説明

Fターム[4G075EC09]の内容

物理的、化学的プロセス及び装置 (50,066) | 装置(構成要素) (2,898) | 仕切部材、邪魔板 (250)

Fターム[4G075EC09]の下位に属するFターム

Fターム[4G075EC09]に分類される特許

81 - 100 / 222


【課題】高圧状態下において、炭酸ガスを溶媒に効率的かつ高い処理能力で細泡化し混入するための高圧用炭酸ガス細泡化装置を提供する。
【解決手段】溶媒を所定の高流速で流した主流管路30を外嵌する前記炭酸ガスの供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔30aを形成し、前記主流管路30を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら溶媒中に混入させる。この際、ウェーバー数(We)が10以上となるように、前記溶媒の流速、前記細孔の孔径を設定する。 (もっと読む)


【課題】機械的なバルブと比べて構成が簡素で、連続的に流れる液体の流路の開閉や切替えを行うことが可能な流路切替装置およびその製造方法を提供する。
【解決手段】この流路切替装置1は、第1の圧力Pで液体Lを液体導入流路20に導入すると、液体Lは、液体導入流路20を流れて合流流路23の疎水性領域25で止まる。第2の圧力Pで気体Gを気体導入路22aに導入すると、疎水性領域25で止まっていた流体Lが第1の液体排出流路21aに流れ、気体Gは、第2の液体排出流路21bから外部に排出される。 (もっと読む)


【課題】従来技術の問題点を克服した高機能の液−液分離機能を有するマイクロチップデバイスを提供する。
【解決手段】互いに混じり合わない2種類の液体を別々の流路より1つの微細流路に導入し、該微細流路内において界面を介して接する2層流を形成させながら該微細流路内を通過させた後、再び2種類の液体を別々の流路に分けて取り出すように構成したマイクロチップデバイスにおいて、前記微細流路は、第1の板状部材と第2の板状部材の少なくとも一方に溝を穿設後、両者を張り合わせることによって形成され、該微細流路の親水性液体が流れる側の内壁に親水性化学処理、疎水性液体が流れる側の内壁に疎水性化学処理を施して、2種類の液体が2層流となって流れるように構成するとともに、前記2種類の液体の界面に沿って両側から2層流を仕切るように張り出した仕切り部材を前記微細流路の側壁に設けた。 (もっと読む)


【課題】高効率の触媒反応を可能とする信頼性の高いマイクロリアクターと、このマイクロリアクターを簡便に製造することができる製造方法を提供する。
【解決手段】マイクロリアクターを、1組の金属基板4,6が接合された接合体2と、この1組の金属基板の少なくとも一方の金属基板の接合面に形成された微細溝部5,7で構成されたトンネル状流路3と、トンネル状流路に連通された原料導入口およびガス排出口と、トンネル状流路にコンタクト層8を介して形成された触媒担持層9と、この触媒担持層9に担持された触媒Cとを備えるものとし、コンタクト層8は多孔性金属層とし、触媒担持層9は無機酸化物被膜とする。 (もっと読む)


【課題】 吸着材に吸着された水分の影響による放電の不均一性を防ぎ、分解性能を低下させることのない放電電極と、これを用いた空気浄化装置を提供することを目的としている。
【解決手段】 放電電極1は、管状の接地電極2の管内に管状の高圧電極3が所定の間隙をおいて同心状に配置され、さらに、高圧電極3側には管状の誘電体4が高圧電極3を覆うように設置されており、接地電極2および高圧電極3の両端面は絶縁板5で遮蔽され、また、接地電極2と高圧電極3および絶縁板5で形成される空隙に吸着材6が充填され、接地電極2の側面には被処理ガスの導入口7が設けられ、ガス分散器8が取り付けられており、導入口7の反対面には被処理ガスの排出口9が設けられている。これにより、安定した放電を実現し、効率よく揮発性有機化合物を処理することができる。 (もっと読む)


【課題】電子線源の電子発生部材を交換する際の作業性を向上でき、且つ交換作業を含めた電子線照射装置の必要スペースを小さくできる電子線照射装置を提供する。
【解決手段】電子線照射装置1Aは、収容部2及び電子線源3を備える。収容部2は、本体部22及び開閉可能に取り付けられた蓋部24を有し、電子線照射室21に照射対象物Aを収容する。電子線源3は真空容器13を有し、真空容器13は基端部14及び先端部15を含む。先端部15は蓋部24に固定されている。先端部15には、電子線照射室21側から着脱可能に構成された照射窓部12が取付けられている。本体部22の正面には照射対象物Aを搬入出するための扉25が取付けられており、真空容器13は、背面側に設けられたヒンジ18を支点として開閉可能となっており、蓋部24は、背面側に設けられたヒンジ23を支点として開閉可能となっている。 (もっと読む)


