説明

Fターム[4G048AD06]の内容

重金属無機化合物 (15,216) | 形状、構造 (2,899) | 構造(結晶構造等が明示されたもの) (677)

Fターム[4G048AD06]の下位に属するFターム

Fターム[4G048AD06]に分類される特許

461 - 480 / 482


【目的】NiとTiの比が1のLi−Ni−Ti複合酸化物電極材料合成の前駆体に使用する、NiとTiの比が1のNa−Ni−Ti複合酸化物の製造方法を提供し、Li−Ni−Ti複合酸化物電極材料を製造する。
【構成】Ni塩、Ti塩およびNa塩より、一般式NaNiTi1−y2−βで表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を製造するに際し、原料としてNiTiOを用い製造された前記Na−Ni−Ti複合酸化物のNaとLiをイオン交換し、一般式LiNiTi1−x2−αで表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物とすることを特徴とする。 (もっと読む)


【課題】アンモニウムイオンを容易に吸着することが可能な吸着剤を提供する。
【解決手段】下記一般式(1):
18+x2xNb22-x59・nH2O (1)
(式中、M1は、水素及びルビジウムからなる群より選択される少なくとも一種の元素であり、M2は、チタン、ジルコニウム及びスズから選択される一種の元素である。また式中の添字xは、0≦x≦2を満たす数であり、nは、0≦n≦12を満たす数である。)で表される化合物を有効成分とするアンモニウムイオン吸着剤;層間隔が6〜10Åである層状のマンガン酸化物を有効成分とするアンモニウムイオン吸着剤;並びに、縦に2〜3単位、横に2〜3単位のマンガン酸化物八面体で囲まれたトンネル構造からなるマンガン酸化物を有効成分とするアンモニウムイオン吸着剤。 (もっと読む)


【目的】NiとTiがより均一に分散したLi−Ni−Ti複合酸化物電極材料合成の前駆体に使用する、NiとTiがより均一に分散したNa−Ni−Ti複合酸化物の製造方法を提供し、Li−Ni−Ti複合酸化物電極材料を製造する。
【構成】Ni塩、Ti塩およびNa塩より、一般式NaNiTi1−y2−βで表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を製造するに際し、前記原料のNi塩として比表面積が30m/g以上の酸化物あるいは水酸化物、Ti塩として比表面積が30m/g以上の酸化物をそれぞれ用いあるいはどちらか一方を用い、前記Na−Ni−Ti複合酸化物のNaとLiをイオン交換し、一般式LiNiTi1−x2−αで表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物とする。 (もっと読む)


一次電気化学電池は、ラムダ二酸化マンガン(λ-MnO2)を含むカソードと、リチウムないしリチウム合金を含むアノードと、カソードとアノードとの間に介装されたセパレータと、アノードおよびカソードに接触する非水性の電解液とを備える。
(もっと読む)


【課題】
優れた電池特性、特に高温特性に優れる非水電解質二次電池用正極活物質および非水電解質二次電池を提供する。
【解決手段】
非水電解質二次電池用正極活物質は、粉末本体と、該粉末本体の表面の少なくとも一部を被覆する被覆層とを有する粉末からなる非水電解質二次電池用正極活物質であって、該粉末本体は、層状構造リチウム遷移金属複合酸化物を有し,該被覆層は、スピネル構造リチウム遷移金属複合酸化物の少なくとも一部に酸化マンガンを有してなる。 (もっと読む)


【課題】
過放電特性に優れ、高充放電容量の正極活物質および非水電解質二次電池を提供する。
【解決手段】
非水電解質二次電池用正極活物質は、少なくとも層状構造のリチウム遷移金属複合酸化物を有する非水電解質二次電池用正極活物質であって、前記リチウム遷移金属複合酸化物は、非結晶質な部分を有し、(003)結晶性は、0Åより大きく1000Å以下である。
非水電解質二次電池は、少なくともスピネル構造および/または層状構造のリチウム遷移金属複合酸化物を有する第一の活物質と、非結晶質な部分を有し、(003)結晶性が、0Åより大きく1000Å以下である、少なくとも層状構造のリチウム遷移金属複合酸化物を有する第二の活物質と、正極集電体とを有する正極と、リチウムイオンを吸蔵放出可能な炭素材料、またはリチウムイオンを吸蔵放出可能な化合物からなる負極活物質と、負極集電体とを有する負極と、を具備する。 (もっと読む)


【課題】単分散・単結晶の新規アンチモン酸ナノ微粒子、その製造方法及びそれを用いた新規高効率光触媒を提供する。
【解決手段】アンチモン金属粉末又はアンチモンアルコキシドを過酸化水素溶液中で、攪拌しつつ温度が120℃を下回らないように加熱し、反応させた後、残存過酸化水素を分解・除去してから、溶液を徐々に蒸発させ、次いで、残留物を乾燥させることを特徴とする光触媒作用を有するアンチモン酸単分散・単結晶ナノ微粒子の製造方法、この製造方法で得られた光触媒作用を有するアンチモン酸単分散・単結晶ナノ微粒子、及びそれを用いた新規高効率光触媒。 (もっと読む)


