説明

Fターム[4K001DB21]の内容

金属の製造又は精製 (22,607) | 湿式製錬 (3,083) | 溶液の処理 (1,653) | 金属析出 (312) | 電解還元 (149)

Fターム[4K001DB21]に分類される特許

121 - 140 / 149


【課題】銅、鉄、及びコバルトのほかに、鉛、亜鉛等の不純物元素や水素のようなガス成分を除去することができる高純度ニッケルの製造方法を提供する。
【解決手段】不純物元素を含有する酸性塩化ニッケル水溶液を、強塩基性陰イオン交換樹脂と接触させ、不純物元素イオンを吸着除去し、精製液を得る工程(A)、該精製液を、カソードを設置したカソード室と不溶性アノードを設置したアノード室とを備えた電解槽を用いて電解採取に付し、電解ニッケルを得る工程(B)、及び該電解ニッケルを、5000℃以上の水素含有高温雰囲気下に水素プラズマ溶解に付し、電解ニッケルに残存する蒸発成分を除去し、精製金属ニッケルを得る工程(C)を、含むことを特徴とする。 (もっと読む)


【課題】、水溶液系では電析困難な金属イオンを金属単体として回収し、リサイクル性を高めた排水処理システムを提供する。
【解決手段】 電解質としてイオン液体17を貯留し、金属イオンの除去をする金属イオン除去槽11と、イオン液体17中に浸漬されるカソード電極16と、カソード電極16と導通したアノード電極13a,13bと、を備え、排水中に含まれる金属イオンをイオン液体17中に移動させて、カソード電極16での還元反応により金属イオンを還元して金属を回収することを要旨とする。 (もっと読む)


【課題】 ホタテ貝の内臓廃棄物(ウロ)からカドミウム等の重金属を効果的且つ経済的に除去して、それらの重金属やウロ中の成分の有効利用を図ることができる技術を提供する。
【解決手段】 ウロを硫酸水溶液に浸漬して、ウロ中の重金属を硫酸水溶液中に浸出させ、浸漬工程後の浸出液に凝集剤を添加してウロ中のタンパク質および脂質を凝集除去する。凝集剤として特に好ましいのは柿渋より製造されたものである。重金属を浸出させるための第1槽とpHを上昇させる第2槽とを用いて浸漬工程を実施することにより、吸着法などの既存技術と組み合わせて重金属を確実に分離回収することができる。また、重金属の電解採取に適した浸出液を得ることもできる。 (もっと読む)


【課題】硫化銅鉱物を含む銅原料を塩素浸出する工程、浸出生成液を還元する工程、還元生成液を溶媒抽出に付し、銅を分離回収して塩化鉄水溶液を得る工程、及び塩化鉄水溶液から鉄を電解採取する工程を含む湿式銅製錬法において、前記塩化鉄水溶液から鉄を電解採取する工程において、平滑な表面状態の電着物を得ることができる電解鉄の回収方法を提供する。
【解決手段】前記塩化鉄水溶液から鉄を電解採取する工程の際に、該塩化鉄水溶液に硫化剤を添加し酸化還元電位(Ag/AgCl電極規準)を−400〜−50mVに制御しながら、pH調整剤を添加しpHを3.0〜4.5に調整することにより、該塩化鉄水溶液中に含まれる鉛を硫化物として沈殿分離した後、鉄の電解採取を行なうことを特徴とする。 (もっと読む)


【解決課題】不純物の少ない電解液を調製することによって高純度の金属マンガンを得ることができる電解採取方法と、その高純度金属マンガンを提供する。
【手段】金属マンガンを塩酸に過剰に溶解して未溶解物を濾過した溶解液に、酸化剤を添加すると共に中和し、生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いることを特徴とする金属マンガンの電解採取方法であり、好ましくは、金属マンガンの塩酸溶解液にさらに金属マンガンを追加し、未溶解物を濾過した溶解液に過酸化水素とアンモニア水を添加し、弱酸性ないし中性の液性下で生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いて金属マンガンの電解採取を行う方法。 (もっと読む)


【課題】亜鉛浸出残渣の湿式処理方法の脱砒工程において、前工程における処理条件に変動があっても、当該脱砒工程が円滑に実施される亜鉛浸出残渣の湿式処理法を提供する。
【解決手段】湿式亜鉛製錬で焼鉱を浸出して得られる亜鉛浸出残渣の湿式処理方法において、1段中和工程で得られた1段中和液を脱砒する際に、予め1段中和液におけるCu/As比の値を、1.5〜4.0に設定出来るよう硫酸銅、酸化銅、金属銅、等の銅源物質を添加した後に亜鉛末を添加し、RT銅残渣を生成させる。 (もっと読む)


【課題】 本発明は、銅転炉ダストから銅と砒素、カドミウムを分離回収し、かつ回収残渣を低減する方法を提案するものである。
【解決手段】 銅転炉ダスト中に含まれる銅、砒素、カドミウムを2段硫化処理することで分離し、1段目の硫化処理で得た銅と砒素を回収工程において回収し、2段目の硫化処理で得たカドミウムを系外除去する銅転炉ダストの処理方法。 (もっと読む)


