説明

Fターム[4G146BC16]の内容

Fターム[4G146BC16]の下位に属するFターム

Fターム[4G146BC16]に分類される特許

241 - 258 / 258


【課題】 カーボンナノウォールを製造する新規な方法およびその方法の実施に適した装置を提供する。【解決手段】 少なくとも炭素を構成元素とする原料ガス32を反応室10に導入する。その反応室10には、第一電極22および第二電極24を含む平行平板型容量結合プラズマ(CCP)発生機構20が設けられている。これによりRF波等の電磁波を照射して、原料ガス32がプラズマ化したプラズマ雰囲気34を形成する。一方、反応室10の外部に設けられたラジカル発生室41において、少なくとも水素を含むラジカル源ガス36をRF波等により分解して水素ラジカル38を生成する。その水素ラジカル38をプラズマ雰囲気34中に注入して、第二電極24上に配置した基板5の表面にカーボンナノウォールを形成する。 (もっと読む)


【課題】
光電変換材料を構成する電子受容体としては、従来、空のフラーレンが用いられていたが、十分高い光電流増強効果が得られていなかった。
【解決手段】
電子受容体として原子内包フラーレンを用い、原子内包フラーレンを電子供与性有機材料にドープすることにより光電変換材料を作製することにした。従来の光電変換材料と比較し、大幅に光電流を増加させることが可能になった。 (もっと読む)


本発明は、炭素ナノチューブ及び炭素ナノオニオンから選択された炭素ナノ構造を製造する方法を提供する。この方法は、炭素含有ガスを、プラズマ形成ガスから発生されたプラズマ炎へ注入して、原子状炭素を発生するステップであって、この原子状炭素は、炭素ナノ構造を成長させる核生成ポイントとして働くその場で発生されたナノメーターサイズの金属触媒粒子の存在中で、炭素ナノ構造を発生するものであるステップと、その炭素ナノ構造を収集するステップとを備えている。
(もっと読む)


【課題】比較的大面積の基板上に形成対象物(例えばカーボンナノチューブ)を該基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積装置及びプラズマ化学気相堆積方法を提供する。
【解決手段】真空容器1内に配置された三つの電極のうち電極21上に基板Sを設置し、容器1内へ形成対象物(例えばカーボンナノチューブ)の堆積成長のためのガスを導入するとともに容器1内を排気して所定のガス圧に設定しつつ電極21、22間に直流電圧を印加して直流放電プラズマP1を形成する一方、電極23に高周波電圧を印加して高周波放電プラズマP2を発生させ、プラズマP2をDC放電プラズマP1へ拡散させつつ基板S上に形成対象物を堆積成長させるプラズマ化学気相堆積装置A及び装置Aによるプラズマ化学気相堆積方法。 (もっと読む)


【課題】 高温のフィラメントを使用せずに、固体のカーボンターゲットを用いて表面や装置(デバイス)に垂直なカーボンナノチューブを成長させることができるカーボンナノチューブの成長方法を提供する。
【解決手段】 本発明は、プラズマが優位に存在する堆積チャンバー内で炭素あるいは炭素系のターゲットを用いて試料上に配向されたカーボンナノチューブを成長する方法に関する。前記試料(16)は前記ターゲット(15)に接触して配置されており、前記試料及びターゲットはいずれも自由表面を有しており、前記プラズマによって前記試料の自由表面にカーボンナノチューブの成長を引き起こす。 (もっと読む)


本発明は、高純度のカーボンナノチューブを工業的に効率良く合成することのできる製造装置および製造方法を提供することを目的としている。すなわち本発明は、最先端部が対向する2つの電極と、該電極間に電圧を印加する電源と、前記放電プラズマの生成領域に磁場を形成する複数の磁石と、を備え、前記複数の磁石の磁極面が、空間中の1本の仮想軸に対向するように配され、前記複数の磁石の磁極面における前記仮想軸方向の一方の端部同士を結んで形成される仮想面と、他方の端部同士を結んで形成される仮想面と、前記複数の磁石の磁極面と、で囲まれる領域に、前記2つの電極のうち、一方の電極の少なくとも一部が位置し、かつ、他方の電極の最先端部が当該領域以外の領域に位置することを特徴とする製造装置およびそれを用いた製造方法である。
(もっと読む)


