説明

Fターム[4G077CB03]の内容

結晶、結晶のための後処理 (61,211) | 液相成長−常温で液体の溶媒を使用 (348) | 水性溶媒を使用するもの (237) | 高温高圧下での(例;水熱法) (148)

Fターム[4G077CB03]の下位に属するFターム

溶媒組成 (70)

Fターム[4G077CB03]に分類される特許

1 - 20 / 78


【課題】結晶成長前における反応容器の耐圧性容器への収納や、結晶成長後における反応容器の耐圧性容器からの取り出しを容易化することにより、結晶製造の作業効率を向上させる。
【解決手段】反応容器2に原料5と第一溶媒を充填して密閉した後、該反応容器を収納容器7に収納して、反応容器が収納された収納容器を耐圧性容器1内に設置し、さらに該耐圧性容器と該反応容器の間の空隙に第二溶媒を充填して前記耐圧性容器を密閉した後、該反応容器中で超臨界および/または亜臨界状態において結晶成長を行うことを特徴とする、結晶の製造方法。 (もっと読む)


【課題】ボイドの発生が抑制された良質な結晶を効率よく製造し得る結晶の製造方法および結晶の製造装置、およびかかる結晶の製造装置に用いられる結晶育成用治具を提供すること。
【解決手段】本発明の結晶の製造装置は、水熱合成法により人工的に結晶を製造するための装置である。この結晶の製造装置は、溶解液、結晶原料および種子結晶を収納するチャンバー2を有している。また、チャンバー2内には、種子結晶ごとに設けられた結晶育成用治具13が収納されている。結晶育成用治具13は、種子結晶の主面の一方を覆うように設けられた第1の面と、第1の面と直交する第2の面と、を有している。そして、結晶育成用治具13は、チャンバー2の横断面の中心Oを囲むように環状に配置され、好ましくは多重の同心円の環状に配置される。 (もっと読む)


【課題】アモノサーマル法で窒化物単結晶を製造する際に、昇温工程で種結晶表面や反応容器の内壁に品質の低い結晶が析出するのを抑制し、その後の成長工程において、高い原料使用効率で高品質な窒化物単結晶を成長させるようにすること。
【解決手段】アモノサーマル法の昇温工程において、種結晶に対して表面から1μm以上の厚みを溶解させるメルトバック処理を施す。 (もっと読む)


【課題】反応容器の変形を抑制しながら、高品質な窒化物結晶を製造すること。
【解決手段】反応容器に原料と第一溶媒とを充填して密閉した後、該反応容器を耐圧性容器内に設置し、さらに該耐圧性容器の内壁と該反応容器の外壁の間の空隙に第二溶媒を充填して前記耐圧性容器を密閉した後、該反応容器中で超臨界および/または超亜臨界状態において結晶成長を行う窒化物結晶の製造方法において、前記反応容器の内部短軸長(ID[C])と、前記耐圧性容器の内部短軸長(ID[A])との比(ID[C]/ID[A])を0.60〜0.98とするか、前記反応容器内の自由容積(IV)と、前記耐圧性容器の内壁と前記反応容器の外壁の間の空隙における自由容積(OV)との比(IV/OV)を0.20〜40とする。 (もっと読む)


【課題】III族−窒化物ウェハーの生成方法を提供すること。
【解決手段】III族−窒化物の結晶を成長させるための方法であって、以下の工程:
(a)熱アンモニア法により、元の種結晶上でIII族−窒化物のインゴットを成長させる工程;
(b)該インゴットからウェハーをスライスする工程;
(c)該元の種結晶の窒素極側から取り出したウェハーを、引き続く熱アンモニア法によるインゴットの成長のための新しい種結晶として用いる工程;
を包含する、方法。 (もっと読む)


【課題】積層欠陥が少ないIII族窒化物結晶を提供する。
【解決手段】III族窒化物からなり半極性面又は非極性面を主面とする種結晶101上にIII族窒化物半導体層102が形成されたIII族窒化物結晶100であって、前記種結晶101の主面内の輝線密度(α)と前記III族窒化物半導体層102の前記主面と平行な面内の輝線密度(β)との比(β/α)が10以下であるか、|β−α|が50以下であるIII族窒化物結晶100。 (もっと読む)


