説明

Fターム[4G146JC18]の内容

炭素・炭素化合物 (72,636) | 製造、処理、取扱 (2,212) | プロセス条件の限定、制御対象の特定 (288) | 温度(温度範囲、昇温・降温速度等) (116)

Fターム[4G146JC18]に分類される特許

21 - 40 / 116


【課題】ゲスト物質として二酸化炭素以外の物質を含むCOハイドレートとその製造方法を提供する。
【解決手段】粉砕した氷1と常温で液体である炭化水素2を耐圧容器10内に密封し(S1)、耐圧容器内のガスを二酸化炭素3に置換し(S2)、耐圧容器内をCOハイドレート4が形成されない圧力まで二酸化炭素により加圧し(S3)、氷と炭化水素を攪拌しながら、耐圧容器内をCOハイドレート4が形成される温度まで冷却する。COハイドレート4は、水分子が水素結合によって作成するかご状構造の内部に二酸化炭素と常温で液体である炭化水素2(エタノール、2−プロパノール)を含む。 (もっと読む)


【課題】本発明は、ガス状流出物中の酸性化合物を富化させる方法を提供する。
【解決手段】以下の段階:− 酸性化合物と、水相を含む互いに混和しない少なくとも2つの液相、少なくとも1種の両親媒性化合物および少なくとも1つの促進剤混合物を含む組成物と、を含むフィードガスを接触器に供給する段階と、− 水、促進剤、および酸性化合物からなるハイドレートを形成するための所定の圧力および温度条件を前記接触器において成立させる段階と、− 水相に混和しない相に分散したハイドレートを、ハイドレート解離ドラムにポンプ輸送する段階と、− ハイドレート解離条件を前記ドラムにおいて成立させる段階と、− 解離から得られる、フィードガスに対して酸性化合物が富化されたガスを排出する段階とを含む方法。 (もっと読む)


【課題】低いCO損失及び高い水素除去率を示す、水素含有CO混合気体の選択的な酸化的脱水素化のための新規な方法を提供する。
【解決手段】原材料として水素含有CO混合気体を使用して、前記原材料を、反応器中で徐々に増大する活性勾配を有する触媒層を通過させる工程を含み、前記原材料に含まれる水素に対する酸素のモル比は0.5乃至5:1であり、反応温度は100乃至300℃であり、体積空間速度は100乃至10000h-1であり、反応圧力は-0.08乃至5.0MPaであり、ここで反応廃水中の水素が酸化されて水になる、水素含有CO混合気体の選択的な酸化的脱水素化方法を提供する。 (もっと読む)



エネルギー消費が少なく安定した運転するように設計された、煙道ガスから液体COを生成する方法及びプラント。
(もっと読む)


凝固性ガスをプロセスガス流から低温液体との直接的接触によって除去するシステム及び方法が開示される。プロセスガス流は、少なくとも低温液体によって凍結されるガスを含み、プロセスガス流の1種類又は2種類以上の他のガスは、気体状態のままである。プロセスガス流は、水を含む場合があり、かかるプロセスガス流は、低温液体とは異なる組成を有する。低温液体とプロセスガス流の接触は、200psia未満、オプションとして100psia未満、50psia未満又はそれどころか30psia未満の圧力状態で行われ、凝固ガスを、低温液体を含むスラリとして接触組立体から除去するのが良い。
(もっと読む)


本発明は、CO分子から実質的になる初期ガス流CO(106)を再利用する方法であって、前記方法は、以下の工程:ガス状のCO流を、炭素を含有する材料(104)の熱分解温度に加熱する工程と、炭素元素を含有する炭素含有材料(14)の負荷物を、ガス流により熱分解する工程であって、炭素元素によりCO分子を還元し、一酸化炭素分子(CO)を実質的に含有する第1の高温ガス流(110)を生成する、工程と、一酸化炭素分子(CO)を、酸素原子(O)で酸化する工程であって、CO分子を実質的に含有する第2のガス流(114)を生成する、工程と、第2のガス流(114)中のCO分子を還元し、一酸化炭素分子(CO)を実質的に含有する第3のガス流(120)を提供する、工程とを含む、方法に関する。この方法を実施するためのシステムも開示する。 (もっと読む)


水含有COリッチ流体を圧縮するにあたりCOリッチ流体をコンプレッサ(5)で圧縮する方法において、圧縮工程よりも上流の位置で、不凍液を水含有COリッチ流体に注入して、水の凝固温度を下げる。不凍液含有COリッチ流体を凍らせ、凍った流体から水を抽出し、凍った流体をコンプレッサで圧縮する。 (もっと読む)


