ)アクリレート複合体及び無機粒子分散液並びに光学部材を提供する。
【解決手段】本発明の無機粒子は、無機化合物からなる粒子の表面が、疎水基を有する第1の表面修飾剤、及び、(メタ)アクリレートと重合性を有する官能基を有し、かつ前記第1の表面修飾剤に対する質量比率が5質量%以上かつ40質量%以下の第2の表面修飾剤、の双方により修飾され、一次粒子径が1nm以上かつ20nm以下であり、この無機化合物としては、酸化ジルコニウムまたは酸化チタンが好ましい。 (もっと読む)


【課題】イオン伝導性の向上に適するような、結晶構造の長周期性、変調性を有する立方晶ガーネット関連型リチウムイオン伝導性酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイスを提供すること。
【解決手段】化学組成として、リチウム、ランタン、ジルコニウム、酸素から構成され、Li7+xLa3+xZr2−x12(―3<x<2、x≠0)なる化学組成式で標記されることを特徴とするリチウムイオン伝導性酸化物及びその製造方法、並びにその化合物を固体電解質部材として含む電気化学デバイス。 (もっと読む)


【課題】導電性の高いタングステン酸化物または/および複合タングステン酸化物を含んでなる導電性微粒子、並びにその製造方法を提供する。
【解決手段】一般式WyOz(但し、2.2≦z/y≦2.999)で表記されるタングステン酸化物、または/及び、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、0.001≦x/y≦1.1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物を、含んでなる導電性微粒子、並びにそれを用いた可視光透過型粒子分散導電体で構成される。 (もっと読む)


【課題】酸化物粒子のナノメートルレベルでの分布性、組成制御性に優れた複合セラミックス粉体の提供。
【解決手段】少なくともA1−x1−y(AはLa及びSmの群から選ばれる1種または2種の元素、BはSr、Ca及びBaの群から選ばれる1種または2種以上の元素、CはCo、Ga及びMnの群から選ばれる1種または2種以上の元素、DはFe、Mg及びNiの群から選ばれる1種または2種以上の元素であり、0.1≦x≦0.5、0≦y≦1.0)で表される酸化物または酸化ニッケルと、金属イオンが固溶して酸素イオン導電性が付与されたジルコニアと、を含有する複合セラミックス粉体であって、
前記A1−x1−yを構成するA、B、C及びDの群から選択される1種または2種以上のイオンまたはニッケルイオンと、金属イオンとを、塩基性炭酸ジルコニウム錯体と共沈させ沈殿物を200℃以上の温度で熱処理してなる。 (もっと読む)


【課題】容量維持率を高めることができる非水系二次電池用負極活物質、非水系二次電池及び使用方法を提供する。
【解決手段】コイン型電池20は、負極活物質を有する負極23と、正極活物質を有する正極22と、負極23と正極22との間に介在すする非水電解液27と、を備えている。ここでは、負極23は、基本組成LiNi1-xx2(0<x≦0.2であり、Mは、Mg,Ti,Cr,Fe,Co,Cu,Zn,Al,Ge,Snから選ばれる1以上である。)で表されるものである。MはFe,Co,Al,Mgから選ばれる1以上であることが好ましく、xは0.05≦x≦0.1を満たすものであることが好ましい。 (もっと読む)


【課題】少なくとも一種のチタン及び酸素以外の第三元素を含む薄片状チタン酸化物粒子を有機溶媒に配合した分散体を提供する。
【解決手段】少なくとも一種の第三元素を含む層状チタン酸化物粒子を有機カチオンと接触させ、層状構造を剥離して、少なくとも一種の第三元素を含む薄片状チタン酸化物粒子の水性分散体を製造する第一工程、前記水性分散体から、少なくとも一種の第三元素を含む薄片状チタン酸化物粒子を含む固形分を抽出する第二工程、及び前記固形分を有機溶媒に分散させる第三工程を含む方法により製造する。 (もっと読む)


【課題】充放電サイクル耐久性に優れ、遊離アルカリ量が低く、高い放電容量、高い充填性および高い体積容量密度を有する正極活物質の製造方法を提供する。
【解決手段】一般式LiNiCoMn(M元素は、Ni、CoおよびMn以外の遷移金属元素、Alならびに2族元素からなる群から選ばれる少なくとも一種の元素である。a、b、c、dおよびeはそれぞれ、0.9≦a≦1.2、0≦b≦1、0≦c≦1、0≦d<1、0≦e≦0.3、a+b+c+d+e=2である。)で表されるリチウム複合酸化物を、水に接触処理させた後、該リチウム複合酸化物から処理水を分離し、次いで、処理水を分離したリチウム複合酸化物を、3族元素または4族元素の化合物の溶液に接触させて、リチウム複合酸化物に対して0.02〜0.9mol%の3族元素または4族元素を付着させた後、600〜1000℃で加熱する。 (もっと読む)


181 - 200 / 982