説明

Fターム[4H001XA07]の内容

発光性組成物 (40,484) | 母体構成元素 (22,982) |  (790)

Fターム[4H001XA07]に分類される特許

241 - 260 / 790


発光粒子は、雰囲気中に存在する成分と反応する発光化合物を含む発光粒子の内部部分と、発光化合物と雰囲気中に存在する成分との間の反応を抑制するように作動可能な発光粒子の外面上の不動態化層とを含む。 (もっと読む)


【課題】発光波長帯の変化無く光学的に安定し発光性能が向上した量子点を含む量子点波長変換体を得る。
【解決手段】量子点波長変換体100は、励起光を波長変換して波長変換光を発生させる量子点111及び上記量子点を分散させる分散媒質112を含む波長変換部110と、波長変換部を密封する密封部材120と、を含む。 (もっと読む)


【課題】蛍光体を分散する材料として樹脂を用いると紫外線による劣化の問題があり、ガラス自体の成分として発光中心となる希土類元素を加えた場合、良好な波長変換効率が得られにくく、発光色が製造条件によって変化するため再現性が十分でなかった。本発明は係る問題を解決する。
【解決手段】軟化点が700℃以上のガラス中に、分散された酸窒化物蛍光体の粒子または窒化物蛍光体の粒子の少なくともいずれかを含み、前記ガラスはオキシナイトガラスである波長変換部材である。この組み合わせによれば、蛍光体の粒子をガラス中に分散させる工程においても蛍光体中の希土類がガラスに溶けてしまうことがなく粒子状態を保つとともに、波長変換効率が向上し、紫色から紫外の励起光によっても劣化しない。また、蛍光体からの光取り出し効率が高く、水分などの雰囲気の影響を受けない安定した波長変換部材となる。この波長変換部材を窒化物半導体発光素子等と組み合わせることにより、小型で長寿命な発光装置が得られる。 (もっと読む)


【課題】青色発光ダイオード(青色LED)又は紫外発光ダイオード(紫外LED)を用いた白色発光ダイオード(白色LED)等を初めとするいろいろな発光装置に利用可能な蛍光体とそれを用いた発光装置を提供する。
【解決手段】
一般式:Si6−zAl8−zで示されるβ型サイアロンが母体材料であり、発光中心としてEu2+を固溶する蛍光体である。β型サイアロン結晶の格子定数aが0.7605〜0.7610nm、格子定数cが0.2906〜0.2911nmであり、Eu含有量が0.4〜2質量%、第一遷移金属含有量が5ppm以下であるβ型サイアロン蛍光体である。 (もっと読む)


【課題】1価元素と4価元素の三元素の窒化物を母体結晶とし、青色光又は近紫外光に対する変換効率及び色純度に優れた新規蛍光体と、この窒化物蛍光体を、金属シリコンを原料として、特殊な高圧装置を用いることなく、また、過度な高温処理を必要とすることなく、安定に製造する方法を提供する。
【解決手段】下記式[1]で表される蛍光体。この蛍光体を、Na源としてNa金属を、Si源としてSi金属を、N源としてNaN、LiN及びNガスのいずれかを用い、これらの原料を付活元素Qとともに反応容器へ仕込んだ後、加熱することにより製造する。
IV:Q ・・・[1]
(MはLi、Na、K、Rb、Csの金属元素。MIVは周期表第4族又は第14族に属する4価の金属元素。QはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ybの元素。) (もっと読む)


本発明は、式MLi2−yMgSi2−x−yx+y4−x:RE(Mはアルカリ土類元素;Aはアルミニウム、ガリウム、ホウ素)の、改善された赤色発光の発光材料に関連する。この材料は、立方晶構造型で結晶化し、多くの用途に関して役に立つ。
(もっと読む)


【課題】 発光特性に優れているものの、化学的安定性に問題のある蛍光体を実用化可能とする半導体発光装置と、この半導体発光装置を用いた画像表示装置及び照明装置を提供する。
【解決手段】 光源と、該光源からの光の少なくとも一部を吸収し、該光源からの光とは異なる波長を有する光を発する蛍光体とを備える発光装置において、該光源として導電性を有する基板上に形成された半導体発光素子を備え、かつ、該蛍光体としてMn4+で付活されたフッ素錯体蛍光体を備えることを特徴とする、半導体発光装置。 (もっと読む)


【課題】蛍光波長が保持され、耐久性及び蛍光強度が増大したナノ粒子・多孔体複合ビーズ及びその製造方法を提供する。
【解決手段】ナノ粒子・多孔体複合ビーズは、多孔体ビーズと、前記多孔体ビーズの表面に近い内部の同心球上に放射状に静電気的引力により結合されているナノ粒子とを含み、前記ナノ粒子は、発光ナノ粒子、又は、発光ナノ粒子と異種ナノ粒子との混合物であり、前記異種ナノ粒子は、磁性ナノ粒子、金属ナノ粒子、及び金属酸化物ナノ粒子からなる群から選択されるいずれか1つ又は2つ以上の混合物である。 (もっと読む)


