説明

Fターム[4K001DA14]の内容

金属の製造又は精製 (22,607) | 乾式製錬 (848) | その他 (97)

Fターム[4K001DA14]に分類される特許

21 - 40 / 97


【課題】酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して金属鉄を製造するにあたり、設備を大幅に設計変更することなく、塊成物由来の粉末に含まれる酸化鉄が加熱還元されて生成する金属鉄および/またはウスタイトが炉床上に固着するのを防止する技術を提供する。
【解決手段】塊成物由来の粉末に含まれる酸化鉄が加熱還元されて形成される金属鉄および/またはウスタイトを炉床上に固着させないための炉床形成材を前記塊成物と共に炉内に装入する。 (もっと読む)


【課題】白金族金属の抽出に際し、酸化力の無い溶液を用いて目的の金属を効率良く溶解し有害な廃液の発生量を大幅に低減できる、環境調和性に優れる貴金属の回収法を提案する。
【解決手段】白金族金属を含む基材から前記白金族金属を回収する方法であって、前記白金族金属を活性金属と反応させて合金化する工程と、前記合金化した白金族金属へ、塩化処理および/または酸化処理を行うことで、白金族金属塩化物または酸化物と塩化物との複合化合物を形成する工程と、前記基材から塩水を用いて前記白金族金属塩化物、または、酸化物と塩化物との複合化合物を抽出する工程と、を有する白金族金属の回収方法を提供する。 (もっと読む)


【課題】高チタン含有鉄鉱石のメタルとスラグの分離性を改善して、効率よく粒鉄を製造することで、高チタン含有鉄鉱石の有効利用を可能とする、高チタン含有鉄鉱石を用いた粒鉄製造方法を提供すること。
【解決手段】鉄含有鉱石と、炭素系固体還元材と、造滓材とを混合した混合原料4を移動型炉床3上に積載し、移動型炉床3上部から熱供給して混合原料4を還元・溶融し、還元鉄を得る際に、混合原料4に酸化チタン(TiO2)を混合することを特徴とする粒鉄製造方法を用いる。鉄含有鉱石の少なくとも一部として酸化チタン(TiO2)を1mass%以上、鉄を50mass%以上含有する高チタン含有鉱石を用いることで混合原料4に酸化チタンを混合すること、還元鉄を得る際に発生するスラグ中の酸化チタン(TiO2)濃度が20mass%以上、27mass%以下となるように混合原料4に酸化チタン(TiO2)を混合することが好ましい。 (もっと読む)


【課題】被覆層が形成された銅部材の形状や樹脂材の材質にかかわらず被覆層の除去率を向上させることができる被覆層除去方法及び被覆層除去装置を得る。
【解決手段】加熱装置14には、ヒータ30を備えた加熱炉28が設けられており、フィーダ20から投入された被覆部材12を搬送部材24により加熱炉28に搬送する。被覆部材12はチップ形状であり、銅部材の表面にエナメル被覆層が形成されている。加熱炉28にはガス流入部26から窒素ガス、または過熱蒸気を流入しており、被覆部材12の銅部材を約900℃まで加熱し、エナメル被覆層を炭化させる。加熱後、被覆部材12を取出し口44Aから冷却装置16の冷却水17中に投入し、被覆部材12を急冷する。その後、被覆部材12を剥離装置の冷却水中で攪拌し、炭化したエナメル被覆層同士を衝突させることで、銅部材表面からエナメル被覆層を剥離する。 (もっと読む)


【課題】メカノケミカル反応を利用し、稀少金属を効率よく、回収することができる実用化可能な方法を提供する。
【解決手段】大気圧雰囲気下で、稀少金属酸化物粉末を、炭化硼素と反応させ、稀少金属と酸化硼素を得る。稀少金属としては、インジウム、錫及びアンチモン等の回収が可能で、稀少金属酸化物粉末と炭化硼素の反応は、これらを固体状態で強制的に接触反応させるのが好ましく、この方法は、廃液晶パネル等から稀少金属を回収するのにも有用である。 (もっと読む)


【課題】 転炉スラッジを酸化養生することなく、直接事前処理して含炭成形体とし、これを充填層で対流伝熱により効率良く加熱・還元する方法を提供する。
【解決手段】 酸化鉄系ダスト類、および/または粉鉱石に、炭材ならびにバインダーを加え、混合調湿後にペレット、ブリケットまたは押し出し成型品に成型してなる含炭成型体を、乾燥した後に加熱処理することで還元鉄を製造する方法において、搬送機能を有する火格子上に、乾燥後の含炭成型体を連続的に供給し、該火格子上に10〜100cmの層厚を持つ充填層を形成せしめ、かつ該火格子の搬送機能により該充填層を連続的に下流方向に移動させながら該火格子下部からO2 を含まない燃焼排ガスを、該火格子および該充填層を貫通して上向きに通過させることにより、含炭成型体を連続的に1000〜1350℃に加熱処理して還元鉄とし、該火格子下流側末端に設けた排出部より、還元鉄を連続的に排出することを特徴とする還元鉄の製造方法。 (もっと読む)


