説明

Fターム[4G146BC26]の内容

炭素・炭素化合物 (72,636) | 製造−製造工程、製造条件 (14,091) | 雰囲気 (2,893) | ガス組成の特定 (2,326) | 混合ガス (212)

Fターム[4G146BC26]に分類される特許

81 - 100 / 212


【課題】カーボンナノ構造体を製造する際の析出効率を向上させることが可能な触媒基材、および該触媒基材を用いたカーボンナノ構造体の製造方法を提供する。
【解決手段】気相成長によってカーボン結晶を成長させカーボンナノ構造体を製造するために用いられる触媒基材の製造方法であって、原料ガス供給面から結晶成長面に貫通する触媒材料を有する触媒構造体を形成する工程と、前記触媒構造体の結晶成長面側の触媒材料を水を用いて酸化処理する工程とを含む、触媒基材の製造方法および該触媒基材を用いたカーボンナノ構造体の製造方法に関する。 (もっと読む)


【課題】 低温でカーボンナノチューブを成長させることのできるカーボンナノチューブ成長用基板の作製方法及びカーボンナノチューブの作製方法を提供する。
【解決手段】カーボンナノチューブ成長用基板の作製方法は、基板S上に形成された触媒層11に、CVD法を用いて炭素含有ガスを接触させて触媒層11から炭素系物質12を成長させ、次いでこの炭素系物質12を除去してカーボンナノチューブ成長用基板1を作製する。カーボンナノチューブの作製方法は、このカーボンナノチューブ成長用基板からカーボンナノチューブ14を成長させる。 (もっと読む)


【課題】平均粒子径が小さく、かつ粒度の揃った、比表面積が比較的大きい電気二重層キャパシタ用活性炭を容易に、かつ安いコストで製造する方法を提供する。
【解決手段】易黒鉛化性炭素材料を原料として、酸化性ガス雰囲気下で焼成処理して得られる炭素材を粒度調整した後に賦活処理して製造して得られることを特徴とする電気二重層キャパシタ電極用活性炭の製造方法。 (もっと読む)


高品質なカーボン単層ナノチューブ(SWNT)を合成する方法およびプロセスを提供する。前記方法により、触媒単位重量当たりの炭素前駆体量および輸送ガス量を最適化する手段を提供する。780℃にて、約4.2×10−3モルCH/秒−g(Fe)の流量で、炭素前駆体ガスを担体に担持した触媒に接触させたとき、約20%の変換効率を達成できる。また、炭素前駆体ガスの流量を約1.7×10−2モルCH/秒−g(Fe)以上にすると、品質が向上し、より速くカーボンSWNTが成長する結果になった。一方、炭素原子の供給速度を遅くすると(約4.5×1020C原子/秒−g、すなわち6.4×10−4モルCH/秒−g(Fe))、欠陥の多いナノチューブが生成する結果になった。 (もっと読む)


【課題】その成長位置が制御された状態で、基板上で一方向に高密度に配向成長したカーボンナノチューブを製造する方法を提供する。
【解決手段】表面の結晶面がR面であるサファイア単結晶基板の表面に、カーボンナノチューブ生成用金属系触媒からなる所定のパターン構造を形成し、CVD法により前記パターン構造から前記R面における正のc軸投影方向の180°反対方向を主体にカーボンナノチューブを配向成長させることを特徴とするカーボンナノチューブの製造方法。 (もっと読む)


【課題】純度及び安定性の高い高品質のナノカーボンを低コストで効率よく量産すること、及び一定条件で運転して殆ど半永久的にナノカーボンを生成しつづけることができ、ナノカーボンを大量に供給することを課題とする。
【解決手段】還元雰囲気の加熱炉容器11と、加熱炉容器の外周部に配置された加熱源13と、加熱炉容器の上流側に配置され,加熱炉容器内に炭化水素と微量の金属触媒粉とを混合噴霧する炭化水素・触媒混合噴霧ノズル15と、加熱炉容器の下流側に配置された生成ナノカーボン排出ノズル18とを具備し、炭化水素・触媒混合噴霧ノズル15より金属触媒粉の混合した金属触媒粉混合炭化水素を連続的に或いは間欠的に噴霧することにより加熱炉容器内で反応させてナノカーボンを成長させ、成長した生成ナノカーボンを排出ノズルにより排出することを特徴とする。 (もっと読む)


