説明

Fターム[4G075FB03]の内容

物理的、化学的プロセス及び装置 (50,066) | 装置7(材料、材質) (3,697) | 無機物 (2,706) | 炭素、黒鉛材 (133)

Fターム[4G075FB03]に分類される特許

21 - 40 / 133


【課題】箱5の中に放出させた電子を効率的にマイナスイオン化させる、マイナスイオン空気供給器1及びこれを活用したマイナスイオン泡発生器2を提供する。
【解決手段】電子放射器7からケイ酸カルシウム板からなる箱5の中に電子を放出し、箱5の中の空気を吸引するエアーポンプ8を取り付けてなるマイナスイオン空気供給装置1とする。さらに箱5の外面を炭素塗膜面5dとし、マイナス極6bとプラス極6aを設けて直流電源9に繋ぐ。またマイナスイオン空気供給装置1と泡吹出器23とからなるマイナスイオン泡発生器2とする。そして泡吹出器23を浴槽31に取り付けたマイナスイオン泡発生浴槽3や浴室とする。さらにマイナスイオン空気供給器1から供給された圧縮空気を電動歯ブラシに送る構成のマイナスイオン空気供給歯ブラシとする。 (もっと読む)


例えば、熱及び/又は化学ガスを封じ込めるための封じ込めシステム、例えば、遮断セグメント、遮蔽セグメント及び/又は分割セグメントを含むことができる炭素系封じ込めシステムが記載されており、各セグメントは壁を形成する壁パネル等の複数のパネルとすることができる。
(もっと読む)


【課題】反応済みガス中に一酸化炭素や二酸化炭素を含まず、水素ガスのみを回収することのできるガス発生装置を提供することである。
【解決手段】反応管部20内に台座26と、支持体28と、炭素質材料32と金属線部34とを配置する。次に反応管部20内にメタンガスを0.0002m3/分の流量で流入させ、マイクロ波エネルギを照射する。メタンガスにマイクロ波エネルギを照射するだけでは、メタンガスが分解されることはなく、反応管部20内に反応材部30である炭素質材料32と金属線部34を介在させることによって放電が起き、メタンガスが分解され、水素ガスが発生する。 (もっと読む)


熱化学プロセス用の誘導機構、ならびにそれに関するシステムおよび方法を提供する。特定の実施形態による方法は、第1および第2の基台を反応器内に配置するステップであって、各基台が互いに対面する表面を有するステップを含む。方法は、前駆ガスを反応器内に導くステップと、両基台の対面する表面に隣接する誘導コイルを起動するステップであって、それにより前駆ガスを解離するステップとをさらに含み得る。前駆ガスの成分が第1および第2の面上の両方に付着し、各面および/またはその面上に付着した成分から放射された熱が、他方の面および/または他方の面上に付着した成分において受け取られる。
(もっと読む)


水素ベースの燃料および構造要素を生成する透過面を有する反応容器、ならびに関連するシステムおよび方法であって、特定の実施形態による化学反応器は、反応領域を有する反応容器と、反応領域に流体連通した状態で結合された水素供与体供給源と、反応領域に流体連通した状態で結合された蒸気供給源とを含み、この反応器は、反応領域にある透過面をさらに含み、この透過面は、反応領域に入る反応体および/または反応領域に入る放射エネルギーを透過させることができる。
(もっと読む)


再放射面を有する化学反応器、ならびに関連するシステムおよび方法であって、特定の実施形態による反応器は、反応領域を有する反応容器と、反応容器に結合され、反応領域内に反応体(たとえば水素供与体)を導く反応体供給源を備え、反応体はピーク吸収波長範囲を有し、ピーク吸収波長範囲上では反応体は非ピーク波長におけるよりも多くのエネルギーを吸収し、反応器は、反応領域に配置された再放射構成要素であって、第1のピーク波長範囲を有する第1のスペクトル上で放射を受け取り、第1のピーク波長範囲とは異なり、第1のピーク波長範囲よりも反応体のピーク吸収範囲に近い第2のピーク波長範囲を有する第2のスペクトル上で、反応領域内に放射を再放射する再放射構成要素をさらに備える。
(もっと読む)


【課題】高温ガス、例えば水素及びテトラクロロシランとの接触に適した装置を提供する。
【解決手段】
反応器100は、テトラクロロシランの水素化に用いることができる。反応器100は、炭化ケイ素系の構成材料から調製される少なくとも1つの部品を有する。反応器100は、加圧可能シェル101と、加圧可能シェル101に囲まれた断熱材102と、断熱材102に囲まれた加熱要素106と、加熱要素106に囲まれた反応室107とを含む。 (もっと読む)