【課題】人工水晶育成時の結晶の成長速度が大幅に向上するとともに、不純物及びインクルージョン含有量の少ない高品質の水晶を低原価で製造することができる人工水晶の製造装置を提供する。
【解決手段】人工水晶育成炉本体容器21の下部領域21bにおいてアルカリ溶液で溶融した原料水晶30を、また、該本体容器21の上部領域21aにおいて育成枠8に配設した種子水晶3に原料水晶30を再結晶させて人工水晶を育成する人工水晶の製造方法及び装置20において、該種子水晶3を前記容器21の鉛直線を中心として所定角度傾け、かつ、反時計回り、または時計回りに回転らせん状に配設し、さらに前記種子水晶3を製品用種子水晶と、該製品用種子水晶と異なるカットの種子水晶から構成して、同じ前記人工水晶育成炉本体容器21内に同時に配置して人工水晶を育成することを特徴とする人工水晶の製造方法及び装置。 (もっと読む)


【課題】成長した結晶の損傷を抑えながら安全かつ簡便で低コストに結晶を取り出すことができ、なおかつ使用した反応容器の再利用を図りやすくした窒化物結晶の製造方法を提供する。
【解決手段】反応容器に原料とアンモニア溶媒を充填して密閉した後、耐圧性容器内に前記反応容器を設置し、さらに前記耐圧性容器と前記反応容器の間の空隙に第二溶媒を充填して前記耐圧性容器を密閉した後、前記反応容器中で超臨界または亜臨界アンモニア雰囲気において結晶成長を行い、さらに前記耐圧性容器と前記反応容器の間の空隙に存在するガスを排出することによって反応容器を破裂させる。 (もっと読む)


【課題】防食性に優れている反応容器を用いて窒化物半導体結晶を効率良く育成し、育成後の反応容器の再利用を図りやすくすること。
【解決手段】反応容器内で超臨界および/または亜臨界状態の溶媒存在下にて窒化物半導体結晶の成長を行い窒化物半導体結晶を製造する際に、該反応容器内の空間に対して露出している、該反応容器及び該反応容器内で使用される部材の表面の少なくとも一部を、Pt、Ir、Ag、PdおよびRhからなる群より選択される少なくとも1種の貴金属を含む材料で構成し、且つ表面粗さ(Ra)を0.08μm〜3.0μmとする。 (もっと読む)


【課題】アモノサーマル法により窒化物結晶を成長させる際に、反応容器の破損を防いで再利用を可能にするとともに、品質が高い結晶が得られるようにすること。
【解決手段】反応容器に少なくとも原料とアンモニアを充填して該反応容器を密閉した後、耐圧性容器内に該反応容器を装填し、前記耐圧性容器と前記反応容器の間の空隙にアンモニアを充填した後、該反応容器中を超臨界および/または亜臨界アンモニア雰囲気にして、該反応容器内で結晶成長を行う窒化物結晶の製造方法において、前記耐圧性容器と前記反応容器の間の空隙に充填したアンモニアが前記耐圧性容器に接触する面積が前記耐圧性容器内部の全表面積の50%以下となるようにする。 (もっと読む)


【課題】異物密度の小さい高品質な人工水晶を効率よく製造することが可能な人工水晶の製造方法等を提供する。
【解決手段】オートクレーブ内に板状(または棒状)の種子水晶1aを配置し、その基本成長面の重力方向に対する傾きθを3.5°以上16°以下とした状態で水熱合成法により人工水晶を育成する。これにより傾斜させた水晶種子1aの下方側の基本成長面に成長させた人工水晶の異物密度の値をJIS C6704(2005年版)に定める等級Iの要件を満たすようにする。 (もっと読む)


【課題】反応容器や部材を繰返し使用できて、均一で高品質な結晶を製造できる方法を提供すること。
【解決手段】反応容器内で結晶成長を行った後に、該反応容器の表面及び該反応容器内で使用される部材の表面に付着した付着物を化学的溶解反応により除去する。 (もっと読む)


【課題】 大型化しても、比較的簡単な構成で、坩堝内の融液を均一に撹拌することができる結晶育成用坩堝を提供する。
【解決手段】 結晶育成用坩堝(5)は、結晶を育成する融液を収容するための坩堝本体(20)と、該坩堝本体(20)に取り付けられて、融液を撹拌する撹拌部材(21)とを有する。撹拌部材(21)は、坩堝本体(20)の内壁から該坩堝本体の内側に向かって突出する突出部(23)を有する。突出部(23)は、表面全体が融液に接触するように配置されている。 (もっと読む)


【課題】ソルボサーマル法を用いた結晶成長において、より高温、高圧で結晶成長ができるようにする。
【解決手段】高圧容器の中に適切な溶媒を入れ、これに適当な塩基性、中性、酸性の鉱化剤と化合物を入れて、加圧、加熱して結晶を成長させるいわゆるソルボサーマル法において、高圧容器として、加熱する内部容器1と、この内部容器1を入れてその外側を加圧するための外部容器9とを有する二重構造の高圧容器を用い、内部容器1を加熱し、この加熱による内部容器1の内部の圧力の上昇に伴い、外部容器9を加圧して、内部容器1と外部容器9の圧力差が生じないようにし、内部容器1の温度が所定の温度に達したら、その状態を保持して結晶成長を行う。 (もっと読む)