本発明は、光源100と透過機構200とを有する照明デバイスを提供する。光源は、光源光を生成し、LED光を生成する発光デバイス(LED)110と、第1の発光材料130を有するキャリア120とを有している。キャリアはLEDと接しており、第1の発光材料130はLED光の少なくとも一部を第1の発光材料光に変換する。第2の発光材料の透過機構は、光源から離れて配されており、第1の発光材料光の少なくとも一部及び/又はLED光の少なくとも一部を変換する。本発明は、スポット照明におけるリモートルミネセンス材料の電流の制限を克服する。また、単に種々の(赤橙の)リモートルミネセンス材料と組み合わせた単一のタイプの白色(又は白っぽい)光源により、種々の相関色温度の光源を実現する極めて簡単なやり方が可能になる。
(もっと読む)


【課題】高い蛍光強度を有し、蛍光体粉末として優れた特性を有する、Li含有α-サイアロン蛍光体粉末の提供。
【解決手段】一般式LiEuSi12−(m+n)Al(m+n)16−n(式中、Euの平均価数をaとすると、x+ya=m、0.5≦x≦3.0、0.01≦y≦0.3、0.5≦m≦3.0、0.5≦n≦2.4)で表されるLi含有α-サイアロン系蛍光体であって、走査型電子顕微鏡写真を画像解析することにより計測される一次粒子のアスペクト比が3以下であり、(1)短軸の長さが3μmより大きいこと、又は、(2)短軸の平均長さが1.3〜3.6μmであるLi含有α-サイアロン系蛍光体粉末であり、蛍光の主波長が570〜574nmであることを特徴とする、Li含有α-サイアロン系蛍光体粒子。 (もっと読む)


【課題】本発明は、白色光発光方法及び発光装置に関する。使用時間が長く、カラーコーディネートの明らかな偏移及び光源の効率低下が生じ難い白色光発光方法及び発光装置を提供する。
【解決手段】本発明の白色光発光方法は、電界放出部品により青色陰極線発光材料を励起して青色光を発光させ、さらに発光された青色光により黄色フォトルミネッセンス材料を励起して黄色光を発光させ、黄色フォトルミネッセンス材料を励起しない残りの青色光と発光された黄色光とを複合して白色光を発光させる方法である (もっと読む)


【課題】焼成コストが低く、発光強度の高い微粉末状態の複合窒化物蛍光体を製造する方法を提供する。
【解決手段】付活元素Mの単体及び/又は化合物、2価の金属Mの窒化物、3価の金属Mの窒化物、並びに、4価の金属Mの窒化物を含む原料混合粉末を焼成して、下記一般式(I)で示される微量酸素を含有する複合窒化物蛍光体を製造する方法。原料混合粉末を嵩密度0.05g/cm以上1g/cm以下の状態とし、焼成温度を1200℃以上1750℃以下とし、被焼成原料中の窒素と酸素の合計モル数に対する酸素のモル数が1%以上20%以下となるように被焼成原料中に酸素を存在させて焼成する。
(I)
(0.00001≦a≦0.15、0.5≦b≦2、0.5≦c≦2、0.5≦d≦2、1.5≦e≦6、0<f≦1.2、0<f/(e+f)≦0.2) (もっと読む)


【課題】蛍光体の耐久性の向上を実現する。
【解決手段】
25℃において、電子スピン共鳴測定で検出されるg=2.00±0.02のシグナルのスピン濃度が、蛍光体1gあたり3×10−9mol以下であり、かつ、下記式[I]で表
される化学組成を有する結晶相を含有する蛍光体。
Ba [I]
(但し、上記式[I]中、 MはMn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、
Ho、Er、Tm及びYbからなる群より選ばれる少なくとも1種類の付活元素を示し、
はSr、Ca、Mg及びZnから選ばれる少なくとも1種類の二価の金属元素を示
し、 Lは周期律表第4族又は14族に属する金属元素から選ばれる金属元素を示し、 x、y、z、u、v、及びwは、それぞれ以下の範囲の数値である。
0.00001≦x≦3
0≦y≦2.99999
2.6≦x+y+z≦3
0<u≦11
6<v≦25
0<w≦17) (もっと読む)


【課題】蛍光体及び発光装置を提供する。
【解決手段】実施例による蛍光体は、Lz1z2:Aの化学式で表示される。(ここで、Lはアルカリ土類金属、遷移金属、Zn、Cd、Al、Ga、In、Tl、GeまたはSnのうち少なくとも何れか一つであり、MはB、Si、P、S、F、Cl、IまたはSeのうち少なくとも何れか一つであり、Aはアルカリ稀土類金属または遷移金属のうち少なくとも何れか一つであり、0<x≦5、0≦y≦5、1≦z1≦10、1≦z2≦10、0<a≦1である。) (もっと読む)


