説明

Fターム[4K001DB21]の内容

金属の製造又は精製 (22,607) | 湿式製錬 (3,083) | 溶液の処理 (1,653) | 金属析出 (312) | 電解還元 (149)

Fターム[4K001DB21]に分類される特許

81 - 100 / 149


【課題】Auと酸化剤を含有する水溶液中のAuを、低コストで効率良く、しかも高い回収率で回収する方法を提供する。
【解決手段】貯留層2に収容されたAuと酸化剤を含有する水溶液からAuを回収する際に、前記水溶液を貯留層2と電解槽1に循環させながら電気分解し、Auを析出させる工程と、電解槽1において析出したAuを、弁5,6をとじることによって前工程の水溶液よりも少ない量のAu再溶解液に溶解してAu濃縮液を得る工程と、前記Au濃縮液を電解槽7に移し、酸化剤を中和してから電気分解を行いAuを回収する工程と、を含む方法。 (もっと読む)


【課題】インジウムとニッケルを含有する酸溶液中のニッケル含有量が多い場合でも、簡単な工程で、安価に、効率的に且つ高回収率で高純度のインジウムを回収することができる、インジウム回収方法を提供する。
【解決手段】インジウムとニッケルを含有する酸溶液に、アルカリ金属またはアルカリ土類金属の炭酸塩を加えてpH4.5〜6.0、好ましくはpH4.8〜5.5になるように中和した後、固液分離により、ニッケルを除去して、インジウムを含有する固形分を回収し、このインジウムを含有する固形分を酸で溶解し、この酸浸出により得られた液にアルカリを加えてpHが0.5〜2.5になるように中和し、この中和により得られた液を電解元液としてインジウムメタルを電解採取する。 (もっと読む)


【課題】
Ru含有固形部材からRuを選択的に回収する方法および回収システムを提供する。
【解決手段】
Ruを含む固形部材を、下記水溶液A乃至水溶液Eから構成される水溶液の群から選択される少なくとも1種の水溶液に接触させてRu化合物を形成する工程と、前記Ru化合物を選択的に前記水溶液中に溶出する工程と、を有することを特徴とする貴金属回収方法。
(水溶液の群)
水溶液A:酸と、蟻酸、アルコール類、アルデヒド類、ヘミアセタール構造またはアセタール構造を有する化合物とを含有する水溶液
水溶液B:酸と、この酸と共存することで蟻酸、アルコール類、アルデヒド類、ヘミアセタール構造またはアセタール構造を生成する化合物とを含有する水溶液
水溶液C:酸と糖類とを含有する水溶液
水溶液D:蟻酸を含有する水溶液
水溶液E:蓚酸を含有する水溶液 (もっと読む)


【課題】 液晶表示パネルやプラズマディスプレイよりなるフラットパネルディスプレイの廃棄品から電極材料であるIn(インジウム)及びAg(銀)を高効率に抽出・回収し、かつ再生することが可能となり、経済的にも環境的にも有効な手段であり、また低価格化に向けたディスプレイ製造への波及効果も大きい、有価金属のリサイクル方法を提供する。
【解決手段】 有価金属のリサイクル方法は、廃棄フラットパネルディスプレイをHNO 溶液に浸漬し、溶液を濾過して、In及びAgを含む溶液と残渣とに分離する。In及びAg含有溶液にKCl又はNaClを添加して、In含有溶液を得るとともに、AgCl沈殿物を得る。In含有溶液を濃縮して、所定のIn濃度を有する溶液を調製し、調製後のIn含有溶液を基板にスプレー塗布して、In含有透明皮膜を基板上に形成する。AgClの沈殿物を焼成して、Agを回収する。 (もっと読む)


【課題】銅原料を塩素浸出する工程、得られた塩化物水溶液を還元する工程、溶媒抽出方法により銅を分離する工程、及び銅イオンを電解採取する工程を含む湿式銅製錬法に用いる、抽出段と逆抽出段からなる溶媒抽出方法において、逆抽出段において、抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と銅電解陰極廃液からなる水相を接触混合して銅を逆抽出することにより形成される抽出剤中の残留銅濃度を極力させることができる溶媒抽出方法を提供する。
【解決手段】前記抽出段において、還元後の塩化物水溶液とトリブチルフォスフェイトを含む抽出剤を接触混合し、次いで前記逆抽出段において、該抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と前記銅電解陰極廃液からなる水相を接触混合して銅を逆抽出する際に、逆抽出後の水相の酸化還元電位(銀/塩化銀電極基準)を300〜400mVになるように制御することを特徴とする。 (もっと読む)