【課題】不純物粒子を確実に捕捉することにより、良質な結晶を効率よく製造し得る結晶の製造装置および結晶の製造方法、およびかかる結晶の製造装置に用いられるフィルター部材を提供すること。
【解決手段】結晶の製造装置1は、水熱合成法により人工的に結晶を製造するための装置である。結晶の製造装置1は、溶解液5、結晶原料11および種子結晶12を収納するチャンバー2を有している。また、チャンバー2内には、対流制御板3とこの対流制御板3より上方にフィルター部材4とが、それぞれチャンバー2内の空間を仕切るように設けられている。そして、フィルター部材4は、骨格部41と、骨格部41の表面に付着した不純物粒子とを有するものである。 (もっと読む)


【課題】円筒形高圧ベッセルを使用してIII族窒化物結晶を成長させる方法を提供すること。
【解決手段】円筒形高圧ベッセルを使用してIII族窒化物結晶を成長させる方法であって、結晶化領域内にIII族窒化物シード結晶を装填し、強化剤領域内にIII族含有供給源を装填するステップと、アルカリ金属含有鉱化剤が酸素または水分に最小に曝露される態様で、高圧ベッセル内に鉱化剤を装填するステップと、高圧ベッセルを密封するステップと、高圧ベッセルを1×10−5ミリバールより低い圧力までポンプするステップと、高圧ベッセルをアンモニアで充填するステップと、結晶化領域の温度を500℃より上で傾斜をつけるステップと、に記載された温度条件を、結晶を成長させるのに十分長い間、維持するステップと、アンモニアを放出して結晶成長を停止させるステップと、高圧ベッセルを密封解除するステップとを含む、方法。 (もっと読む)


【課題】第1族金属イオンとアクセプタドーパントのイオンを含んでいるバルク単結晶ガリウム含有窒化物を得る方法及びそれで作られたエピタキシー基板とその基板で製造されるデバイスを提供する。
【解決手段】超臨界のアンモニア含有溶液から単結晶ガリウム含有窒化物のシード上への晶出(結晶化)工程から構成され、アクセプタドーパントイオンの超臨界のアンモニア含有溶液に対するモル比は少なくとも0.0001である。また、シード上で晶出させる工程後、950℃と1200℃の間の温度、望ましくは950℃と1150℃の間の温度で窒化物をアニールする工程から構成される。 (もっと読む)


【課題】高温高圧条件を採用せずに、アモノサーマル法による窒化物結晶の成長速度を速める方法を提供する。
【解決手段】超臨界アンモニアに腐食または溶解しないアンモニア熱分解触媒7を含むアンモニア中において、アモノサーマル法により窒化物結晶を成長させる。アンモニア熱分解触媒7は、Ru,Rh,Pd,W,ReまたはOsからなる単体であるか、あるいは、Ru,Rh,Pd,W,Re,Os,IrまたはPtのいずれかの金属とその他の金属との合金である。 (もっと読む)


【課題】従来技術では得られなかったc面配向した板状HAp単結晶を工業的規模で製造するための技術の提供。
【解決手段】Ca2+イオン、PO3−イオン、尿素及びウレアーゼを含む酸性水溶液を容器に入れ、該酸性水溶液と外気とが気液接触した状態で保持し、ウレアーゼによる尿素の加水分解による水溶液のpH上昇にしたがって、ヒドロキシアパタイトの結晶核を生成させ、さらに該結晶核をa軸及びb軸方向に成長させ、次いで前記水溶液に浮上している析出物を水溶液から分離採取し、次いで前記析出物に水熱処理を施して板状ヒドロキシアパタイト単結晶を得ることを特徴とする板状ヒドロキシアパタイト単結晶の製造方法。 (もっと読む)


【課題】高誘電率のセラミックス粒子と低誘電率のポリマーで構成されるフィルムキャパシタにおいて、セラミックス粒子の代わりに、比誘電率が1桁以上も高いと予測できる新規な構造の人工超格子ナノ粒子を提供する。
【解決手段】2種類以上の化学組成の異なる酸化物を溶液中で、化学組成の異なる粒子上にエピタキシャルに成長させることにより、球状の核の同心円上に化学組成の異なる酸化物の2種類以上を交互に積層し、球状とした人工超格子ナノ粒子であり、前記酸化物はチタン酸バリウム、またはチタン酸ストロンチウムを含み、前記酸化物のチタン源として、ジイソプロポキシドジアセチルアセトナート(Ti(iPrO)2(AcAc)2、TPA)を用いる。 (もっと読む)


1 - 20 / 78