本発明は、式(I) Ma2-y(Ca,Sr,Ba)1-x-ySi5-zMezN8:EuxCey (I)、式中Ma=Li、Naおよび/またはK、Me=Hf4+および/またはZr4+、x=0.0015〜0.20およびy=0〜0.15、z<4である、で表される化合物、これらの化合物の製造方法ならびに、蛍光体およびLEDからの青色または近紫外線発光を変換するための変換蛍光物質としての使用に関する。
(もっと読む)


【課題】青色材料及び材料の製造方法の提供。
【解決手段】一般式LaTi(O1−yで表され、可視光領域(380−750nm)の拡散反射スペクトルにおいて、波長430−480nmの青色光領域にて最高拡散反射率を有し、可視光の最長波長750nmにて、最高拡散反射率の2/3以下の拡散反射率を有する青色材料。(但し、Ti/La>1、y≧0.99、z≦2.6)該青色材料は、ランタン、チタン酸化物(La―Ti―O)前駆体粉末101をアンモニアガス105で窒化、アニール処理した後、水素ガス109で酸素欠損を発生させて得ることができる。水素ガスによる酸素欠損発生に代えて、ストロンチウム(Sr)を添加してアンモニアガスによる窒化、アニール処理を行うことによっても、従来よりも青色の濃い材料が得られる。提供される青色材料は、400℃と高温でも安定であり、顔料に適した青色材料となる。 (もっと読む)


【課題】発光強度が大きいシリケート系黄色−緑色蛍光体を提供する。
【解決手段】式A2SiO4:Eu2+Dで示され、式中、Aは、Sr、Ca、Ba、Mg、Zn及びCdからなる群より選択される二価金属の少なくとも一つであり、Dは、F、Cl、Br、I、S及びNからなる群より選択されるドーパントである、新規な蛍光体システム。一つの実施態様では、新規な蛍光体は、式(Sr1-x-yBaxy2SiO4:Eu2+Fで示され、式中、Mは、0<y<0.5の範囲の量の、Ca、Mg、Zn又はCdの一つである。蛍光体は、青色LEDからの可視光線を吸収するように構成されており、蛍光体からのルミネセンス光及び青色LEDからの光を組み合わせて白色光を形成することができる。ドーパントイオンを含有しない、従来から知られるYAG化合物又はシリケート系蛍光体よりも大きい強度で光を発することができる。 (もっと読む)


【課題】従来よりも高い発光強度を有する窒化物系または酸窒化物系の蛍光体を提供する。
【解決手段】III価の価数を持つユーロピウムからなるユーロピウム珪窒化物粉末を含有することを特徴とする窒化物系または酸窒化物系の蛍光体原料混合物を用いることにより、従来の方法よりもさらに高い発光強度を有する窒化物系または酸窒化物系の蛍光体を得ることが出来る。蛍光体原料混合物の製造方法は、ユーロピウム含有珪窒化物粉末と母体結晶原料化合物とを機械的に混合する。 (もっと読む)


【課題】蛍光体の耐久性の向上を実現する。
【解決手段】
4Kにおけるフォトン数で示される発光強度に対する、300Kにおけるフォトン数で示される発光強度の比が85%以上105%以下であり、かつ、下記式[I]で表される化学組成を有する結晶相を含有することを特徴とする、酸窒化物蛍光体。
Ba3-xEuSi6122 [I]
(但し、上記式[I]中、 xは、0.00001≦x≦3を満たす数を表す。)
前記蛍光体は、フラックスの存在下で蛍光体前駆体を焼成する工程、及びアニール工程を経て製造されるものであることが好ましい。 (もっと読む)


【課題】粒径が小さく、かつ均一な窒化物または酸窒化物蛍光体の粉末を製造することができる蛍光体の製造方法を提供する。
【解決手段】窒化物または酸窒化物の結晶中に、発光中心としての光学活性元素Mを含有する蛍光体の製造方法において、金属化合物粉末を含む混合物から、金属化合物粉末の凝集体からなる顆粒を成形する顆粒成形工程を含み、顆粒成形工程は、金属化合物粉末を含む混合物と溶媒とを含有するスラリーを、スラリーの中に含まれる混合物の濃度が0g/mlよりも高く、0.15g/ml以下の範囲内となるように形成するスラリー形成工程、およびスラリーを、流量が420L/時間以上である窒素ガスでの噴霧乾燥により乾燥させる乾燥工程を含む。 (もっと読む)


241 - 260 / 790