本発明は、鉄および/またはタングステンを含む粉末または粉末塊を製造する製法に関し、該製法は、タングステンカーバイドを含有する粉末を含む少なくとも第1の粉末部分を、酸化鉄粉および/またはタングステン酸化物を含有する粉末、および、随意に鉄粉を含む第2の粉末部分と混合する工程a)を含み、第1の粉末部分の重量は、混合物の50−90重量%の範囲であり、第2の粉末部分の重量は、混合物の10−50重量%の範囲であり、該製法は、工程a)に由来する混合物を、400−1300°C、好ましくは、1000−1200°Cの範囲の温度まで加熱する工程b)を含む。本発明は、同様に、鉄および/またはタングステンを含む粉末または粉末塊に関する。 (もっと読む)


【課題】金属酸化物を加熱し、還元して還元金属を製造する還元金属製造用の回転炉床炉において、その上部に炉内加熱手段として外筒がセラミックス系材料よりなるラディアントチューブバーナ(以下、RBという)を設けた回転炉床炉であって、前記外筒の減肉による寿命低下を軽減することができる回転炉床炉を提供する。
【解決手段】(1) 回転炉床炉上部に炉内加熱手段として外筒がセラミックス系材料よりなるRBを設けた回転炉床炉であって、前記RBの外周面を酸素含有ガスで覆うように該外周面に酸素含有ガスを供給する酸素含有ガス供給手段を設けたもの、(2) この回転炉床炉での酸素含有ガス供給手段が、RBと垂直投影が重なるようにRBの上方および/または下方に設けた酸素含有ガス吹込み口と、該酸素含有ガス吹込み口への酸素含有ガス送給手段とを有してなるもの等。 (もっと読む)


【課題】溶融塩媒体中の少なくとも1つの化学元素を抽出するための新規な方法を開発すること。
【解決手段】次の工程を含む溶融塩媒体中に含有された少なくとも1つの化学元素を抽出するための方法:a)化学元素を含む溶融塩媒体を、この化学元素を錯化できる少なくとも1つの基を含むモノマーと接触させる工程であって、それによってこのモノマーが化学元素と配位錯体を形成する工程;b)こうして錯化されたモノマーを重合する工程。 (もっと読む)


【課題】マイクロ電池製造時のリチウム真空堆積プロセスで用いられるメカニカルマスクから安全にリチウムを除去するとともに、該リチウムをリサイクルする方法を提供する。
【解決手段】支持体上の金属リチウムの除去方法は、プラズマ応用ステップを備える。プラズマは、50Wから400Wの間のパワーを持つ炭素源及び酸素源から形成される。プラズマは、金属リチウムを炭酸リチウムに変換する。さらに、水溶液に炭酸リチウムを溶解させるステップを備える。 (もっと読む)


【課題】ロータリーキルン本体内に一定量の燃料を吹き込みつつ、ロータリーキルン本体内のヒートパターンを所定のパターンに維持し、ロータリーキルン本体排出部の焼鉱温度を一定範囲内に維持し、かつ得られる焼鉱の還元度を所定の値とするようにロータリーキルン本体内に乾燥原料等を供給するロータリーキルンの操業方法において、ロータリーキルン内壁へのコーチングの成長を防止し、かつ前記焼鉱温度を所定の値としつつ、従来と比較してより多くの原料鉱石を処理しうるロータリーキルンの操業方法を提供する。
【解決手段】ロータリーキルン本体1内に供給される炭素質還元剤10の量を、共に供給される乾燥鉱石9を加熱し、部分還元するに足る量を超えた過剰量とし、過剰分の炭素質還元剤を酸化、燃焼させるに見合う量の酸化剤を副原料としてロータリーキルン本体内に炭素質還元剤と共に供給する。 (もっと読む)


固体金属化合物等の固体原料の還元のための方法において、電解装置の中で、原料の一部分が、2つ以上の電解槽(50、60、70、80)のそれぞれの中に配置される。溶融塩は、各槽の中に電解質として提供される。溶融塩は、塩が槽のそれぞれを通って流動するように、溶融塩容器(10)から循環させられる。原料は、各槽の中の電極にわたって電位を印加することによって、各槽の中で還元され、その電位は、原料の還元を引き起こすのに十分である。また、本発明は、本方法を実装するための装置も提供する。 (もっと読む)


【課題】金属インジウム含有合金から、高度に精製された高純度の金属インジウムを高回収率で取得できる方法を提供する。
【解決手段】ITOターゲットのスクラップ等を還元処理して得られた金属インジウム含有合金を陽極とし、金属インジウムを陰極とし、臭化インジウムを含む溶融塩を電解質として、電流密度:1〜200A/dm、操作温度:90〜500℃で溶融塩電解し、陰極から精製された金属インジウムを得る。 (もっと読む)