【課題】 テルルを含有する粗鉛から、効率よく、テルル品位の極めて低い高純度鉛を回収することができるテルル含有粗鉛の電解方法、及び電気電子部品用に好適な高純度鉛を提供する。
【解決手段】 陽極と、陰極と、珪フッ化鉛及び珪フッ酸を含む電解液とを用いる鉛電解方法において、
テルル(Te)を0.1質量ppm以上含有する粗鉛を前記陽極とし、
前記陽極の粗鉛中のアンチモン(Sb)含有量を、該陽極の粗鉛中のテルル含有量に対し、質量比で30倍以上とすることを特徴とするテルル含有粗鉛の電解精製方法である。該方法により得られた電気電子部品用の高純度鉛である。 (もっと読む)


【課題】不純物としてガリウムを含むインジウム含有被処理物から、安価で工程が単純であり、不純物、特に同族元素であるガリウムとの分離が良く、高収率でインジウムを回収する方法を提案する。
【解決手段】同族元素のガリウム等の不純物を含むインジウム含有被処理物に多量のアルカリ剤を所定の温度で接触させることによって、液中に選択的に不純物であるガリウム等を溶出させ、固液分離することによって、簡単にインジウムを固形物中に濃縮分離できる。 (もっと読む)


土壌、汚泥、堆積物、廃棄物、焼却灰等の固体状被汚染物から、固体状被汚染物に含まれている重金属類の難溶性の画分まで確実に除去することができる浄化方法及び装置を提供する。反応槽2は、アノード電極Aとカソード電極Cとの間に設けられた隔膜Mによって、アノード電極Aを含むアノード区域10と、カソード電極Cを含むカソード区域20とに隔離されている。カソード区域20には、固体状被汚染物供給手段22を介して重金属類を含む固体状被汚染物を、酸性物質又はアルカリ性物質供給手段24を介して酸性物質又はアルカリ性物質を、場合によっては水供給手段26を介して水を供給する。これらの混合物のスラリーを還元的雰囲気及び強酸性又は強アルカリ性雰囲気の共存下に維持して、重金属類を溶出及びカソード電極表面に電解析出させ、重金属類を固体状被汚染物及び間隙水から分離する。
(もっと読む)


【課題】難還元性金属、特にTiの還元に使用し得るCaを、低い電圧で、しかも高い電流効率で得ることができる電解方法を提供する。
【解決手段】Caを回収する電解方法であって、浴温680〜900℃、陰極電流密度0.1〜200A/cm2、電圧10V以下で浴塩を電気分解すると共に、陰極4表面に固形物を付着凝固させつつ引上げ速度0.05cm/min以上で陰極を引き上げる。引き上げ速度V(cm/min)が更に下記(i)式を満たす場合、良好な電流効率が得られる(同式中のtは浴温(℃))。
V≧0.0035×t−2.4 ・・・(i) (もっと読む)


【課題】
湿式亜鉛製錬における亜鉛原料の処理において、前記亜鉛原料を硫酸酸性溶液で処理す
る際に、当該硫酸酸性溶液へ溶出したシリカ等を、迅速かつ固液分離容易な形態で析出沈
殿させる。
【解決方法】 湿式亜鉛製錬における電解尾液の液体部分とを混合して浸出液とし、添加
物質として、
ビスマス酸化物、チタン酸化物、アンチモン酸化物、錫酸化物、ガリウム酸化物、カドミニウム酸化物、リン酸カルシウム塩、酸化リン、弗化カルシウム、鉛酸化物、パラジウム、銀酸化物、銀、鉄酸化物、マンガン酸化物から選択される1種以上を添加す
る。次に、当該浸出液中へ所定量の亜鉛原料の焙焼物を投入し、亜鉛原料の焙焼物を浸出
する。そして、浸出完了後、得られた浸出液に凝集剤を添加し、溶出したシリカ等をスラ
リーとして分離する。 (もっと読む)


本発明は金属含有溶液を電解処理する方法に関し、少なくとも1種の非イオン性界面活性剤を電解溶液に使用し、この界面活性剤が、1:10の比で水で希釈された、硫酸190g/lおよび硫酸銅157g/lを有する水溶液中の24℃の温度での0.2質量%の界面活性剤濃度を有する電解溶液の表面張力を20〜60質量%だけ減少する。本発明の方法は銅、クロム、ニッケル、亜鉛、金および銀のような金属を取得または精錬するために適している。 (もっと読む)


【課題】、
Zn、Fe、Cu、Al、Ga、As、Cd等の金属不純物を含むインジウム含有物から、高い回収率をもってインジウムを回収することができ、且つ、当該設備をコンパクトなものとすることのできるインジウムの回収方法を提供する。
【解決方法】
SO浸出工程で得られたインジウム含有浸出液へ、所定量の水酸化カルシウムを添加し、さらに水酸化ナトリウムを添加してpH2〜2.5の範囲に制御して、形成された石膏を除去した後、亜鉛末を添加してインジウムをインジウムスポンジとして置換析出させ、且つ、当該置換析出に伴い生成する置換后液を前工程に繰り返すことなく排水処理工程へ送る。 (もっと読む)