【課題】コンパクトでありながら高い熱交換機能を有し、製造も容易な積層内部熱交換型反応器を提供する。
【解決手段】紙製の平板と波板とが積層され波板の山部と平板との間に往路を有する流入側ユニットと、波板の谷部と平板との間に復路を有する流出側ユニットと、が交互に積層されてなる積層前駆体から積層前駆体と同一形状の炭化ケイ素質の積層体を形成し、積層体を流入口と流出口をもつケーシングに封入する。流入口から往路に流入した流体は、積層体とケーシングとの間に形成された連通空間に入り、連通空間から復路を流れる。連通空間又は積層体には発熱手段が形成され、流体は発熱手段で加熱されて流出口から流出される。 (もっと読む)


【課題】電極を製造するために高価な製造技術を必要とせず、従来のシステムの効率を改善させる動電空気搬送調節装置を提供する。好ましくは、そのような調節装置は電極の第3アレイを必要とすることなく有効に機能する。さらに、そのような調節装置は、例えば、周囲の環境からにおいを除去し、発生する安全な量のオゾンのユーザの選択を可能にする。
【解決手段】動電静電空気調節装置は、イオンと安全な量のオゾンとで空気を動電学的に動かす自給式イオン発生器を含んでいる。イオン発生器は高電圧パルス発生器を含み、その出力パルスは第1と第2電極アレイの間で結合されている。好ましくは、第1アレイは、中空のU形状の電極を備えた第2アレイからかなり離れて間隔を空けた1以上のワイヤ電極を備えている。好ましくは、第1アレイの電極の有効領域に対する第2アレイの電極の有効領域の割合は、約15:1、好ましくは、約20:1である。 (もっと読む)


バルブユニットは、相転移物質を含むバルブ物質と、前記チャンネルと連通し、内部に前記バルブ物質を収容するバルブ物質チャンバーと、前記チャンネルの一区間に配置される融着構造物と、を含み、前記バルブ物質チャンバー内の前記バルブ物質は、エネルギーが加えられることによって溶融され、前記融着構造物が形成された前記チャンネルの区間に流入し、前記バルブ物質は、加熱されて前記融着構造物を溶かし、前記チャンネルの融着を行うことによって前記チャンネルを閉鎖する。
(もっと読む)


【課題】外部装置を用いなくても、流路に溶液を注入するだけで自動的にバルブ操作が行われる送液装置を提供する。
【解決手段】送液装置20は、2つの流路23,24を有し、一方の流路23の端部には、第1の液溜め部25を備え、第1の液溜め部25の流路への出口側にバルブ部27が配置され、他方の流路24の端部には、第2の液溜め部28を備え、第2の液溜め部28の流路への出口側から所定の距離に操作部30が配置されている送液装置20であって、バルブ部27は、エレクトロウェッティング作用を有するバルブ電極31を備え、操作部30は、電解液と接触することにより電池作用により電位が変化する操作電極32を備え、バルブ部27のバルブ電極31と操作部30の前記操作電極32が電気的接続がなされている。 (もっと読む)


【課題】反射体より得られる反射光を効率的に被照射対象物に照射することができる反射光照射装置を提供する。
【解決手段】反射光照射装置1において、所定の波長範囲内の光を照射する発光素子2と、発光素子2から照射される光を集光する目的の集光体3と、発光素子の光照射方向(D1)とは異なる光取出方向(D2)に光を反射する反射体4と、を備え、発光素子2から照射される光が光取出方向に極力直接出力されず、反射体からの反射光を効率的に出力する。 (もっと読む)


デバイス1は、紫外線を放射するための供給源20と、当該デバイス1に流体を入れるための入口30と、当該デバイス1から流体を出すための出口40と、当該デバイス1を通る流体フローに対して矯正動作を実行するための手段51,52とを有する。前記フロー矯正手段は、一方側に流体を入れるための入口開口部をもち、他方側に流体を出すための出口開口部をもつ少なくとも1つのフロー矯正要素51,52を有し、各入口開口部は、複数の出口開口部と連通しており、前記要素51,52は、ランダムに設けられ相互接続された穴の迷路を有する。斯様な構造において、前記要素51,52の一方側から他方側に移動する水要素は、種々の経路のうち1つをとり、その結果として、入口条件の変化が抑制され得る。
(もっと読む)