【課題】 従来の空気極や集電体の特性を維持したまま熱サイクル収縮現象を抑制する。
【解決手段】 ランタンLa、ストロンチウムSr、マンガンMn、及びBサイト置換可能元素M(M=Mg, Cr, Co, Ni)から成る群から選ばれた元素の一つまたは複数から成る元素混合物を主成分とする。該主成分の各々の元素は (La1-xSrx)1-yMn1-zzO3+δ (ただし、δは組成・温度などで種々変化する酸素量)であり、かつx、y、zの値は
0<x<0.40
0≦y≦0.10
0<z≦0.10
y≦0.30−x (0<x≦0.20の領域のとき、左式が成立する)
y≦0.20−0.5x (0.20≦x<0.40の領域のとき、左式が成立する)
y>0.20−x (0<x≦0.10の領域のとき、左式が成立する)
y>0.15−0.5x (0.10≦x≦0.20の領域のとき、左式が成立する)
y>0.11−0.3x (0.20≦x≦0.30の領域のとき、左式が成立する)
y>0.08−0.2x (0.30≦x<0.40の領域のとき、左式が成立する)
である。 (もっと読む)


ナノサイズ粒を有する複合金属酸化物の生成方法は、溶液中に溶解された少なくとも1つの金属カチオン、および1または複数の金属もしくは金属化合物の形態の少なくともさらに1つの金属を含有する微粒子材料を含有する混合物の形成工程、および混合物を処理して、ナノサイズ粒を有する複合金属酸化物を形成する工程を含む。微粒子材料からの少なくともさらに1つの金属は、複合金属酸化物中に組み込まれる。 (もっと読む)


【課題】電気化学セルのカソード材料として好適なものが望まれていた。
【解決手段】一般式LixMgyNiO2を有し、式のうち0.9<x<1.3、0.01<y<0.1、0.91<x+y<1.3である組成物は、電気化学セルにおいてカソード材料として使われ得る。一般式LixMgyNiO2を有し、式のうち0.9<x<1.3、0.01<y<0.1、0.9<x+y<1.3であるコア、及び一般式LiaCobO2を有し、式のうち0.7<a<1.3、0.9<b<1.2である上記コア上のコーティングを有する組成物も電気化学セルにおいて、カソード材料として使われ得る。 (もっと読む)


下記(a)ないし(c)の条件を満足する新規な結晶構造を有する金属複合酸化物、すなわち、(a)空間群がFd−3m(no.227)に属し、(b)格子定数が17.0±1.0Åの範囲であり、(c)単位格子内の結晶学的配置{8b(3/8,3/8,3/8),48f(x,1/8,1/8)、ここで、0.37≦x≦0.43、32e(x,x,x)、ここで0.20≦x≦0.26、16d(1/2,1/2,1/2)及び16c(0,0,0)}が、陽イオンによりサイト占有率0<占有率≦1で占有されている、金属複合酸化物である。単位格子の結晶学的座標は、(International tables for crystallographyA巻, 第5版, Kluwer Academic Publishers, 2002年の701頁に示す)空間群No. 227, origin choice 2に基づく。また、この金属複合酸化物を含むイオン伝導体及びこのイオン伝導体を備える電気化学装置を開示する。金属複合酸化物は、単位格子内の金属イオンサイト及び金属イオン欠陥の規則性からなされた結晶学的な特異性により、イオン移動が容易になるチャンネルが形成されている。そのため、本発明に係る金属複合酸化物は、イオン伝導体またはイオン伝導度を必要とする電気化学装置に有用である。
(もっと読む)


本発明の組成物は、酸化ジルコニウムを主体とし、酸化ジルコニウムから選択される少なくとも1種の添加剤と、酸化プラセオジム、酸化ランタンおよび酸化ネオジムから選択される少なくとも1種の添加剤とを含む。該組成物は、1000℃で10時間か焼した後に少なくとも29m2/gの比表面積を有することを特徴とする。該組成物は、ジルコニウム化合物および添加剤の混合物を塩基で沈殿され、沈殿により得られた媒質を加熱し、そして陰イオン界面活性剤、非イオン界面活性剤、ポリエチレングリコール、カルボン酸およびそれらの塩、ならびにカルボキシメチル化脂肪族アルコールエトキシレートの種類の界面活性剤から選択された化合物を該組成物に添加し、それによって得られた沈殿物をか焼する方法により得られる。該組成物は触媒として使用できる。 (もっと読む)