プラズマ化学気相成長(PEVCD)法によりカーボンナノチューブ(CNT)形成する装置の一実施例は、該装置の処理チャンバ内で様々な構成で電極に連結された1以上のRF及びDC電源を用いる。十分なDC電力を1以上の電極に印加することにより、上記装置は、より水平で向上した電気的性能特性を有するカーボンナノチューブの成長を可能にする。
(もっと読む)


【課題】内包フラーレンの形成方法として、真空容器中で、堆積基板上に内包原子をイオン化したプラズマとフラーレン蒸気を照射して、フラーレンのケージ内に内包原子を導入するプラズマ照射法がある。この方法では、フラーレンの六員環平均直径よりもイオン直径が大きな原子を内包する内包フラーレンを形成する場合、内包フラーレンの形成効率が低いという問題があった。
【解決手段】高いバイアス電圧を印加した堆積基板上にアルカリ金属イオンとフラーレン蒸気を照射することにより、アルカリ金属の触媒作用により真空容器中の微量の水分とフラーレンを反応させて開口フラーレンを生成する。生成した開口フラーレンを一度回収し、内包原子プラズマと開口フラーレン蒸気を堆積基板に照射して、内包フラーレンを生成することにした。開口部を通して原子を内包することが可能なので、大きな原子を内包する場合でも、内包フラーレンの形成効率を向上できる。 (もっと読む)


本発明は、その一実施態様において、小粒子上のダイヤモンドライクコーティングを提供する。本発明は、約1〜1000nmのサイズ範囲の小粒子(10)と、この小粒子上のダイヤモンドライクコーティングとを有する。このダイヤモンドライクコーティングは、この小粒子の表面の約50〜100%にわたって分布しており、かつこのダイヤモンドライクコーティングの厚さは1ミクロン以下である。次いでこれらの小粒子を、樹脂(12)のような材料及び絶縁テープに施与してよい。
(もっと読む)


本発明は、化学分析又は生物分析用の基板としてカーボンナノチューブを利用することに関する。本発明はさらにこの材料を、化学的又は生物学的試料の分離、付着及び検出に利用することに関する。カーボンナノチューブは、固定基板の表面材料として、又は検査液中での利用が予想される。用途は、試料の吸着-イオン化、より詳細には質量分析を含む過程を有するが、それに限定されるわけではない。

(もっと読む)


本発明は、Y−分岐型炭素ナノチューブの製造方法及びこの方法によって製造されたY−分岐型炭素ナノチューブに関し、具体的には、炭素ナノチューブ担体に触媒を担持させ、触媒−担持された炭素ナノチューブを前処理して触媒を炭素ナノチューブ表面に強く結合させ、結果として得られた触媒−担持された炭素ナノチューブ状の触媒を用いて炭素ナノチューブの合成反応を行うことを含むY−分岐型炭素ナノチューブの製造方法が提供される。
本発明によるY−分岐型炭素ナノチューブ製造方法は、既存の炭素ナノチューブ製造のための工程条件と装置を用いて様々な形態のY−接合を1つ以上有するY−分岐型炭素ナノチューブを容易に簡便かつ大量で合成することができるようにするため、工業的に非常に有望である。このように製造されたY−分岐型炭素ナノチューブは電極の材料、高分子の強化材、トランジスタあるいは電気化学的材料で卓越した潜在性を有している。

(もっと読む)


本発明は、IVB族、VB族、又はVIB族の少なくとも1つの元素を含む第一中間層と、前記第一中間層の上に堆積した、ダイヤモンド様ナノコンポジット組成物を含む第二中間層と、前記第二中間層の上に堆積したダイヤモンド様炭素層とを備えた積層構造物に関する。本発明は、更に、そのような積層構造物で被覆された基材を高剪断用途及び/又は高衝撃用途に使用することに関するとともに、そのような積層構造物で基材を被覆する方法に関する。 (もっと読む)