本発明は、以下の操作工程を含む、脱硫された鉛パステルから出発した、金属鉛を製造するための電気分解的方法に関する。
a)脱硫したパステルを、塩化アンモニウムを含む溶液と接触させることにより脱硫したパステルを溶脱し、溶脱液体を形成させ及びCO2ガスを発生させる工程、
b)第一の固形物残渣と第一の浄化された溶脱液体を、工程a)からの溶脱液体から分離する工程、
c)塩化アンモニウム及び過酸化水素を含む溶液と接触させることにより、工程b)において分離された固形物残渣を溶脱する工程、
d)第2の固形物残渣及び第2の浄化された溶脱液体を、工程c)からの溶脱液体から分離する工程、
e)工程b)からの第1の浄化された溶脱液体と、工程d)からの第2の浄化された溶脱液体とを合わせて、単一の溶液を形成する工程、
f)工程e)を離れた溶液を、50〜10,000A/m2の範囲の電流密度を用いて、フローセル中で電気分解させ、前記電気分解が鉛スポンジをもたらす工程。本発明は、パステルの相対的な脱硫方法にも関する。 (もっと読む)


【課題】 貴金属を含むニッケル-銅マットを、特殊な設備を使わずに既存の銅製錬設備を活用して有価物成分を効率よく回収する方法を提供することを目的とする。
【解決手段】貴金属を含有するニッケル及び銅の硫化物を主成分とする金属硫化物マットを、ニッケルに対して2倍等量以上3倍当量以下の硫酸を使い大気圧下で空気酸化しながら、液の酸化還元電位が銅の浸出が進行する値以下の範囲でニッケルを選択浸出して分離し、浸出残渣に銅硫化物とともに貴金属を濃縮する貴金属含有金属硫化物からの有価物回収方法。 (もっと読む)


【課題】 塩素浸出反応における酸化還元電位の変動幅を従来よりも小さくし、塩素ガスの利用率の低下や硫黄酸化率の上昇を招くことなく、金属元素の高い浸出率を得ることが可能な酸化還元電位の制御方法を提供する。
【解決手段】 非鉄金属硫化物等のニッケル原料の塩素浸出操作において、塩素浸出槽内の酸化還元電位を所定の時間周期毎に測定し、設定値と測定値との差により塩素流量調節弁の開度を調整する際に、上記時間周期のうち少なくとも一部の酸化還元電位の測定時には、上記設定値と測定値との差による塩素流量調節弁の開度変更量に、前回周期の測定値との差による塩素ガス流量調節弁の開度変更量を加えて補正し、得られた開度変更量に従って塩素ガス流量調節弁の開度を調整する。 (もっと読む)


【課題】ハロゲン含有量の高い亜鉛含有物を原料に用いて、乾式処理を介することなく、生産性が高く、ハロゲンの除去が容易である、低ハロゲン濃度の高純度な亜鉛電解元液を効率よく製造できる亜鉛電解液の製造方法の提供。
【解決手段】亜鉛及びハロゲンを含む亜鉛含有物を酸浸出して抽出元液(水相A)を得る浸出工程と、前記抽出元液(水相A)と、亜鉛抽出剤を含む非水溶性有機溶媒(有機相A)とを撹拌して混合することにより、亜鉛及びハロゲンを含む有機相Bと、ハロゲンを含む抽出后液(水相B)を得る溶媒抽出工程と、亜鉛及びハロゲンを含む有機相Bと電解尾液(水相E)とを撹拌して混合することにより亜鉛を逆抽出后液(水相F)に回収し、亜鉛電解元液を得る逆抽出工程とを含む亜鉛電解液の製造方法である。 (もっと読む)