ボイラー(2)において発生した二酸化イオウを含有する二酸化炭素富有煙道ガスを浄化するためのガス浄化システム(8)は、ボイラー(2)において発生した煙道ガスに含まれる二酸化イオウの少なくとも80%を除去し、これによって、部分的に浄化した二酸化炭素富有煙道ガスを発生するように作動する第1のガス浄化装置(10)、及び第1のガス浄化装置(10)から分離されており、第1のガス浄化装置(10)を通過した部分的に浄化した二酸化炭素富有煙道ガスの少なくとも一部を受け取るように作動する第2のガス浄化装置(12)を含んでなる。第2のガス浄化装置(12)は、部分的に浄化した二酸化炭素富有煙道ガスを冷却して、該ガスから水を凝縮させることによって、部分的に浄化した二酸化炭素富有煙道ガスに含まれる水の少なくとも一部を除去するように作動するものである。 (もっと読む)


【課題】熱損失を抑制した二酸化炭素回収装置を提供すること目的とする。
【解決手段】本発明に係る二酸化炭素回収装置は、二酸化炭素を含む排ガスと、所定の温度を挟んで可逆的に二酸化炭素を吸収又は放出する吸収液とを接触させ、排ガス中の二酸化炭素を吸収液に吸収させる吸収器と、吸収器で二酸化炭素を吸収した吸収液を加熱して吸収液中の二酸化炭素を放出させる再生器と、再生器で再生された吸収液を、吸収液を吸収器に還流させる還流配管系と、吸収液の少なくとも一部を導入して、この導入した吸収液に蓄積する固形分を除去し、この固形分を除去した後の吸収液を吸収液の導入箇所近傍へ返送するろ過器と、を具備する。 (もっと読む)


吸収器の底部に流し込まれる二相混合物を形成するために供給ガスを冷却準富溶媒と接触させることにより、本発明の主題による構成および方法において、高圧供給ガスからCO2が除去される。吸収器からの富溶媒はその後、準富溶媒のための冷凍を発生させるために圧力が減少され、希薄溶媒は、準富溶媒を生成するために、吸収器内で部分処理供給ガスと向流的に接触する。その他の利点の中でもとりわけ、減圧富溶媒による供給ガスおよび準富溶媒の冷却は、溶媒の強化された再生を可能にするために富溶媒を加熱し、溶媒の外部冷凍および加熱は完全に回避されることが可能である。
(もっと読む)


本発明は、プロセスガスから二酸化炭素を除去する方法であって、a)アンモニア性溶液を、少なくとも第1吸収器を含んでなる吸収装置に導入し;b)前記第1吸収器において、アンモニア性溶液をプロセスガスと接触させて、アンモニア性溶液によってプロセスガス中の二酸化炭素の一部を捕捉し;c)アンモニア性溶液を吸収装置から排出し;d)アンモニア性溶液を冷却して、捕捉した二酸化炭素の少なくとも一部を固体塩として沈殿させ;e)冷却したアンモニア性溶液を分離器に導入し、分離器において、沈殿した固体の少なくとも一部をアンモニア性溶液から除去し、その後、アンモニア性溶液を分離器から排出し;f)アンモニア性溶液を加熱し;及びg)加熱したアンモニア性溶液を前記吸収装置に再導入することを含んでなる二酸化炭素の除去法に係る。本発明は二酸化炭素除去システムにも係る。 (もっと読む)


本発明は、炭素燃料の改質、ガス化又は燃焼のプロセスから生じるガスの流れからCOを捕獲するための循環する方法を含む。上記の方法は、少なくともCaO及び金属又は金属の酸化の形態を含む固体と反応する上記のガスの流れに基づく。上記の方法は、CaCOの分解を招く反応の間に放たれる熱のための十分な発熱還元反応を受けることができる金属の酸化の形態を特徴とする。本発明に係る方法の熱力学的及び速度論的な特質は、炭化水素の改質又は炭素燃料の燃焼のようなプロセスに由来するガスの流れに存在するCOを除去することに理想的とする。
(もっと読む)


プロセスガスから二酸化炭素を除去する方法であって、吸収装置101においてアンモニア性溶液をプロセスガスと接触させて、アンモニア性溶液によってプロセスガス中の二酸化炭素の一部を捕捉する工程であって、アンモニア性溶液におけるアンモニア:二酸化炭素のモル比(R)を制御して、吸収装置101において、固体の沈殿が実質的に生じないようにする工程;捕捉した二酸化炭素を含むアンモニア性溶液を吸収装置101から排出する工程;吸収装置から排出したアンモニア性溶液を冷却して、捕捉した二酸化炭素の少なくとも一部を固体塩として沈殿させる工程;沈殿した固体の少なくとも一部をアンモニア性溶液から分離する工程;沈殿した固体の少なくとも一部が分離されたアンモニア性溶液を加熱して、加熱したアンモニア性溶液中に固体が実質的に存在しないようにする工程;及び加熱したアンモニア性溶液を前記吸収装置101に再導入する工程を含んでなる二酸化炭素の除去法を開示する。プロセスガスから二酸化炭素を除去するシステムも開示する。 (もっと読む)


