説明

Fターム[4H001YA58]の内容

発光性組成物 (40,484) | 付活剤構成元素 (10,817) | Ce (964)

Fターム[4H001YA58]に分類される特許

101 - 120 / 964


【課題】 透明性が高く、異相の少ないガーネット構造酸化物からなる固体シンチレータ用材用および固体シンチレータを提供する。
【解決手段】 下記一般式で表わされるガーネット構造酸化物からなることを特徴とする固体シンチレータ用材料。一般式:(Gd1−α−β−γLuαPrβCeγ3(Al1−xGaaO、0<α<1、0<β≦0.05、0.0001≦γ≦0.1、0<x<1、4.8≦a≦5.2、11.6≦b≦12.4。また、Ba含有量が10〜400質量ppmであることが好ましい。 (もっと読む)


【課題】 透明性が高く、異相の少ないガーネット構造酸化物からなる固体シンチレータ用材用および固体シンチレータを提供する。
【解決手段】 下記一般式で表わされるガーネット構造酸化物からなることを特徴とする固体シンチレータ用材料。一般式:(Gd1−α−β−γTbαLuβCeγ3(Al1−xGaaO、0<α≦0.5、0<β≦0.5、0.0001≦γ≦0.1、0<x<1、4.8≦a≦5.2、11.6≦b≦12.4。また、Ba含有量が10〜400質量ppmであることが好ましい。 (もっと読む)


【課題】中性子線に対し高感度で、γ線に由来するバックグラウンドノイズが少なく、且つ、中性子シンチレータに使用可能な透明性に優れた酸化物結晶の提供を目的とする。
【解決手段】この目的を達成するため、下記式(1)に示す構造式を備え、且つ、10B含有量が1.85atom/nm以上であることを特徴とする中性子シンチレータ用酸化物結晶等を採用する。
RE:Ca(BO・・・(1)
但し、上記式(1)において、REは希土類元素である。 (もっと読む)


【課題】緑色蛍光体およびその製造方法、ならびにそれを含む白色発光素子を提供する。
【解決手段】下記化学式(1)で表される組成を有し、かつCuのKα1で回折させたX線回折パターンで、第1強度ピークが回折角(2θ)30.5°±1.0°に位置し、第2強度ピーク〜第6強度ピークが、回折角(2θ)24.8°±1.0°、32.0°±1.0°、35.0°±1.0°、39.3°±1.0°および48.5°±1.0°に順序なしに位置する緑色蛍光体、その製造方法および該緑色蛍光体を含む発光素子である。
(もっと読む)


【課題】LuAG:Ceを素材とした緑色蛍光体として発光強度や寿命等の特性を向上させることができる緑色蛍光体を提供する。
【解決手段】本発明に係る緑色蛍光体1は、Alからなる第1相3と、Ceを含有するLuAGからなる第2相5とを有する無機材料で構成された緑色蛍光体であって、第2相5の含有量は、第1相3及び第2相5を含む相全体における体積比で25vol%以上95vol%以下であり、かつ、LuAG中のCeの含有量は、Luに対する原子比(Ce/Lu)で0.003以上0.03以下である。または、前記第2相5の含有量は、体積比で80vol%以上95vol%以下であり、かつ、前記Ceの含有量は、Luに対する原子比(Ce/Lu)で0.001以上0.03以下である。 (もっと読む)


【課題】 蛍光体セラミックスの面のうち固体光源からの励起光が入射した側の面から反射方式で蛍光を取り出す反射型の光源装置の構成とした場合において、蛍光体セラミックス内での蛍光の導光を抑制し、十分な高輝度化を図る。
【解決手段】 紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源5と、固体光源5からの励起光により励起され固体光源5の発光波長よりも長波長の蛍光を発光する蛍光体セラミックス2とを備え、固体光源5と蛍光体セラミックス2とが空間的に離れた位置にあり、蛍光体セラミックス2の面のうち固体光源5からの励起光が入射した側の面から反射方式で蛍光を取り出す反射型の光源装置10であって、蛍光体セラミックス2に内部散乱係数が10/mm〜30/mmの範囲にあるLuAl12:Ce3+蛍光体を用いる。 (もっと読む)


【課題】セラミックス複合体として更なる発光強度及び熱伝導率の向上を図ることができ、使用する発光ダイオード等の長寿命化を図ることができる波長変換用のセラミックス複合体を提供する。
【解決手段】本発明に係るセラミックス複合体は、透光性セラミックスからなるマトリックス相3と、Ceを含有するYAGからなる蛍光体相5とを有する無機材料で構成されたセラミックス複合体1であって、前記蛍光体相5の含有量は、前記マトリックス相と前記蛍光体相を含む相全体における体積比で22vol%以上55vol%以下であり、前記YAG中のCeの含有量は、Yに対する原子比(Ce/Y)で0.005以上0.05以下であり、光出射方向の厚みが30μm以上200μm以下である。 (もっと読む)


