説明

Fターム[4K021DB04]の内容

非金属・化合物の電解製造、そのための装置 (13,231) | 隔膜槽 (2,871) | フィルタープレス型の (120)

Fターム[4K021DB04]に分類される特許

1 - 20 / 120


【課題】運転停止後に、膜成分の流出を確実に阻止するとともに、水素の消費量を可及的に抑制してシステム効率の向上を図ることを可能にする。
【解決手段】電解電流を印加することにより、水を電気分解してアノード側に酸素を発生させるとともに、カソード側に前記酸素よりも高圧な高圧水素を発生させる高圧水素製造装置12を備える水電解システム10の運転停止方法に関するものである。この運転停止方法は、電解電流を印加した状態で、カソード側に連通する脱圧ライン86に配設された脱圧用バルブ88を開弁させる工程と、所定サイクル毎に、電解電流値を低減させる工程と、高圧水素製造装置12に供給される水の比抵抗値を検出する工程と、前記比抵抗値が所定値以下に低下した際、前記電解電流値を少なくとも前回の前記電解電流値以上の値に上昇させる工程とを有している。 (もっと読む)


【課題】水電解装置の外部に気液分離装置を個別に設ける必要がなく、システム全体の小型化を図ることを可能にする。
【解決手段】高圧水電解システム10を構成する単位セル14は、電解質膜・電極構造体32をアノード側セパレータ34及びカソード側セパレータ36により挟持する。電解質膜・電極構造体32は、固体高分子電解質膜38の両面にアノード側給電体40及びカソード側給電体42を設ける。カソード側セパレータ36と固体高分子電解質膜38との間には、皿ばね46が配設されるカソード側流路68が形成される。カソード側流路68の上部には、高圧水素と高圧水とを分離する高圧水素分離排出部70が設けられる一方、前記カソード側流路68の下部には、前記高圧水素分離排出部70で前記高圧水素から分離された前記高圧水を排出する高圧水排出部72が設けられる。 (もっと読む)


【課題】安全性をより向上させた水電解装置を提供する。
【解決手段】水電解装置は、水電解スタック4と第1水供給排出部50と第2水供給排出部60と容器9とを具備する。水電解スタック4は、水の電気分解を行い酸素と水素とを生成する。第1水供給排出部50は、水電解スタック4の陽極に水の供給及び酸素と余剰水の排出を行う。第2水供給排出部60は、水電解スタック4の陰極に水の供給及び水素と余剰水の排出を行う。容器9は、水電解スタック4を水没させて格納する。第2水供給排出部60と容器9とは均圧化されている。水電解スタック4が停止するとき、第1水供給排出部50は、水電解スタック4に対して水の供給及び排出を行う配管を遮断する。遮断された箇所より容器9側を容器9と均圧化する。 (もっと読む)


【課題】比較的簡単な操作でかつ工業的に有利にTAAH含有廃液を再生処理し、高純度のTAAH水溶液を効率良く製品として回収することができるTAAH含有廃液の再生処理方法を提供する。
【解決手段】水酸化テトラアルキルアンモニウム(TAAH)含有廃液の中和工程1と、この中和工程で得られた中和処理液を、陽イオン交換膜4で陽極室5と陰極室6とに区画された電解槽2で電気分解する電解工程とを有し、電解槽の陰極室側から高純度の製品TAAH水溶液を回収するTAAH含有廃液の処理方法であり、中和処理液の濁度(JIS K0101測定法)を5000ppm以下に管理すると共に、陽極室内を循環する陽極循環液の流速(線速度)を1.5×10-3〜25×10-3m/秒の範囲内に維持し、また、陰極室側からTAAH濃度15〜30質量%の製品TAAH水溶液を回収する水酸化テトラアルキルアンモニウム含有廃液の再生処理方法。 (もっと読む)