【課題】錫の他に銅などを含む錫含有物から安価且つ効率的に錫を回収することができる、錫の回収方法を提供する。
【解決手段】錫と銅を含む錫含有物の粉末を、苛性ソーダ水溶液に添加して、この苛性ソーダ水溶液に酸素を吹き込みながら撹拌して、酸化浸出により錫を含む浸出液を得た後、この浸出液を電解液として使用して電解採取により錫を回収する。錫と銅を含む錫含有物の粉末の粒径が100μm以下であるのが好ましい。また、浸出が終了した際の苛性ソーダ水溶液中のNaOH濃度が40〜150g/Lであるのが好ましく、浸出の際の苛性ソーダ水溶液の温度が70〜100℃であるのが好ましい。さらに、電解採取前に浸出液に錫を添加して浸出液中の鉛を除去するのが好ましい。 (もっと読む)


【課題】中和剤やその他の特殊な薬剤を用いずに、ろ過性がよく、銅をほとんど含まない鉄澱物を作ることが可能な湿式銅精錬法を提供する。
【解決手段】銅硫化鉱物を含む銅原料を塩素浸出して、浸出生成液を得る塩素浸出工程、得られた浸出生成液を還元して、還元生成液を得る銅イオン還元処理工程、得られた還元生成液から、銅を電解採取または溶媒抽出する銅分離採取工程、および、浸出生成液、還元生成液、溶媒抽出残液または電解尾液から鉄を分離除去する工程を含む湿式銅精錬法において、塩化第一鉄と塩化第一銅もしくは塩化第二銅を含む、前記浸出生成液、還元生成液、溶媒抽出残液または電解尾液のpHを0〜2.5に、温度を60〜95℃にそれぞれ保持し、大気圧下で、該液に酸素を含むエアを吹き込むことにより、塩化第一鉄の一部をゲーサイトとして沈殿させる。 (もっと読む)


【課題】不純物としてSbを含む錫含有塩基性溶液中のSb濃度を短時間で十分に低下させて効率的に錫を回収することができる、錫の回収方法を提供する。
【解決手段】 不純物としてアンチモンを含む錫含有塩基性溶液に、酸化数(−2)の硫黄を含むイオンが存在する状態で、アルカリ領域においてアンチモンより卑な金属を添加し、70℃以上の温度で緩やかに攪拌して置換反応によりアンチモンを沈澱させ、濾過によりアンチモンを除去した後、得られた溶液を電解液として使用して電解採取により錫を回収する。 (もっと読む)


【課題】廃薄型パネルから、少ない労力とエネルギーにてガラスを再利用することが可能であるとともに、液晶、透明導電膜中のインジウムなどの電極材料を回収することが可能である方法およびそのための装置を提供する。
【解決手段】廃液晶表示装置からガラスを回収するための方法であって、亜ヒ酸を含有するガラス基板を選別する亜ヒ酸含有ガラス基板選別工程と、貼り合わされた2枚のガラス基板を分離するガラス基板分離工程と、ガラス基板表面に付着した電極材料を除去する電極材料除去工程とを含むガラスの回収方法、ならびにそのための装置。 (もっと読む)


【課題】錫の他に鉛などを含む錫含有物から安価且つ効率的に錫を回収することができる、錫の回収方法を提供する。
【解決手段】錫と鉛を含む合金塊などの錫含有物からアトマイズや粉砕などによって得られた粉末または粒状物を、苛性ソーダ水溶液に添加して、この苛性ソーダ水溶液に酸素を吹き込みながら撹拌して、酸化浸出により錫を含む浸出液を得た後、この浸出液を電解液として使用して電解採取により錫を回収する。酸化浸出が終了した際の苛性ソーダ水溶液中のNaOH濃度は0.1〜150g/Lであるのが好ましく、4〜80g/Lであるのがさらに好ましく、30〜80g/Lであるのが最も好ましい。また、浸出の際の苛性ソーダ水溶液の温度は50〜100℃であるのが好ましく、電解採取の際の電解液の温度は50〜100℃であるのが好ましい。 (もっと読む)