【課題】鮮やかな赤色に関する再現性が改善された白色半導体発光装置を提供すること。
【解決手段】白色半導体発光装置は、出力光が青色光成分と緑色光成分と赤色光成分とを含む。該青色光成分の発生源は半導体発光素子および/または半導体発光素子が発する光を吸収して波長変換により該青色光成分を含む光を放出する第1の蛍光体であり、該緑色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該緑色光成分を含む光を放出する第2の蛍光体であり、該赤色光成分の発生源は半導体発光素子が発する光を吸収して波長変換により該赤色光成分を含む光を放出する第3の蛍光体である。該出力光のスペクトルは615〜645nmの範囲に極大波長を有し、光束で規格化した該出力光のスペクトルの波長580nmにおける強度が、光束で規格化した演色性評価用基準光のスペクトルの波長580nmにおける強度の80〜100%である。 (もっと読む)


【課題】優れた耐熱性や高演色性、昼光色から電球色までの多様な色度制御性を有しつつ、かつ発光強度に優れた蛍光体複合部材を提供する。
【解決手段】波長550nm、厚さ1mmにおける全光線透過率が70%以上のセラミックス基材の表面に、ガラス粉末および無機蛍光体粉末を含む無機粉末焼結体層が形成されてなる蛍光体複合部材であって、励起光が照射されたときに、セラミックス基材および無機粉末焼結体層が互いに異なる波長の蛍光を発することを特徴とする蛍光体複合部材。 (もっと読む)


【課題】無機蛍光体を有するLEDを提供する。
【解決手段】LEDチップ1が300〜470nmの範囲の一次放射線を放出し、この放射線が部分的に又は完全に、LED1の一次放射線に曝されている少なくとも1種の蛍光体6により長波長の放射線に変換され、その際、前記変換は、少なくとも、平均粒度d50が1〜50nm、好ましくは2〜25nmの範囲内である1種の蛍光体6の利用下で達成されるLEDである。 (もっと読む)


【課題】近紫外光による励起効率の高い緑色蛍光体を有する発光装置を提供する。
【解決手段】近紫外光を出射する発光素子10と、発光素子10の出射光により励起されて緑色光を発光する、M1-x-y-zInxBO3:Cey,Tbz(MはSc、Y、La、Gd、Luから選択される少なくとも1種の元素を示し、0<x、0<y、0<z、0<x+y+z≦1)で表される緑色蛍光体を含む蛍光体層20とを備える。 (もっと読む)


【課題】従来の窒化物や酸窒化物蛍光体より高輝度の発光を示し、橙色や赤色の蛍光体として優れ、さらに励起源に曝された場合の輝度の低下が少ない蛍光体を提供する。
【解決手段】下記一般式[1]で表される化学組成を有する結晶相を含有する蛍光体。
(1−a−b)(Ln’pII’1-pIII’IV’3)・a(MIV’(3n+2)/4nO)・b(AMIV’23) …[1]
(Ln’はランタノイド、Mn及びTiから選ばれる金属元素、MII’はLn’元素以外の2価の金属元素、MIII’は3価の金属元素、MIV’は4価の金属元素、AはLi、Na、及びKから選ばれる金属元素、0<p≦0.2、0≦a、0≦b、a+b>0、0≦n、0.002≦(3n+2)a/4≦0.9) (もっと読む)


【課題】 発光効率に影響の少なく、残光時間が短い、新規な酸化物蛍光体を提供することを課題とする。
【解決手段】 緑色領域に発光を示す蛍光体であり、該蛍光体の材料組成が(Mg,Ca,A)(Si1−aGe)酸化物で表され、0<x≦0.5、0.5≦y<1、x+y=1、0<w≦0.4、0≦a≦1であり、且つAはEu、Ce、Tmから選ばれる少なくとも一つの元素である蛍光体。 (もっと読む)


【課題】ガーネット型化合物において、Pr等の置換イオンを母体化合物中に固溶させやすくする。
【解決手段】本発明のガーネット型化合物は、下記一般式で表されるものである。一般式A1(III)3-2xA2(II)A3(III)B(III)C1(III)3-xC2(IV)12(ローマ数字:イオン価数、A1〜A3:Aサイトの元素、B:Bサイトの元素、C1及びC2:Cサイトの元素、A1、A2、B、C1、及びC2は各々、上記イオン価数の少なくとも1種の元素、A3:3価の希土類(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)からなる群より選ばれた少なくとも1種の元素、A1とA3とは異なる元素、0<x<1.5(但し、x=1.0を除く。)、O:酸素原子) (もっと読む)