【課題】システム停止時に、気液分離装置から廃棄される水素量を可及的に抑制することができ、システム効率を良好に向上させることを可能にする。
【解決手段】水電解システム10を構成する制御装置82は、水位検出センサ64により気液分離装置52内の水位が排水を必要とする上限高さであると検出された時点から、高圧水素貯蔵タンク53が満タンになるまでの残余充填量を算出する残余充填量算出部84と、前記気液分離装置52内の水位が排水を停止させる下限高さから前記上限高さに至る排水周期の間に、水電解装置12により製造される水素量を算出する製造水素量算出部86と、前記残余充填量算出部84により算出された前記残余充填量が、前記製造水素量算出部86により算出された前記水素量よりも少ない場合に、前記水電解装置12による水電解処理を終了させる水電解終了判断部88とを備える。 (もっと読む)


【課題】気液分離装置の排水ラインに配設される背圧弁の故障を、簡単且つ経済的な構成及び工程で、確実に検出することを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する高圧水素配管20に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記気液分離装置22から水を排出する排水ライン26とを備える。排水ライン26には、背圧弁94、減圧弁96、圧力検出センサ100及び電磁弁98が配置されるとともに、前記水電解システム10は、電解停止後に前記電磁弁98を開弁させて脱圧を行う際、前記排水ライン26の圧力を検出して前記背圧弁94の故障を検知する故障検知装置102を備える。 (もっと読む)


【課題】高圧水に溶存する水素を無駄に廃棄することがなく、経済的且つ効率的な水電解処理を安定して行うことを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する高圧水素配管20に配設され、前記高圧水素に含まれる水分を分離する気液分離装置22と、前記気液分離装置22から水が分離された前記高圧水素を導出する高圧水素導出ライン24と、前記気液分離装置22から水を排出する排水ライン26と、前記気液分離装置22から前記排水ライン26に排水を行う前に、前記気液分離装置22内の水温を上昇させるための加熱装置92とを備える。 (もっと読む)


【課題】排水中の溶存水素を有効に減少させることができ、排水ラインに高圧水が排水されることを阻止するとともに、前記排水ラインに配置されるデバイスの耐久性を向上させることを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12から前記高圧水素を排出する水素配管50に配設され、前記高圧水素に含まれる水分を分離する気液分離装置52と、前記気液分離装置52から水が分離された前記高圧水素を導出する高圧水素導出配管54と、前記気液分離装置52から水を排出する排水ライン56と、前記気液分離装置52から前記排水ライン56に排水を行う前に、前記気液分離装置52内の脱気を行うための気相脱圧ライン58とを備える。 (もっと読む)


【課題】部品点数を削減するとともに、一層の小型化及び簡素化を図ることを可能にする。
【解決手段】高圧水素製造装置12は、複数の第1単位セル22aが重力方向に積層される第1セルユニット24aと、前記第1セルユニット24aの重力方向下端部に連結され、複数の第2単位セル22bが前記重力方向に積層される第2セルユニット24bとを備える。第1単位セル22aは、固体高分子電解質膜48の一方の面側に設けられるアノード電極触媒層50a及びアノード側給電体50と、前記固体高分子電解質膜48の他方の面側に設けられるカソード電極触媒層52a及びカソード側給電体52とを有し、水を電気分解する水電解セルである。第2単位セル22bは、固体高分子電解質膜48の一方の面側に設けられるアノード側給電体50と、前記固体高分子電解質膜48の他方の面側に設けられるカソード側給電体52とを有し、カソード側の水分をアノード側に透過させる水透過セルである。 (もっと読む)


【課題】簡単且つ経済的な構成で、ピストン部材により良好な荷重の付与を確実に行うことを可能にする。
【解決手段】水電解装置(高圧水素製造装置)10では、単位セル12の積層方向に延在し、水素を前記積層方向に流通させる水素連通孔54が設けられるとともに、ピストン部材56には、セルユニット14に対向する端面56aから開口して前記水素連通孔54に連通する第1水素通路70と、前記第1水素通路70に連通し且つ前記端面56aから開口する第2水素通路72と、前記第1水素通路70及び前記第2水素通路72に連通し、水素を水電解装置10の外部に導出する水素導出通路76とが設けられる。端面56aの中央を中心とする仮想円上に、第1水素通路70及び第2水素通路72が互いに等角度間隔ずつ離間して配設される。 (もっと読む)