本発明は、ハイドロタルサイト様化合物の添加剤、焼成ハイドロタルサイト様化合物及び/又は混合金属酸化物溶液の溶液によってガソリン中のイオウを低減する新規の方法に関する。添加剤は、適宜さらに1以上の金属酸化剤及び/又は担体を含んでもよい。本発明はまた、マグネシウム及びアルミニウムを含み、約43度及び約62度における少なくとも2シータピーク位置にて反射を表すX線回折パターンを有する混合金属酸化化合物に接触分解の原材料を接触させることを含み、その際、該化合物におけるマグネシウムとアルミニウムの比が約1:1〜約10:1であるガソリンのイオウを低減する方法も指向する。添加剤は、適宜さらに1以上の金属酸化剤及び/又は担体を含んでもよい。 (もっと読む)


本発明は、優れた酸素還元特性(酸素還元触媒性能)を有する酸素還元電極を提供することを主な目的とする。 本発明は、下記の発明に係る;(1)一次粒子が凝集してなるデンドライト的構造を有するマンガン酸化物ナノ構造体を製造する方法であって、 不活性ガスと酸素ガスとの混合ガスを雰囲気ガスとし、前記雰囲気ガス中の酸素ガスの割合は質量流量比で0.05%以上0.5%以下であり、 前記雰囲気ガス中において、マンガン酸化物からなるターゲット板にレーザ光を照射することによって、ターゲット板の構成物質を脱離させ、前記ターゲット板にほぼ平行に対向する基板上にその脱離した物質を堆積させることによって、前記デンドライト的構造を有するマンガン酸化物ナノ構造体を得る工程を含む製造方法、及び(2)一次粒子が凝集してなるデンドライト的構造を有する遷移金属酸化物ナノ構造体を含む酸素還元電極。 (もっと読む)


マンガン系八面体型分子ふるい(Mn-OMS)材料を利用した高容量の硫黄酸化物吸収剤が開示される。燃焼排ガスに対する排出量削減システムは、NOxトラップ(26)または粒子フィルタより上流に位置するこれらの高容量の硫黄酸化物吸収剤を含んだ除去装置(24)を含む。

(もっと読む)


リチウム電池は、リチウム化γ−二酸化マンガンを含むカソードを含む。この電池は、高い電流能力、及び熱処理された二酸化マンガンを含むリチウム−二酸化マンガン電池よりも大きな放電容量を有することができる。 (もっと読む)


本発明は、一般式M(ここで、Mは金属を示し、Xはカルコゲンを示し、aおよびbは、それぞれ、金属およびカルコゲンの比率を示す)のラメラ結晶構造を有する金属カルコゲンの閉構造を有するナノ粒子の合成に用いられ、金属(M)およびカルコゲン(X)の少なくとも1種の前駆体の溶液または溶媒中に溶解させられた少なくとも1種の金属(M)の前駆体および少なくとも1種のカルコゲン(X)の前駆体の溶液から得られる液体エアロゾルの熱分解を包含し、該溶液は、キャリアガス中に懸濁状の微細な液滴に霧化されることを特徴とする噴霧熱分解法に関する。
(もっと読む)


本発明は、一般式がAg1−xM’Q2+mで示される、熱電気的な物質に関するものである。MはPb,Sn,Ca,Sr,Baなどの2価の遷移金属とそれらの組み合わせのうちから選択されるものであり、M’はBi,Sbとそれらの組み合わせのうちから選択されるものであり、QはSe,Te,Sとそれらの組み合わせから選択されるものである。また、8≦m≦24であり、0.01≦x≦0.7である。発明の実施例では、この複合物はn型半導体の性質を示した。実施例では、xは0.1から0.3であり、mは10から18である。複合物は、Ag,M,M’,Qの原料を化学式通り反応容器に加え、原料を加熱し、充分な時間溶解し、反応物を冷却する速度を調整して冷却することによって合成した。
(もっと読む)


一次電池は、1または2以上の金属と5価のビスマスからなる酸化物を含むカソード、アノード、カソードとアノードの間に設置されたセパレータ、およびアルカリ電解質を有する。金属は、アルカリ金属、アルカリ土類金属、遷移金属および/または主族金属である。セパレータは、イオン選択性であり、あるいは可溶性ビスマスイオン種がカソードからアノードに拡散することを実質的に防止することができる。
(もっと読む)


【課題】 本発明は、大きな放電容量と、優れた充放電サイクル特性とを備えた非水電解質二次電池を提供する。
【解決手段】 正極活物質として[LiMg3bNi1−y−zCo(0.05≦x≦1.10、0.01≦a≦0.05、0.05≦y≦0.20、0≦z≦0.10、MはAl、Mg、Ti、Mnからなる群から選ばれる少なくとも一種の金属であり、[ ]の添え字は、R−3mの空間群に属する六方晶系の層状岩塩型構造の結晶におけるサイトを示す)で表されるリチウムニッケル複合酸化物を用いることにより、大きな放電容量と、優れた充放電サイクル特性とを備えた非水電解質二次電池を得ることができる。 (もっと読む)


461 - 480 / 482