説明

Fターム[4K020AA04]の内容

複合金属又は合金の製造 (2,577) | 分散材の形状・材質 (668) | 繊維 (318) | 無機繊維 (285) | 炭素繊維 (142)

Fターム[4K020AA04]に分類される特許

1 - 20 / 142


【課題】Tiを含む化合物を析出させて強度向上と高電気伝導率の両立を図ることである。
【解決手段】銅合金素材は、0.2〜0.7質量%のチタンと、0.08〜0.4質量%の炭素とを含み、残部が銅及び不可避的不純物からなる、銅合金素材。 (もっと読む)


【課題】無潤滑で用いられるPTFE系ファブリックライナーを摺動面に有する摺動部材において、軽量であり、かつ、摺動の際に、摩擦抵抗が少なく、PTFE系ファブリックライナーの摩耗や摺動による表面傷が発生し難く、長期に亘って摺動しても初期性能が維持される長寿命な無潤滑摺動部材を提供する。
【解決手段】互いに接触しながら相対的に滑り運動を行う一対の摺動面を有し、一方の摺動面をポリテトラフルオロエチレン系ファブリックライナーとし、もう一方の摺動面をチタン合金にカーボンナノチューブを添加したチタン合金複合材料とした無潤滑摺動部材。 (もっと読む)


【課題】一体型ブレードを生産する方法を提供する。
【解決手段】一体型ブレードローターを製造するためのシステムには、リングコンポーネント20が、少なくとも1つの金属マトリックス複合材と、連続的に半径方向外方に面しているブレード円錐形表面とをさらに含むリングコンポーネント20と、少なくとも1つのエーロフォイルコンポーネントが、単一の単体材料片から作り出されており、かつ複数の単体エーロフォイルブレード12と、連続的に半径方向内方に面しているブレード円錐形表面とをさらに含むエーロフォイルコンポーネントと、軸方向に加えられた溶接負荷を受けて、該リングコンポーネント20と該エーロフォイルコンポーネントとを摩擦係合させて、それらのコンポーネントの間で円錐形表面に沿ってイナーシャ溶接を行うためのイナーシャ溶接手段とを含む。 (もっと読む)


【課題】カーボンナノチューブなどを製造してから金属素材と混合する手段として金属に付着させるためにフェノール系のバインダを入れ混錬させてMIM方法やHIPで熱を上げとばしていた製造法が従来の製造方法として行われている、又、出来上がったCNTを特殊な界面活性剤に溶かして金属粉と混ぜ水素で満たした容器で加熱したりしている。
【解決手段】マイクロ、ナノ、ピコ構造炭素材料を混合したい金属やセラミックス、希土類などにじかに有機炭素液を介在させ金属触媒方法、アーク方法、CVD方法で炭素膜を形成してMIMやHIP法で炭素入機能性金属を製造する方法。フェノール系のバインダや特殊な界面活性剤が不要なため工程も少なくコストも大幅に安くなる。 (もっと読む)


【課題】炭化タングステン−遷移金属−カーボンナノチューブ系の超硬合金において、添加されたカーボンナノチューブのすべてがグラフェンに変化してしまうことが抑えられ、高い破壊靱性値及び硬度を有する超硬合金及びその製造方法を提供する。
【解決手段】炭化タングステン−コバルト−カーボンナノチューブ系の超硬合金は、炭化タングステン粉末に対して、結合剤としてのコバルト粉末(15重量%未満)、補強材料としてのカーボンナノチューブ(0.067重量%以下)を添加した原料粉末を固相焼結して得られる。炭化タングステンWC粒子の粒界には、コバルトCo粒子(例えばWC−Co系固溶体含む)と、カーボンナノチューブCNTとグラフェンとが存在している。つまり、原料のカーボンナノチューブは、焼結によって一部がグラフェンに変化し、炭化タングステンWC粒子の粒界には、カーボンナノチューブCNTとグラフェンとが共存している。 (もっと読む)