【課題】電解時のリーク電流を削減し、効率的な電解を行うことができると共に電解停止時の逆電流も削減できる電解層を提供する。
【解決手段】陽極液入口10と陽極液供給管2とがホース(A)6で繋がれており、陰極液入口14と陰極液供給管3がホース(B)7で繋がれており、陽極液出口13と陽極液回収管4がホース(C)8で繋がれており、陰極液出口16と陰極液回収管5がホース(D)9で接続されており、ホース(D)9の全長が、陰極液出口16のノズルの中心と陰極液回収管のノズル15の中心の2点間を結ぶ直線に対して1.1倍〜1.5倍であり、ホース(D)9が、陰極液出口16のノズルを基点として、全長に対して60〜80%の長さの第一直線部分9Aを有し、次に折れ曲がり部分9Bを有し、さらに全長に対して10%〜15%の長さの第二直線部分9Cを有して、陰極液回収管のノズル15に繋がれている。 (もっと読む)


【課題】温調用デバイスを不要することができ、システム全体の小型化及びシステム効率の向上を容易に図ることを可能にする。
【解決手段】水電解システム10の運転方法は、高圧水電解装置12に供給される循環水の温度を検出する工程と、前記循環水の温度が上昇する運転起動時に、定格運転時の電流密度よりも低い低電流密度で運転する工程と、前記循環水の温度が一定の温度範囲内に維持される際、前記定格運転に移行したと判断する工程と、前記定格運転時に、前記循環水の温度に基づいて予め設定された電流密度で運転する工程とを有する。 (もっと読む)


【課題】水素発生効率と電流効率に優れたアルカリ水電解用のNi−W−S合金電極及びその製造方法を提供するとともに、そうしたNi−W−S合金電極を用いてなる水素発生装置を提供する。
【解決手段】基材1上にNi−W−S合金膜2が設けられ、その合金膜2中のW含有量が0.6質量%以上3質量%以下で、S含有量が8質量%以上44質量%以下であるようにして、上記課題を解決した。このとき、Ni−W−S合金膜2の表面が微細凹凸面になっていることが好ましく、そのX線回折パターンがアモルファス状又は微結晶状であることが好ましい。こうしたアルカリ水電解用電極は、基材上にNi−W−S合金めっき液を接触させる湿式成膜手段又はNi−W−S合金膜を堆積させる乾式成膜手段によって製造できる。 (もっと読む)


【課題】簡単且つ経済的に構成するとともに、良好なシール性と位置決め機能とを確保することを可能にする。
【解決手段】水電解装置10を構成する単位セル12は、電解質膜・電極構造体32と、この電解質膜・電極構造体32を挟持するアノード側セパレータ34及びカソード側セパレータ36とを備える。アノード側セパレータ34及びカソード側セパレータ36には、積層方向である矢印A方向に互いに連通して、反応により生成された高圧水素を流すための水素排出連通孔50cが設けられる。水素排出連通孔50cには、前記水素排出連通孔50cをシールし且つアノード側セパレータ34及びカソード側セパレータ36の位置決めを行う円管状の絶縁性管部材70が配設される。 (もっと読む)


【課題】水分を含有する高圧な水素を良好に気液分離するとともに、十分強度を有し且つ水位を正確に測定することを可能にする。
【解決手段】水電解システムを構成する気液分離装置18は、ブロック体40を備える。ブロック体40の内部には、それぞれ上下方向に延在して気液分離用開口部54及び水位検出用開口部56が形成されるとともに、前記気液分離用開口部54及び前記水位検出用開口部56の各下端位置は、前記ブロック体40の内部で終端し且つ排水配管50に一体に連通する。水位検出用開口部56の上端位置は、ブロック体40の内部で終端し且つ気液分離用開口部54の上部側に連結される。導入孔部48は、水位検出用開口部56に設けられる上端水位用検出部58Hよりも上方に位置する。 (もっと読む)