液滴アクチュエータは、(a)底基板の液滴操作表面上で液滴操作を行うように構成された電極を備える底基板と、(b)上記液滴操作表面上に配置された1つ以上のビーズを含む液滴と、(c)上記液滴および上記電極に対して配置された障壁であって、1つ以上の上記電極によって媒介される1つ以上の液滴操作を用いて、液滴がビーズから離れる方向に輸送されることができ、かつ上記ビーズの輸送が障壁によって制限される、障壁とを備える。関連の方法およびキットもまた提供される。 (もっと読む)


【課題】流量による影響を抑え、より効率よく被処理液体に回転渦巻運動を誘起しうる液体磁化処理装置を提案することを目的とする。
【解決手段】液体磁化処理装置1は、クーラント液が流通されるハウジングパイプ21と、ハウジングパイプ21の内部に配置された磁性振動素子31、及び、ハウジングパイプ21の外部に配置され磁性振動素子31を磁化可能な磁気発生手段41を備えている。また、特に、磁性振動素子31及び磁気発生手段41が配置された部分の上流側に、この部分に流入されるクーラント液に回転渦巻運動を発生させる螺旋型部材51が設けられている。このため、螺旋型部材51により処理領域25に流入されるクーラント液に回転渦巻運動が発生し、クーラント液は、螺旋流として処理領域25に流入される。 (もっと読む)


【課題】 単位時間当りの熱交換量を十分に確保できる加熱冷却装置を提供する。
【解決手段】 反応釜1の外周にジャケット部2を、内部に多管式熱交換器3を配置する。ジャケット部2と多管式熱交換器3に蒸気供給管15並びに冷却水供給管14を接続する。反応釜1内側端部に、下方に向かうにつれて高さが低くなる凸状の抵抗板5を取り付ける。反応釜1内の中心部に攪拌翼16を取り付ける。攪拌翼16は、下方の攪拌翼22ほど大きくし、上方の攪拌翼23ほど小さくする。
蒸気供給管15からジャケット部2と多管式熱交換器3へ蒸気を供給して反応釜1を加熱し、一方、冷却水供給管14からジャケット部2と多管式熱交換器3へ冷却水を供給して反応釜1を冷却する。 (もっと読む)


マイクロ流体装置[10]は、少なくとも1つの反応体通路[26]およびその中に画成された1つ以上の熱制御通路を備え、この1つ以上の熱制御通路は、各々が壁[18,20]により境が形成された2つの容積[12,14]内に位置し、配置され、それらの壁は略平面で互いに平行であり、反応体通路は、略平面の壁の間に位置し、その略平面の壁と略平面の壁の間に延在する壁[28]により画成され、反応体通路は多数の連続チャンバ[34]を備え、そのような各チャンバは、反応体通路を少なくとも2つの副通路[36]に分割する分割部、および分割された副通路を合流させる合流部[38]を備え、副通路の少なくとも一方の通路の方向を少なくとも90度変化させる。
(もっと読む)


【課題】加熱効率が高く、加熱ムラが少ないマイクロ波化学反応装置および方法の提供。
【解決手段】導波管からのマイクロ波が照射されるマイクロ波透過材で構成された照射部を有する管状容器と、管状容器を所定の間隔で仕切る仕切部材と、前記仕切部材間に位置する1以上の撹拌翼を有し、前記管状容器を軸通する撹拌軸と、マイクロ波加熱手段と、を設け、前記管状容器内を流れる被加熱物を、撹拌翼で撹拌しながらマイクロ波加熱するマイクロ波化学反応方法および当該方法を実施するための装置。 (もっと読む)


【課題】ガスを有効に利用することができるとともに、製造コストを低減させることのできる電極を提供すること。
【解決手段】被処理基板を支持するヒータカバーと製膜カバー12との間に配置され、前記ヒータカバーと前記製膜カバー12とで囲繞された空間内にガスを供給し、かつ、上部ガスヘッダー10aと、下部ガスヘッダー10bと、これら上部ガスヘッダー10aおよび下部ガスヘッダー10bの間に接続された複数本のガス管60c,60c’とを具備した電極60であって、前記被処理基板と対向する位置よりも外側に位置する前記ガス管60c’には、前記ガスを前記空間内に吹き出すために設けられたガス吹き出し孔60dが設けられていないことを特徴とする。 (もっと読む)


【課題】触媒を入れるための金属キャリアにある複数の通し穴を、曲線状のエア通路にして、そのエア通路に廃棄ガスが膨脹するのに供するための空間を設けて、それにより、廃棄ガス流速を遅らせ、廃棄ガスがキャリア内に留まる時間を延ばすようにして、触媒による廃棄ガスへの浄化効率を向上させようとすること。
【解決手段】触媒を入れるための金属キャリアは、廃棄ガスチャンネルの上流側と下流側の間に設けられており、キャリアの上に間隔が置かれた吸気側と排気側があり、吸気側は、上流側の廃棄ガスをキャリア内へと導入するようにし、排気側はキャリア内の廃棄ガスを下流側に排出するようにする。また、少なくとも一膨脹室は、キャリアの吸気側と排気側の間に設けられて、キャリアの吸気側と排気側の間にある廃棄ガス通路をつなぎ、吸気側の廃棄ガスを、キャリア内と膨脹室との間を迂流させるように設けられる触媒装置である。 (もっと読む)