【課題】優れた機械的特性および高い比表面積を兼ね備え、さらには、粘着剤として用いた場合に優れた粘着特性を示すカーボンナノチューブ集合体の製造方法を提供する。
【解決手段】本発明のカーボンナノチューブ集合体の製造方法は、複数層を有するカーボンナノチューブを備えるカーボンナノチューブ集合体の製造方法であって、表面に親水性保護膜を有する基板の該親水性保護膜上にAl膜を形成し、該Al膜上に触媒層を形成し、該触媒層上にカーボンナノチューブを成長させる。 (もっと読む)


【課題】酸化層の前堆積を行うことなく、導体または半導体材料上に高密度のカーボンナノチューブマットを製造する方法を提供する。
【解決手段】拡散バリア520、拡散バリア上にアモルファスシリコン層530、アモルファスシリコン層上に金属層を含む触媒複合体を導体または半導体基板510上に堆積させる。次いで前記金属層に酸化処理を行い、最後に、酸化処理された金属層からカーボンナノチューブマット580を成長させる。 (もっと読む)


【課題】本発明は、少なくとも二つのボンディングパッド間に水平方向の電気接続を確立することを可能にする装置に関する。
【解決手段】本装置はボンディングパッドの垂直壁を接続する水平なカーボンナノチューブを備え、ボンディングパッドは少なくとも二つの物質を積層させることによって形成されていて、その一つはナノチューブ成長に触媒作用をもたらし、他の一つはナノチューブ成長に触媒作用をもたらす物質の層間のスペーサとして機能する。 (もっと読む)


【課題】 バクテリアセルロース膜から作られるカーボンナノチューブ様薄膜を提供する。
【解決手段】 カーボンナノチューブ様材料が開示されている。カーボンナノチューブ様材料は、無酸素雰囲気下で炭化されるバクテリアセルロースを含む。また、バクテリアセルロースとLiFePO4を含むカソード材料、炭化されたバクテリアセルロースを含むアノード材料、アルデヒド処理したバクテリアセルロースを含むセパレータ膜、バクテリアセルロースを含む部品を含むリチウム電池が開示されている。 (もっと読む)


【課題】 多層カーボンナノチューブをより高温で再現性良く超伝導状態にすることができる超伝導素子及びその製造方法を提供する。
【解決手段】 多孔質膜2中の細孔21内に多層カーボンナノチューブが形成されており、当該多層カーボンナノチューブは、その直径が5〜30nm、その層数が2〜20である超伝導素子であって、前記多層カーボンナノチューブが、多層カーボンナノチューブを構成する炭素原子の一部がホウ素原子で置換されたホウ素置換型多層カーボンナノチューブ3である。 (もっと読む)


【課題】製造設備のコンパクト化が図れ、特に高収率のフラーレンを含有する炭素微粒子を大量かつ簡単に製造できる方法を提供する。
【解決手段】炭化水素化合物および水素を含有する混合物と、酸素含有ガスとを反応炉2内に導入し、水素、一部の炭化水素化合物および酸素で燃焼反応を生じさせて二酸化炭素と水蒸気からなる1200〜2000℃の高温ガスを生成させるとともに、この高温ガスの熱を利用して前記反応炉2内に導入した残りの炭化水素化合物を90kPa以下の減圧雰囲気下で熱分解反応を生じさせることを特徴とする。 (もっと読む)


本発明は、少なくとも約22MPa m1/2の靭性を有する単結晶ホウ素ドープCVDダイヤモンドに関する。本発明はさらに、単結晶ホウ素ドープCVDダイヤモンドを製造する方法に関する。本発明のダイヤモンドの成長速度は約20μm/h〜100μm/hであり得る。 (もっと読む)


【課題】良質のカーボンナノコイルを高い収率で製造することが可能なカーボンナノコイル製造用触媒を得る。
【解決手段】セラミックス微粒子1の表面に、酸化鉄もしくはオキシ水酸化鉄と、酸化スズとの混合物からなる被膜2を形成する。被膜2の厚みを300nm以上とし、被膜2における鉄とスズの元素比を1:1〜6:1の範囲内とすることを特徴とする。被膜2の厚みは1000nm以上がより好ましく、鉄とスズの元素比は3:1が最も好ましい。 (もっと読む)