パワー源及び水素化物反応器が提供される。ここで、パワー・システムは、(i)ハイドリノを形成する原子水素の触媒作用のための反応セルと、(ii)触媒又は触媒の源; 原子水素又は原子水素の源; 触媒又は触媒の源及び原子水素又は原子水素の源を形成する反応物; 原子水素の触媒作用を開始させる1つ以上の反応物;及び触媒作用を可能にする支持体、から選択される少なくとも2つの成分を含む化学燃料混合物と、(iii)反応生成物から熱的に燃料を再生するために交換反応を逆転すための熱システムと、(iv)パワー生産反応からの熱を受け取るヒートシンクと、そして、(v)パワー変換システムと、を備える。ある実施例において、触媒作用反応は、触媒の金属ともう1つの金属の間で水素化物−ハロゲン化物交換反応のような1つ以上の他の化学反応によって活性化され、開始され、伝播した。これらの反応は、逆交換において金属蒸気の除去により、熱的に可逆である。ハイドリノ反応は維持されて、熱的に連結した束にアレンジされたマルチ−セルを用いて、バッチ・モードで再生されるが、サイクルのパワー−生産フェーズのセルが再生フェーズのセルを熱する。この断続的セル・パワー設計において、セル数が大きくなると、或いは、セル・サイクルが定常パワーを達成するように制御されると、熱的パワーは統計学的に一定になる。もう1つのパワー・システム実施例において、ハイドリノ反応は維持されて、各々のセルで、連続的に再生されるが、ここで、熱的に可逆なサイクルのパワー生成フェーズからの熱が、生成物からからの最初の反応物の再生のためにエネルギーを供給する。各々のセルで同時に両方のモードを反応物が受けるので、各々のセルからの熱的パワー出力は一定である。ランキン、ブレイトン、スターリング、又は蒸気機関サイクルのようなサイクルを利用している熱機関によって熱的パワーが電気パワーに変換される。もう1つの実施例において、直接の電気パワーがハイドリノを形成するための水素の反応によって開放されるエネルギーでもって展開されるところ、交換反応は半電池反応で、ユニークな燃料電池の基礎として、構成される。
(もっと読む)


本発明は、第1の電極(106)と第2の電極(107)と機能媒体を有するそれらの間の電極間ギャップ(11)とを有するエネルギ変換システムに関し、第1の電極(106)が、全長L、湾曲断面及び曲率半径Rを有し、多少の開口パターンを有する頑丈な組み立て構造に構成され、任意の場所で同じ電位を有し得ることで前記第1の電極(106)を構成する少なくとも1の細長い導電手段で作成される。このシステムは、Rが40×10−6m(40マイクロメートル)よりも小さく、電極間ギャップが1×10−9m乃至5×10−3m(1ナノメートル乃至5ミリメートル)の厚さを有し、第1の電極(106)の前記少なくとも1の導電手段の全長Lが1×10m(1キロメートル)よりも長く、L/R比が10(100万)よりも大きく、第1の電極(106,306)が、ナノメートル乃至ミリメートル規模で、第2の電極(107)によって感知される電場の顕著な増加を発生させる。 (もっと読む)


【課題】絶縁破壊が発生し難いと共に、容易で安価に製造でき、安定かつ良好な量の電子放出が可能な電子放出素子を提供する。
【解決手段】電子放出素子1は、電極基板2と薄膜電極3との間に、絶縁体微粒子5を含み、かつ導電微粒子を含まない電子加速層4を有する。電子放出素子1は、電極基板2と薄膜電極3との間に電圧を印加すると、電子加速層4で電子を加速させて、薄膜電極3から電子を放出する。 (もっと読む)


【課題】マイクロチャンネルの比表面積を大きくすること。
【解決手段】転写基板(19)のチューブ生成面(19a)にカーボンナノチューブ(4)を生成し、被転写面(2a)に形成された溝(2c)を有する被転写基板(2)に対して、チューブ生成面(19a)と被転写面(2a)とを対向させた状態で転写基板(19)と被転写基板(2)とを接近させて、溝(2b)にカーボンナノチューブ(4)を転写し、被転写面(2a)と閉塞面(3a)とを対向させた状態で被転写基板(2)と閉塞基板(3)とを接合して溝(2b)の開口側を塞いでカーボンナノチューブ(4)と溝(2b)と閉塞面(3a)とによって囲まれた流路(7)を形成することを特徴とするマイクロリアクター(1)の製造方法。 (もっと読む)


【課題】常温常圧で動作し、大きな酸素運搬能力を容易に出しえ、電解質の漏出など事故の問題が無い、酸素ポンプの提供。
【解決手段】金属コバルトを表面に有する多孔質のガス交換性の負極3と多孔質のガス交換性の正極2との間に、電解液を含浸させた多孔質セパレータ1とを有し、集電構造を介して外部直流電源より両電極2,3に給電して、互いに隔離された気相の負極側から正極側に酸素の移動を行うものであり、常温常圧で動作する水系溶剤を用い、極めて少ない量の電解質が含浸保持されるので、電解質の漏出などの恐れが無い。また、構造的に薄くやわらかく、大面積にして酸素運搬能力を大きくすることが可能である。 (もっと読む)


【課題】 排ガスに含まれているNOxを安価に効率よく分解できる方法を提供する。
【解決手段】 上記課題は、窒素ガスを主成分とし、NOxを含む大気圧の排ガスに電子線を照射してNOxを還元分解することを特徴とする排ガス処理方法によって解決される。 (もっと読む)


【課題】海洋表面環境の悪化を抑止しつつ、平均比重が1以下の海洋プランクトン増殖用鉄含有部材を安価に提供する。
【解決手段】フロートとしての球状部材12のほぼ全外表面を包む外殻層13を形成する。この外殻層13は、鉄又は鉄化合物(たとえばFeO)を含有しており、鉄イオンを海水に放出する。外殻層13は、フロートとしての球状部材12を波浪や紫外線から保護するとともに鉄供給源として機能する。 (もっと読む)


21 - 40 / 133