【課題】ナノ結晶の蛍光体の特性を生かしつつ、性能低下や劣化を防ぐことができる、性能の高い照明装置を実現する。
【解決手段】一次光を発光する発光素子4と、前記一次光の一部を吸収して二次光を発光する波長変換部を備えた照明装置10において、前記波長変換部は、少なくともナノ結晶蛍光体を含む第1の波長変換部6と、希土類付活蛍光体もしくは遷移金属元素付活蛍光体を含む第2の波長変換部7とから構成され、前記発光素子4には、第1の波長変換部6、第2の波長変換部7が順に積層されていることを特徴とする。 (もっと読む)


【課題】実用上、発光強度および温度変化に対する安定性において問題の少ない蛍光体を提供することにある。
【解決手段】式aM12O・bM2O・cM32(式中のM1はLi、Na、K、RbおよびCsからなる群より選ばれる1種以上の元素であり、M2はCa、Sr、Ba、MgおよびZnからなる群より選ばれる1種以上の元素であり、M3はSiおよび/またはGeであって、aは0.1以上1.5以下の範囲であり、bは0.8以上1.2以下の範囲であり、cは0.8以上1.2以下の範囲である。ただしa=b=c=1でかつM1=LiかつM3=Siのとき、M2はSrのみであることはない。)で表される化合物に、少なくとも付活剤としてEuが含有されることを特徴とする蛍光体。 (もっと読む)


【課題】二次粒子と一次粒子の大きさの差異が小さく、融着、凝集の少ない高分散性、単分散のサイアロン系酸窒化物蛍光体を得る。蛍光が均一で、発光強度の大きい蛍光体を提供する。
【解決手段】MxSi12-(m+n)Al(m+n)n16-n:Lny(式中、0.3≦x+y<1.5,0<y<0.7,0.3≦m<4.5、0<n<2.25、m=ax+byである)で表わされ、α−サイアロンに固溶する金属Mの一部または全てが、発光の中心となるランタニド金属Lnで置換されたα−サイアロンを主成分とし、(A)粒度分布曲線におけるメジアン径とBET比表面積から換算される球相当径との比率A1=D50/DBETが3.0以下、または(B)粒度分布曲線におけるメジアン径と走査型電子顕微鏡写真による一次粒子径との比率A2=D50/Dparticleが3.0以下である酸窒化物蛍光体。 (もっと読む)


【課題】高強度の波長変換部材を容易に製造することができる波長変換部材の製造方法の提供。
【解決手段】無機蛍光体とガラス粉末を含み、バインダーを含まない成形体を形成し、成形体を減圧雰囲気中で焼成することにより、焼結体プリフォーム30を形成することが好ましい。この場合、焼結体プリフォーム30内の空隙を少なくすることができる。従って、さらに高強度の波長変換部材を製造することができる。波長変換部材の形状は、特に限定されない。また、波長変換部材は、例えば、板状または棒状であってもよい。具体的には、例えば、波長変換部材は、長さ寸法と厚み寸法との比が100:1以上の板状であってもよい。 (もっと読む)


【課題】発光効率および演色性が高く、発光色の色ずれの少ない発光装置を提供する。
【解決手段】駆動電流を流通して発光する光源3と、該光源からの光の少なくとも一部を吸収して異なる波長の光を発する少なくとも1種類の波長変換材料4とを備える発光装置1であって、該発光装置の効率が32lm/W以上、平均演色評価数Raが85以上であり、17.5A/cmの駆動電流密度で得られる発光の色度座標値xをx(17.5)、yをy(17.5)とし、70A/cmの駆動電流密度で得られる発光の色度座標値xをx(70)、yをy(70)としたとき、色度座標値xおよびyのずれ量、[x(17.5)−x(70)]と[y(17.5)−y(70)]が下記式(A)および(B)を満足する。−0.01≦x(17.5)−x(70)≦0.01・・・(A)、−0.01≦y(17.5)−y(70)≦0.01・・・(B)。 (もっと読む)


【課題】AC LED用蛍光組成物で、電圧変換時に発生するAC LEDのデッド時間を、その半減期によって補償することが可能な蛍光組成物を提供すること、および、その蛍光組成物を用いて製造されるAC LEDを提供すること。
【解決手段】本発明は、AC LED用蛍光組成物であって、下式(I):

M1-x-ySi2O2-wN2+2w/3:Eux,Ry (I)

によって表される蛍光組成物を提供する。上式において、M、R、x、y、およびwは、明細書と同様に定義される。さらに、本発明は、該蛍光組成物を用いて製造されるAC LEDを提供する。 (もっと読む)


101 - 120 / 964