【課題】カーボンナノ構造物の連続的成長メカニズムを最適化でき、高品質のカーボンナノ構造物を製造することのできるカーボンナノ構造物の製造方法、及びカーボンナノ構造物の製造に用いるカーボンナノ構造物製造用ガスを提供する。
【解決手段】本発明に係る、連続的に長さを制御可能なカーボンナノ構造物の製造方法においては、キャリアガスと原料ガスを反応室4に供給して触媒体6によりカーボンナノ構造物2を製造するとき、キャリアガスや原料ガス中に、上記原料ガスに対して還元性を有する水素などの還元性ガスを含有させ、さらには酸化性を有する水などの酸化性ガスを含有させ、その濃度を適度に制御することにより、良質のカーボンナノ構造物を高効率に製造することができる。これにより、例えば全長7mmというこれまでに例の無いカーボンナノチューブの製造を可能とする。 (もっと読む)


【課題】高純度アセチレンガスを用いて、良質なダイヤモンドでかつ接合強度の高いダイヤモンド皮膜を合成する燃焼炎法によるダイヤモンド皮膜合成方法を提供する。
【解決手段】燃焼炎法によるダイヤモンド皮膜合成方法において、ガスボンベの残量に関わらず、ほぼ一定の純度(C2H299.5%以上)を保つことのできる高純度アセチレンガス3を用いた高純度アセチレン−酸素の燃焼ガスを使用し、ダイヤモンドの合成促進成分として窒素ガス4を用いる。より具体的には、高純度アセチレン−酸素の流量比(O/C)0.9の燃焼ガスにダイヤモンド合成促進成分として窒素ガスを流量比(N/(C+O+N))0.28%〜0.40%混合する。 (もっと読む)


【課題】配向CNT集合体の成長高さに応じたCVD装置の自動制御が可能であり、所望の高さの配向CNT集合体を量産し得る製造方法及び製造装置を提供する。
【解決手段】基板2上で成長中の配向カーボンナノチューブ集合体11に平行光Lを照射し、その影の大きさを焦点距離が無限遠であるように機能するテレセントリック光学系を用いた測定部13にて測定することによって配向カーボンナノチューブ集合体の成長高さをリアルタイムに検出しつつ配向カーボンナノチューブ集合体を合成し、配向カーボンナノチューブ集合体の成長高さが所定状態になったときに配向カーボンナノチューブ集合体の合成を停止させるものとする。 (もっと読む)


【課題】膜面積の大きい単層カーボンナノチューブ膜を製造することができ、且つ該膜を自立膜として回収することができる単層カーボンナノチューブ製造方法、及び該方法の実施に適した製造装置を提供する。
【解決手段】製造装置1は、前記対向する一対の電極を構成する陰極12と陽極11の各々に一つずつ電気的に接続された状態で、且つ、該一対の電極11,12間の隙間14の距離Lよりも距離が長い隙間24(距離L)をあけて対向した状態で配置される一対の導電板21,22を備える。前記アーク放電により蒸発したカーボンからなる単層カーボンナノチューブを、前記一対の導電板21,22のうち陰極12側に配置された導電板22における前記陽極11と対向する面22aに膜状に堆積させて捕捉する。 (もっと読む)


【課題】CAT−CVD法により高硬度なビッカース硬度を有したDLC膜を安定に形成することが可能なDLC膜製造装置を提供すること。
【解決手段】CAT−CVD法により基材21にDLC膜を形成するDLC膜の製造装置10であって、基材21の被成膜面とは反対側に配置され、基材21を加熱するための第一手段11と、所定の温度範囲内で基材21の温度が変動するように、第一手段11を制御する第二手段12とを少なくとも備えたこと。 (もっと読む)


【課題】廃タイヤを、高付加価値ナノ炭素材料を選択的且つ安価に供給する実用化技術を提供する。廃タイヤの有効資源化は、C4およびC5の原油成分から複雑な処理プロセスを経て初めて合成される合成ゴム成分(ブタジエン、イソプレン等)を用いるカーボンナノチューブなどの合成よりも簡便で、工学的、社会的、経済的に合理的な廃タイヤの有効利用に資する技術を提供する。
【解決手段】廃タイヤを分解炉中で加熱分離して1次油を採取し、この1次油をさらに加熱処理して、廃タイヤの主成分であるA〜C重油成分及び固形物、硫黄からなる不純物を分離除去したカーボンナノチューブの合成原料となる残油成分である2次油を抽出し、当該残油成分である2次油をキャリヤーガスと共に、CVD装置に配置した基板上に導入して、当該基板上にカーボンナノチューブを加熱合成することを特徴とするカーボンナノチューブの製造方法。 (もっと読む)


81 - 100 / 212