【課題】生産性の低下を招くことなく、塊成化物の爆裂・崩壊回避を実現することが可能な、還元鉄の製造方法を提供すること。
【解決手段】本発明は、酸化鉄原料と還元剤とを混合して成型した塊成化物を加熱・還元処理し、還元鉄を製造する方法において、前記塊成化物中のZnO、化合水、CaSOおよびCaCOからなる易揮発成分の含有比率を表し、以下の式1で表される指標Rを、4.2以下とする。
R = 塊成化物中のZnOの質量%×22.4/ZnOの分子量
+塊成化物中の化合水の質量%×22.4/HOの分子量
+塊成化物中のCaSOの質量%×22.4/CaSOの分子量
+塊成化物中のCaCOの質量%×22.4/CaCOの分子量
・・・(式1) (もっと読む)


【課題】アルカリ金属、アルカリ土類金属を太陽熱をエネルギー源として得る装置を提供する。
【解決手段】底頂部に穴の開いたパラボラ型集光器1と、集光器1の焦点近傍に設置した副鏡2と、副鏡により反射された太陽光が集光器2の底頂部の穴4を通る進路であって集光器1の裏側に耐熱ルツボ5を設置した装置である。太陽光をパラボラ型集光器1の凹面で反射させ、焦点に集光し、焦点近傍に設けた副鏡2で反射させ、集光器1の底頂部にあけた穴を通して集光器の裏側に導き、その進路にあたる所に被溶融物を入れた耐熱ルツボ5を設置し、太陽熱により被溶融物を加熱溶融させる。または太陽光の進路上に反射鏡を設け、反射鏡の反射光を耐熱ルツボに照射して被溶融物を加熱溶融させる。溶融物はそのまま電気分解処理をしてアルカリ金属、アルカリ土類金属を得る。被溶融物はアルカリ金属、アルカリ土類金属の塩化物もしくはその混合物である。 (もっと読む)


【課題】クラッド材から、ろう材および芯材を効率的に回収することで、操業性、生産性に優れると共に、回収するろう材および芯材の品質に優れるクラッド材の材料の連続分離回収装置、および、クラッド材の材料の連続分離回収方法を提供する。
【解決手段】連続分離回収装置100は、低温域処理槽10と、高温域処理槽20と、処理液Wと、処理液温度保持手段30と、クラッド材投入手段40と、クラッド材搬送手段50と、芯材搬送手段60と、溶融ろう材回収手段70と、溶融芯材回収手段80と、を備え、クラッド材搬送手段50は、クラッド材投入手段40で投入されたクラッド材1を、低温域処理槽10の一側から他側に向けて搬送しながら、ろう材と分離された芯材3を低温域処理槽10の他側に搬送する手段であり、芯材搬送手段60は、クラッド材搬送手段50で搬送された芯材3を、低温域処理槽10から高温域処理槽20に搬送する手段である構成とした。 (もっと読む)


【課題】 転炉操業において、粗銅を出湯した後炉内に残る金垢と称される酸化物が多く残った状態でかわを受入れると、金垢中のFe3O4含有量が多いために、生成する転炉からみの流動性が悪くなり、からみが十分に廃滓されないで、炉中に残り、転炉の操業に支障を来たす。
【解決手段】
金垢が残存している非鉄製錬転炉内に製錬炉で生成したかわを装入し、羽口から空気を吹込み、造かん期及び造銅期の吹錬を行う。羽口からSiC粉末を空気とともに吹込み前記金垢と接触させる。 (もっと読む)


【課題】 鉄源として銅含有鋼屑を使用し、該鋼屑中の銅に起因する溶銑中の銅を硫黄含有フラックスにより除去して高級鋼を製造するに際し、溶銑中の銅を大がかりな設備を必要とせずに効率良く除去するとともに、硫黄含有フラックスを反応容器から排出しなくても、該フラックス中の銅の溶銑へ戻りを防止して、硫黄含有フラックスにより溶銑中に持ち来たされる硫黄を効率良く除去する。
【解決手段】 本発明による鋼屑を鉄源とした溶銑の製造方法は、銅含有鋼屑を加炭溶解して製造した、反応容器内に収容された溶銑に、硫黄含有フラックスを添加し、該フラックスに溶銑中の銅を吸収させて溶銑中の銅を除去し、次いで、この銅を含有するフラックスを排出することなく、前記反応容器内にCaO含有物質を添加し、該CaO含有物質による熱吸収により前記硫黄含有フラックスを固化させる。その後、前記CaO含有物質を脱硫剤として続けて脱硫処理を行うことが好ましい。 (もっと読む)


【課題】バインダーの使用量と水の使用量を極力減らしても強度が高められるブリケットを製造すること。
【解決手段】酸化鉄原料および/または炭素質物質を粉砕する工程と、酸化鉄原料および炭素質物質を用いて一次粒状物を形成する工程と、さらに複数の一次粒状物を加圧することにより二次粒状物に成型する工程を含む。 (もっと読む)


【課題】バインダーの使用量も水の使用量も極力減らしても強度が高められるブリケットを製造すること。
【解決手段】酸化亜鉛、酸化鉛、酸化チタンのいずれか1種以上、及び酸化鉄を含む金属酸化物の粉末を用いて一次粒状物を形成する工程と、前記酸化亜鉛、酸化鉛、酸化チタンのいずれか1種以上を含んだ状態で、複数の一次粒状物を加圧することにより二次粒状物に成型する工程を含む。 (もっと読む)


21 - 40 / 97