【課題】インジウム-スズ含有物などからスズ、インジウムを分離回収する際に、インジウムなどの共存金属を溶出すると共にスズを沈澱化して分離性を高め、塩酸浸出後のスズ沈澱工程を不要とし、簡略な処理工程によって容易にスズと共存金属とを分離できるようにした分離回収方法を提供する。
【解決手段】〔1〕スズ含有物を酸化剤の存在下で塩酸溶解して、共存金属を溶出させる一方、スズを沈澱化して共存金属と分離することを特徴とし、または〔2〕スズ含有物を塩酸溶解し、この塩酸溶解液のスズを酸化剤の存在下で沈澱させ、これを固液分離して液中の溶出金属と固形分のスズ沈殿物とを分離することを特徴とするスズと共存金属の分離方法。 (もっと読む)


【課題】溶解性に優れ、不純物の含有量が少ない銅電解液の原料として好適な粗銅粉を効率よく製造することができる銅電解液原料の製造方法、及びこれを用いて精製銅を効率よく製造することができる銅の製造方法を提供する。
【解決手段】少なくとも、粉体化工程と、銅粉溶解工程と、濾過工程と、電解工程とを含む銅の製造方法で用いられる銅電解液原料を製造する方法であって、粗銅を粉体化処理して粗銅粉とする銅電解液原料の製造方法である。該粉体化処理が、アトマイズ法である態様、該アトマイズ法が水アトマイズ法である態様などが好ましい。 (もっと読む)


【課題】銅を製造する際に、銀、金、白金、パラジウム、ロジウム、ルテニウム等の貴金属を早期かつ高収率で回収でき、その有効利用を速やかに図ることができる貴金属の回収方法及び銅の製造方法の提供。
【解決手段】粗銅粉を溶解してなる銅溶解液に粗銅粉及び銅を含有している一次残渣のいずれかを反応させ、溶解性貴金属を固体化し、貴金属を含む一次残渣を濾別した後、該一次残渣を使用済み銅電解液で浸出した浸出液に粗銅粉を添加し、貴金属濃度を上げた二次残渣を濾別し、該二次残渣から貴金属を回収することを特徴とする貴金属の回収方法である。 (もっと読む)


【課題】還元工程で生成したTi粒又はTi合金粒に付着している溶融塩のCa濃度を低下させ、溶解炉へ持ち込まれるCa量を低減できる金属Ti又はTi合金の製造方法を提供する。
【解決手段】還元工程で生成したTi粒又はTi合金粒とCa含有溶融塩との混合物を、溶解前に溶融塩で洗浄することにより前記Ca含有溶融塩のCa濃度を低下させて、溶解炉へ持ち込まれるCa量を低減する。洗浄用の溶融塩(例えば、溶融CaCl2)として、本発明の方法の実施に用いられる製造装置に取り付けられたCa除去濃縮装置5でCaが除去された溶融CaCl2の一部を洗浄用溶融CaCl2槽15に貯留しておき、この溶融CaCl2を使用するのが特に望ましい。 (もっと読む)


【課題】In-Sn含有物からインジウムとスズを分離性よく溶解し回収する方法を提供する。
【解決手段】インジウムとスズを含有するIn-Sn含有物を硝酸浸出してインジウム含有液とスズ含有残渣とに分離し、インジウムおよび/またはスズを回収する方法において、浸出液のpHが0.7〜1.5になる硝酸濃度に制御してIn-Sn含有物を硝酸浸出することを特徴とするIn-Sn分離回収方法であり、例えば、水100gに対する70%濃度硝酸の添加量が20〜70gに相当する硝酸濃度で、In-Sn含有物を硝酸浸出するIn-Sn分離回収方法。 (もっと読む)


【課題】スズ含有物からスズと共存金属を分離性よく溶解して回収する方法を提供する。
【解決手段】スズ含有物を硝酸浸出して共存金属を溶解すると共にスズ含有残渣を分離し、該スズ含有残渣からスズを回収する方法であって、スズ含有物の硝酸溶解に酸化剤を導入することを特徴とするスズの分離回収方法であり、例えば、酸化剤として過酸化水素を用い、スズ含有物乾燥重量55gに対する35%濃度過酸化水素水の添加量が10〜35gに相当する過酸化水素を硝酸溶解時または硝酸溶解液に導入し、上記スズ含有物重量に対する70%濃度硝酸の添加量が40g以上に相当する硝酸濃度でスズ含有物を硝酸浸出するスズの分離回収方法。 (もっと読む)


81 - 100 / 149