【課題】金属焼結体中に微細炭素繊維が粉砕されずに繊維の形状を維持したまま均一に分散した、発熱体の熱を効果的に放散することができる熱拡散材料およびその製造方法を提供する。
【解決手段】金属焼結体のマトリックス中に微細炭素繊維が均一に分散されてなる熱拡散材料、ならびに、(A)微細炭素繊維の分散液を作製する工程、(B)前記金属焼結体を構成する金属材料からなる金属粒子の表面に有機系の官能基を導入する工程、(C)前記分散液に前記官能基が導入された金属粒子を添加し、前記金属粒子の表面に前記官能基を介して前記微細炭素繊維が吸着した複合粒子を作製する工程、および(D)前記複合粒子を焼結する工程を有する上記熱拡散材料の製造方法。 (もっと読む)


【課題】 既存の問題点であるアルミニウムと炭素材料の接合に関する問題を解決し、電気アーク又は電気化学的方法を用いて、重さが軽く力学的強度に優れた炭素材料−アルミニウム複合体を製造した。
【解決手段】 本発明は、電気化学的方法を用いてアルミニウム−炭素材料のAl−C共有結合を形成する方法を提供する。上記方法は、陽極と、炭素材料の連結された陰極とで構成され、電解液で満たされた電気化学装置に電位を印加して、陰極に連結された炭素材料の表面をアルミニウムでメッキする段階を含むことができる。更に、本発明は、上記電気化学装置に電位を印加し炭素材料の表面をアルミニウムでメッキして共有結合を形成したアルミニウム−炭素材料複合体を製造する方法、及び上記方法により製造されたアルミニウム−炭素材料複合体を提供する。 (もっと読む)


【課題】一般に用いられている安価な材料を用い、溶湯法で用いられるよりも少ないエネルギーによって作製することができ、広範囲の寸法および形状(特に大面積)を有する優れた熱伝導性かつ軽量な金属基炭素繊維複合材料を提供する。
【解決手段】炭素繊維を有機バインダーおよび溶剤と混合して塗布混合物を準備する工程と、シート状もしくはフォイル状の金属支持体上に塗布混合物を付着させて、金属支持体上に炭素繊維含有被膜が形成されたプリフォームを形成する工程と、プリフォームを積み重ねて、プリフォーム積層体を形成する工程と、プリフォーム積層体を真空中または非酸化雰囲気中で加熱圧接して、前記プリフォーム同士を一体化させる工程とを備えた、金属基炭素繊維複合材料の製造方法。 (もっと読む)


【課題】軽量化することができて、それでも充分な耐久性と強度を有することができる複合軽量物品およびその製造方法を提供する。
【解決手段】金属マトリックス複合軽量圧縮機翼形部は軽量のアルミニウム−リチウム合金中に埋め込まれた繊維編物を含む。翼形部は、フィラメント又は繊維をねじることで複数の繊維束を形成することによって製造される。次いで、束を繊維生地に編む。次に、翼形部は、2つの別個の方法の1つによりMMCとして形成され得る。第1の方法では、アルミニウム−リチウム合金を、逃散性ポリマーを含浸させた繊維生地のプリフォームを含むダイ中に圧力増強鋳造する。第2の方法では、プリフォームは、金型及びマンドレルを用いて繊維生地にアルミニウム−リチウム合金を含浸させることによって形成される。その後、アルミニウム−リチウム合金を、合金を含浸したプリフォームを含むダイ中に圧力増強鋳造する。 (もっと読む)


【課題】半導体材料に適合した熱膨張率を有し、かつ高い熱伝導率を有するダイヤモンド含有複合金属を提供する。
【解決手段】金属とダイヤモンド微粒子とを含んでなり、前記ダイヤモンド微粒子が、爆射法で得られたナノダイヤモンドからなる粒子であることを特徴とするダイヤモンド含有複合金属。 (もっと読む)