【課題】 簡単な工程で、安価に、短時間で且つ高回収率で高純度のインジウムを回収することができる、インジウム回収方法を提供する。
【解決手段】 ITOターゲット屑などのインジウム含有物を解砕した後、所定の粒径より大きい粗粒が所定の割合以下になるまで粉砕し、その後、酸で溶解し、この溶解液にアルカリを加えてpHが0.5〜4になるように中和し、60〜70℃の温度で3時間以上熟成させ、溶解液中の所定の金属イオンを水酸化物として析出させて除去し、次いで、これに硫化水素ガスを吹き込み、次工程の電解に有害な金属イオンを硫化物として析出除去した後、この溶解液を電解液としてインジウムメタルを電解採取することにより、高純度のインジウムを回収する。 (もっと読む)


【課題】 銅エッチング廃液からより濃度の高い塩酸を回収する方法及び塩酸蒸発後の濃縮液中の銅も電解等により簡便に回収することができる方法の提供。
【解決手段】 塩化銅と塩酸を主成分とする銅エッチング廃液に燐酸を加えて加熱することにより、塩酸を蒸発し、その蒸発蒸気を凝縮して塩酸を回収するものであり、濃度15%以上の塩酸を回収することができる。
その際には、塩酸の一部を蒸発させて塩酸を回収し、その後濃縮液を希釈して残りの塩酸を蒸発させて最初の塩酸より濃度の低い塩酸を回収するのが好ましい。
また、塩酸蒸発後の濃縮液からは、結晶を析出させて燐酸第2銅を回収するか、該濃縮液を希釈して電解することにより金属銅を回収するのがよい。
さらに、その際には該金属銅を回収した後の電解液を前記銅エッチング廃液に燐酸分として循環して繰返し使用するのがよい。 (もっと読む)


本発明は一般的に、加圧浸出および直接電解採取を使用して金属含有鉱石、濃縮物またはその他の金属含有物質から銅および/またはその他の金属バリューを回収する方法に関する。より具体的には、本発明は浸出、溶媒/溶液抽出および電解採取作業と組み合わせて加圧浸出および直接電解採取を使用して、黄銅鉱含有鉱石から銅を回収する、実質的に酸が自生するプロセスに関する。供給流は、黄銅鉱、輝銅鉱、斑銅鉱、銅藍、方輝銅鉱および硫砒銅鉱のうちの少なくとも一つ、またはこれらの混合物もしくは組み合わせを含み得る。
(もっと読む)


銅溶媒/溶液抽出技法又は装置を使用することなく浸出溶液から高品質のカソード銅を生成するための、銅含有鉱石、濃縮物、又はその他の銅保持物質から銅を回収するシステム又はプロセス。銅含有鉱石から銅を回収するプロセスは、一般的に、粉砕した銅含有鉱石、濃縮物、又はその他の銅保持物質を含有する供給流(101)を提供する工程、供給流を浸出して銅含有溶液を生成する工程(1030)、銅含有溶液を一つ以上の物理的又は化学的コンディショニング工程でコンディショニングする工程、及び銅含有溶液を電解抽出の前に溶媒/溶液抽出に付すことなく、多電解抽出段階(1070、1080)で銅含有溶液から銅を直接電解抽出する工程を含む。
(もっと読む)


有価金属を含有する鉱石から該有価金属を浸出するための方法が述べられており、この方法は、塩酸存在下において鉱石を浸出して浸出溶液中に可溶性の金属−塩化物塩を形成させる工程;二酸化硫黄を浸出溶液に添加する工程;浸出溶液から金属−硫酸塩又は金属−亜硫酸塩を回収する工程;及び塩酸を再生する工程を含む。鉱石は、酸化亜鉛鉱石のような酸化物卑金属鉱石;サプロライト性又はリモナイト性の鉱石のようなラテライト性ニッケル鉱石;硫化物鉱石又はチタン鉱石、であっても良い。有価金属は典型的に、Zn、Cu、Ti、Al、Cr、Ni、Co、Mn、Fe、Pb、Na、K、Ca、白金族金属及び金からなる群から選択される。金属−硫酸塩又は亜硫酸塩中の金属は、有価金属であってもよく、又はマグネシウムのような有価金属よりも低い価値の金属であってもよい。再生された塩酸は浸出プロセス内で再利用される。 (もっと読む)


本発明は、各種処理廃水から金属イオンを除去・回収する装置に関する。この方法は、廃水から酸化剤を分解および除去する酸化剤除去装置と、酸化剤除去装置から排出された廃水から金属イオンを回収する電気析出装置(21)とを備えている。電気析出装置は、電極と、電極間にイオン交換体を有する。
(もっと読む)


121 - 140 / 149