【課題】対流の発生を抑制し、意図しない流体同士の混合や、流体内の粒子の偏在が生じにくいマイクロ流路デバイスを提供すること。さらに、前記マイクロ流路デバイスの好適な製造方法を提供すること。
【解決手段】複数の流体が層流を形成して送流されるマイクロ流路を有し、該マイクロ流路の内壁に、流体の流れと略平行であり、かつ、前記複数の流体が形成する界面に対して略垂直方向に突出する凸部を有することを特徴とするマイクロ流路デバイス。前記マイクロ流路は湾曲部を有し、前記凸部は、マイクロ流路の湾曲部に設けられていることが好ましい。 (もっと読む)


【課題】炭酸ガスを飽和濃度レベル付近の高い濃度で溶媒(海水又は水)に溶解させた状態で帯水層に圧入し、長期的かつ安定的に帯水層に貯留・隔離する。
【解決手段】炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、圧縮された炭酸ガス及び溶媒が注入され、溶媒に炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽4と、生成された炭酸ガス溶解水を地中の帯水層に圧入する地表面から帯水層まで貫通した注入井5とから構成され、前記溶解槽4は、密閉された容器10の下部に、炭酸ガス圧縮装置2から送られた炭酸ガスが注入される炭酸ガス注入口11と、溶媒圧送ポンプ3から送られた溶媒が注入される溶媒注入口12とが形成されるとともに、容器10内に粒状の充填材16が充填されて構成される。 (もっと読む)


【課題】反応部で発生する熱が隣り合う反応部へ伝達することを抑制し、高い反応効率を有するとともに消費電力が小さい反応器、反応器収納用容器および反応装置を提供すること。
【解決手段】複数の反応部7を備えた反応器6において、反応部7間に少なくとも一つの放射熱防止板10を設けた。また、複数の反応部7を備えた反応器6’を収納するための収納容器Aを具備する反応器収納用容器12であって、収納容器Aの内面に反応部7間に配置される放射熱防止板10’を設けた。 (もっと読む)


【課題】異なる温度に設定された複数の反応部の熱輻射を抑制し、複数の反応部間の温度差を確保することができる反応装置を提供する。
【解決手段】マイクロリアクタモジュール600は、反応物の反応を起こす高温反応部604と、高温反応部604よりも低温で反応物の反応を起こす低温反応部606と、高温反応部604及び低温反応部606を収容し、内部空間が減圧状態の断熱パッケージ791と、内部空間に設けられて、高温反応部604と低温反応部606とを仕切る隔壁795と、を備える。 (もっと読む)


【課題】ラジアルラインスロットアンテナを使ったマイクロ波プラズマ処理装置において、アンテナ中の遅波板とマイクロ波放射面を構成するスロット板との間の密着性を向上させ、異常放電を防止する。
【解決手段】スロット板16を、遅波板18と熱膨張率が近い材料により形成する。あるいはスロット板16を、遅波板18を構成する誘電体板上に、金属を付着させることにより形成する。 (もっと読む)


【課題】長期に渡って該装置を使い続けても紫外線照度が大きく低下することがない紫外線照射装置を提供する。
【解決手段】紫外線照射装置本体11の内部にショートアーク形水銀ランプSHLを設置し、紫外線照射装置本体内に、ショートアーク形水銀ランプからの紫外線を所定の方向に出射させる光学系11aと、紫外線の出射、出射停止を行う光学シャッター11cと、外気を装置筐体内に吸い込み、所定のダクトから排出して該装置筐体内を冷却する冷却機構11dとを備えた紫外線照射装置において、装置筐体11f内に、ショートアーク形水銀ランプと光学系と光学シャッターとを覆い、かつ該覆い内を冷却機構11dによる該装置内の空気圧よりも高い空気圧に維持するようにした内側覆い20を設けたことを特徴とする。 (もっと読む)


本発明は、マイクロ流体システムのマイクロチャネル(16)の壁(15)の内側表面(14)に第1の場所で位置する複数の線毛アクチュエータ要素(10)を有するマイクロ流体システムを提供する。マイクロ流体システムは、更に、マイクロチャネル(16)の中心線に関して第1の場所の実質的に反対の第2の場所でマイクロチャネル(16)の壁(15)に組み込まれた、少なくとも1つの導線(17)によって形成される磁場発生器を有する。本発明は、また、このようなマイクロ流体システムを製造するための方法と、このようなマイクロ流体システムのマイクロチャネル(16)を通じる流体流れを制御する方法とを提供する。 (もっと読む)


81 - 100 / 222