【課題】 チタンを基材とし、燃料電池用のセパレータ等に利用できる、導電性に優れた複合金属材料及びその製造方法を提供する。
【解決手段】 チタン粉末にカーボン繊維を加えた粉末を粉砕混合して混合粉末10を調製する工程と、前記混合粉末10に圧縮荷重を加えながら剪断荷重を負荷することにより、前記混合粉末10を固化して成形体とする圧縮剪断法による加工を施す工程とにより、Tiを基材とする導電性に優れた複合金属材料を提供することができる。 (もっと読む)


【課題】繊維強化金属マトリックス複合材料物品の製造方法を提供する。
【解決手段】少なくとも一つの繊維プレフォーム20の少なくとも一つの金属被覆された繊維14の少なくとも一つの第1部分の金属70を、少なくとも一つの繊維プレフォーム20の少なくとも一つの金属被覆された繊維14の少なくとも一つの第2部分の金属72に結合し、少なくとも一つの繊維14を所定位置に保持する。少なくとも一つの繊維プレフォーム20を第1金属構成要素70と第2金属構成要素72との間に配置する。第2金属構成要素72を、第1金属構成要素70にシールし、少なくとも一つの繊維プレフォーム20を団結し、少なくとも一つの繊維プレフォーム20の繊維上に設けられた金属18、第1金属構成要素70、及び第2金属構成要素72を拡散結合し、一体の複合材料物品を形成するように熱及び圧力を加える。結合74は超音波溶接によって行われる。 (もっと読む)


【課題】高温になると短寿命になったり、故障したりするLEDパッケージ、高負荷半導体、高負荷コンデンサー、集光型太陽光発電素子などの冷却に有用な電気絶縁性を有する放熱基板を提供する。
【解決手段】電気絶縁性を有するセラミック板3と、熱拡散率の良好な黒鉛板4を隣接させて、高圧鋳造することにより、安価で、接合強度も強く、かつ良好な熱拡散率を有する放熱基板を完成する。黒鉛として、炭素繊維の黒鉛化したものの使用も可能である。 (もっと読む)


【課題】弾性限界を含めて物理的機械的性質を改善した電子機器用金属フレームであり、望ましくは、Zr/TiまたはFe基のバルク凝固アモルファス合金およびバルク凝固アモルファス合金複合材料で少なくとも一部が作製されている高成形性の金属フレーム、およびその製造方法を提供する。
【解決手段】収容器を少なくとも1つ構成する壁部を有する本体を備え、前記収容器は少なくとも1つの電子部品の少なくとも一部を収納するように構成されており、
前記本体の少なくとも一部がバルク凝固アモルファス合金で形成されており、前記バルク凝固アモルファス合金は弾性限界が約1.5%以上である。前記バルク凝固アモルファス合金は、分子式(Zr、Ti)a(Ni、Cu、Fe)b(Be、Al、Si、B)cで表され、a=約30〜75原子%、b=約5〜60原子%、c=約0〜50原子%である。 (もっと読む)


【課題】機械的強度にすぐれ、かつ効率よく製造することが可能となる、シリコンと銅の合金が含有された繊維強化セラミックス複合材料を提供する。
【解決手段】
炭化ケイ素とカーボンのうち少なくとも1つからなる基材部と、炭化ケイ素繊維と炭素繊維のうち少なくとも1つからなる強化繊維と、CuSi合金とシリコンからなる充填部から構成され、前記CuSi合金が総重量の0.5重量%以上40重量%以下である繊維強化セラミックス複合材料とすることで、曲げ強度と破壊エネルギーが向上される。 (もっと読む)