大気圧又は大気圧近傍の圧力下で、対向する電極間に少なくとも放電ガスを導入し、前記電極間に高周波電圧を印加することにより放電プラズマを発生させ、ナノ構造炭素材料を形成する原料ガスを前記放電プラズマと共存させて活性化した原料ガスとし、基板を前記活性化した原料ガスに晒すことで、前記基板上にナノ構造炭素材料を形成することを特徴とするナノ構造炭素材料の製造方法。 (もっと読む)


【課題】
【解決手段】 空気流から、炭素元素、硫黄元素、鉄元素、金元素およびその他の元素状物質を回収する装置(10)及び方法であって、漏斗形状のレセプタ(14)と、この漏斗状レセプタからスペースを開けて配置した逆円錐形状の電極ノード本体(12)と、前記電極ノード本体の外側表面と、前記レセプタの内側表面(60)の間に形成した前記空気流を受けるための漏斗形状の反応ゾーン(45)と、前記電極ノード本体(12)に装着され前記反応ゾーン(45)に突出している複数のポイントソース電極(36)と、を具える。電極ノード本体(12)とレセプタ(14)は互いに分離されており、レセプタ(14)は接地されており、電極ノード本体(12)に電圧源が電気的に接続されている。この装置と方法は、化石燃料、ごみ、およびその他の材料の燃焼から生じる汚染物質を含む空気流の処理に使用して、酸化物を元素状物質と水に分解し、空気流から元素状物質を除去することに、石炭で稼動する電力プラントの放出物を処理して、プラントの放出物から炭素を回収して、その回収した炭素を燃料として再使用することによってプラントの効率を改善することに、焼却炉でごみを燃焼することによって、および焼却炉の放出物を処理して元素状物質を回収し、元の焼却していないごみよりはるかに少ないスペースで埋め立てられるようにすることによって、埋め立ての必要性を低減することに、およびフラーレンなどの価値のある元素状物質を生成することに使用することができる。 (もっと読む)


次の工程:
プラズマトロン(1)のチャンバ(2)中で高周波フィールドを製造する工程;
前記チャンバ(2)中へプラズマガスを導入する工程;
プラズマガスを用いて高周波フィールドによりプラズマを製造する工程;
及び
プラズマ中へ出発材料を導入する工程
を有する、変性された材料の製造方法である。
(もっと読む)


カーボンナノチューブはこれまで生産量が限られていて高価であったが、このカーボンナノチューブを高速で安価に製造することを目的とする。そのために、この発明のカーボンナノチューブの製造方法は、容器に入れられた有機溶媒と有機金属錯体を含む混合液に超音波を照射する等によって気泡を発生させるとともに電磁波照射手段で電磁波を照射して混合液中で高エネルギーのプラズマを発生させてカーボンナノチューブを製造するものである。 (もっと読む)


透明無定形炭素層が形成される。この透明無定形炭素層は吸収係数が小さく、そのためこの無定形炭素は、可視光範囲において透明である。透明無定形炭素層は、異なる目的のための半導体装置においても使用することができる。透明無定形炭素層は、半導体装置の最終構造に含まれてもよい。また、透明無定形炭素層は、半導体装置の製造中に、エッチング処理のマスクとして使用することもできる。
(もっと読む)


4.0 GPaを超える圧で焼なましされ1500度Cを超える温度に加熱されるマイクロ波プラズマ化学蒸着により成長した、120 GPaより大きい硬さ(hardness)を有する単結晶ダイヤモンド。硬い単結晶ダイヤモンドを製造する方法は、単結晶ダイヤモンドを成長させ、120 GPaを超える硬さを有するように4.0 GPaを超える圧および1500度Cを超える温度で単結晶ダイヤモンドを焼なましすることを含む。
(もっと読む)


241 - 258 / 258