CO2を含有する煙道ガスストリームからCO2を除去するための方法及びシステムを提供するものであり、方法は、a)NH3を含んでなる第1のイオン性溶液流を煙道ガスストリームと接触させて、煙道ガスストリームからCO2の第1の部分を除去する工程、b)工程a)からの使用済みイオン性溶液を第1液だめ容器において集める工程、c)イオン性溶液を第1液だめ容器から工程a)に再循環する工程、d)NH3を含んでなる第2のイオン性溶液流を煙道ガスストリームと接触させて、煙道ガスストリームからCO2の第2の部分を除去する工程、e)工程d)からの使用済みイオン性溶液を第2液だめ容器において集める工程、及びf)イオン性溶液を第2液だめ容器から工程d)に再循環する工程を含んでなる。 (もっと読む)


【課題】硫酸水溶液を用いた蟻酸の連続的な脱水反応により一酸化炭素ガスを製造する際に、硫酸水溶液を廃棄することなく一酸化炭素ガスの純度や生産性が低下するのを防止する。
【解決手段】反応器2内の少なくとも硫酸水溶液を含む加熱された反応液に連続的に導入される蟻酸の脱水反応によって、一酸化炭素ガスと水を生成する。一酸化炭素ガスの流出路6に配置される気液接触装置10と反応器2との間で反応液を循環させる。気液接触装置10内の反応液を加熱する。気液接触装置10に、反応器2内の反応液の加熱により発生する水蒸気を一酸化炭素ガスと共に導入する。気液接触装置10に導入された一酸化炭素ガスと気液接触装置10における反応液の加熱により発生する水蒸気とが混合するように、気液接触装置10において一酸化炭素ガスと反応液とを接触させる。気液接触装置10から水蒸気と共に流出する一酸化炭素ガスを単離する。 (もっと読む)


【課題】一酸化炭素の製造において各工程が、運転開始当初から安定的に運転ができ、工業的に安定に純度の高い一酸化炭素を運転開始から安定して製造する一酸化炭素の製造法を提供する。
【解決手段】コークスに酸素含有ガスを通気して一酸化炭素含有ガスを得る一酸化炭素合成工程と、該一酸化炭素含有ガスを加水分解触媒と接触させ一次精製ガスを得る加水分解工程と、該一次精製ガスをアルカリ溶液と接触させ二次精製ガスを得るアルカリ吸収工程と、を含む一酸化炭素の製造方法において、該一次精製ガスが硫黄化合物を5容量ppm以
上含有し、且つ該一次精製ガスを該加水分解工程から該アルカリ吸収工程へ移送する温度を、アルカリ吸収工程で硫化鉄が析出しない温度に、製造開始から維持することを特徴とする一酸化炭素の製造方法。 (もっと読む)


本発明は、大気中への二酸化炭素の排出を低減するための方法およびこの方法を実施するためのタンクに関わる。方法によれば、燃焼プロセスの結果生じた二酸化炭素をガスから分離させる。次に、二酸化炭素を少なくとも10bar絶対単位の圧力へ、好ましくは少なくとも15bar絶対単位の圧力へ、特に有利には18bar絶対単位の圧力へもたらし、且つ−10℃までの温度へ、好ましくは−20℃までの温度へ冷却する。有利には、液化二酸化炭素の温度は−40℃以下である。液化二酸化炭素の温度は、輸送中にタンク内で特に有利には−25℃と−35℃の間にある。たとえば18bar絶対単位の比較的高い圧力には、比較的厚い壁厚のタンクを準備する必要がある。しかしながら、高圧により、二酸化炭素ガス中の水素および窒素の比較的高い成分を受け入れることが可能になる。従って、二酸化炭素の液化前に窒素と酸素とを大量に分離させる必要はなく、このことは、現在の技術水準によれば、二酸化炭素を分離させることにもなる。 (もっと読む)


CO2は、ガス混合物から、ガス混合物を、水と2,3−ジヒドロ−2,2,4,6−テトラメチルピリジンとを含む吸収媒体と接触させることにより吸収される。本発明による吸収は、水と、2,3−ジヒドロ−2,2,4,6−テトラメチルピリジンと、少なくとも1種の有機溶剤とを均一相で含む。ガス混合物からCO2を分離するための本発明による装置は、吸収ユニットと、脱離ユニットと、循環される本発明による吸収媒体とを含む。 (もっと読む)


【課題】 より簡単に且つ確実にレトルト内の温度を均一化できる変成ガスの加熱方法を提供する。
【解決手段】 変成ガス発生用の触媒7を内蔵するとともに変成炉の炉体の内部に配設されるレトルト3と、該レトルト3における原料ガス上流側に熱風を供給する上流側リジェネバーナ8aと、前記レトルト3における原料ガス下流側に熱風を供給する下流側リジェネバーナ8bと、を備える変成炉において、前記レトルト3における原料ガス上流側に設けられた上流側制御用測温体33aの測温値に基づいて前記上流側リジェネバーナ8aの制御を行い、前記レトルト3における原料ガス下流側に設けられた下流側制御用測温体33bの測温値に基づいて前記下流側リジェネバーナ8bの温度制御を行う。 (もっと読む)


21 - 40 / 116