【課題】本発明は、マグネシウム基複合材料及びその製造方法、マグネシウム基複合材料を利用した音声再生装置に関するものである。
【解決手段】本発明のマグネシウム基複合材料は、マグネシウム基材料及び該マグネシウム基材料の中に分散したナノ材料からなり、前記ナノ材料の質量パーセントは、0.01%〜10%である。本発明のマグネシウム基複合材料の応用において、マグネシウム基複合材料を音声再生装置に応用し、前記マグネシウム基複合材料は、マグネシウム基材料及び該マグネシウム基材料の中に分散したナノ材料からなる。 (もっと読む)


【課題】ナノ分散相としてカーボンナノチューブを使用し、ナノ結晶粒化した基材を同時に実現できるようにした熱電材料及びその製造方法の提供。
【解決手段】熱電材料の製造方法は、カーボンナノチューブが分散した第1溶液と金属塩が混合した第2溶液を製造する第1溶液及び第2溶液製造ステップと、前記第1溶液と第2溶液を混合して混合溶液を製造する混合溶液製造ステップと、前記混合溶液を化学反応させてカーボンナノチューブと金属が混合した混合粉末を生成及び成長させる混合粉末製造ステップと、前記混合粉末を機械的に粉砕及び混合する混合粉末粉砕ステップと、前記粉砕及び混合した混合粉末を熱処理して熱電材料を製造する熱電材料製造ステップとからなる。また、熱電材料を原料とした複合材料は、前記熱電材料にスパークプラズマ焼結工程を行って製造され、カーボンナノチューブがネットワークをなして熱電特性が向上するという利点がある。 (もっと読む)


【課題】高熱伝導性能が良好に維持される高熱伝導性複合材料を製造することができる技術を提供することを課題とする。
【解決手段】図(b)に示すようなマトリックス金属14とカーボンファイバ15との混合材料16を(c)に示すホットプレス型焼結炉20で焼結処理する。すると、マトリクス金属粉末14同士が拡散接合作用により、互いに繋がる。この結果、カーボンファイバ15は移動が制限され、分散状態が維持される。焼結を施すと、酸素に触れる面積が極度に小さくなるため、酸化の影響が軽減される。
【効果】一次成形体は、マトリックス金属の焼結品であり、この焼結品では拡散接合したマトリックス金属粉の間にカーボンファイバが挟まれている。一次成形体に外力が加わっても、マトリックス金属が保護作用を発揮するため、カーボンファイバが切れることはない。結果、高熱伝導性能が維持される。 (もっと読む)


【課題】炭素繊維の成形工程が不要であり、複合成形品を得ることができる製造技術を提供することを課題とする。
【解決手段】図(d)に示すように、所定量の炭素繊維12が添加されたら、撹拌機14の速度を第1の速度V1より高速の第2の速度V2に切り換える。数分間撹拌すると、(e)に示すように、撹拌物15の上層部分が炭素繊維を豊富に含む炭素繊維リッチの混合物16と、撹拌物15の下層部分が炭素繊維を殆ど含まない炭素繊維プアーの混合物17とに分離する。(f)に示すように、容器18に炭素繊維リッチの混合物16を移す。これで、炭素繊維リッチの混合物16だけを取り出すことができた。
【効果】成形処理を施していない炭素繊維を半溶融状態の金属材料に添加する。炭素繊維を成形する必要がないので成形工程を省くことができ、Al複合金属材料の製造コストを下げることができる。 (もっと読む)


【課題】本発明は、マグネシウム基複合材料体の製造方法に関する。
【解決手段】本発明のマグネシウム基複合材料体の製造方法は、半固体状のマグネシウム基材料を形成する第一ステップと、前記半固体状のマグネシウム基材料に強化ナノ粒子材料を加えて、半固体状の混合物を得る第二ステップと、前記半固体状の混合物を加熱させて、液体状態にさせる第三ステップと、前記液体状態の混合物を超音波処理する第四ステップと、前記液体状態の混合物を冷却させて、マグネシウム基複合材料体を得る第五ステップと、を含む。 (もっと読む)


1 - 20 / 142