【課題】導電通路を構成する部品同士の接触面積を有効に拡大させることができ、接触面の変化に影響されることがなく、安定した導電通路を設けることを可能にする。
【解決手段】高圧水電解装置10を構成する単位セル12は、電解質膜・電極構造体32と、この電解質膜・電極構造体32を挟持するアノード側セパレータ34及びカソード側セパレータ36とを備える。電解質膜・電極構造体32は、固体高分子電解質膜38と、前記固体高分子電解質膜38の両面に設けられるアノード側給電体40及びカソード側給電体42とを備える。カソード側セパレータ36と皿ばね46との間からプレート部材44とカソード側給電体42との間にわたって、前記カソード側セパレータ36から前記カソード側給電体42に電気的に連なる導電通路60epを有する導電部材60が一体に介装される。 (もっと読む)


【課題】生成された高圧水素に含まれる水を良好に除去するとともに、前記水を無駄なく経済的に使用することを可能にする。
【解決手段】水電解システム10は、水を電気分解して酸素と前記酸素よりも高圧な高圧水素とを発生させる水電解装置12と、前記水電解装置12のアノード側から排出される前記酸素及び前記水が導入されて気液分離され、且つ分離された前記水を前記水電解装置12に循環供給する低圧側気液分離器14と、前記水電解装置12のカソード側から排出される前記高圧水素及び前記アノード側からの透過水が導入されて気液分離される高圧側気液分離器22と、前記高圧側気液分離器22から前記低圧側気液分離器14に水を戻す水配管24に配設され、高圧の前記水を減圧させる減圧水供給装置26とを備える。 (もっと読む)


【課題】運転停止後に、アノード側にリークする水素量を良好に削減することができ、触媒電極の劣化を阻止して良好な水電解処理を遂行可能にする。
【解決手段】電解質膜の両側に給電体が設けられ、前記給電体間に電解電圧を印加することにより、水を電気分解してアノード側に酸素を発生させるとともに、カソード側に前記酸素よりも高圧な水素を発生させる高圧水電解装置の運転停止方法に関するものである。この運転停止方法は、給電体間に対する電解電圧の印加を停止する工程と、前記電解電圧の印加を停止した状態で、高圧水電解装置内に冷却用媒体を供給することにより、前記高圧水電解装置を冷却する工程と、少なくともカソード側の減圧を行う工程とを有している。 (もっと読む)


【課題】簡単且つ経済的に構成することができ、しかも接触抵抗を有効に低減させることを可能にする。
【解決手段】高圧水電解装置10を構成する単位セル12は、電解質膜・電極構造体32と、この電解質膜・電極構造体32を挟持するアノード側セパレータ34及びカソード側セパレータ36とを備える。電解質膜・電極構造体32は、固体高分子電解質膜38と、前記固体高分子電解質膜38の両面に設けられるアノード側給電体40及びカソード側給電体42とを備える。カソード側給電体42は、減圧プラズマ溶射によりプレート部材44に一体成形される多孔質導電体である。プレート部材44には、皿ばね46が配置され、前記皿ばね46は、前記プレート部材44を介してカソード側給電体42に荷重を付与する。 (もっと読む)


【課題】排出されるガス成分を良好に希釈するとともに、消費電力の削減及び騒音の低減を図ることを可能にする。
【解決手段】水電解システム10の運転方法は、高圧水電解装置12から気液分離装置16に排出される透過水素流量及び酸素流量を算出する工程と、運転中の水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて透過水素を希釈するために必要な透過水素用希釈流量を算出する工程と、運転中の前記水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて酸素を希釈するために必要な酸素用希釈流量を算出する工程と、前記透過水素用希釈流量及び前記酸素用希釈流量を比較し、流量の多い方を希釈用空気流量に選択して気液分離装置16内に希釈用空気を供給する工程とを有する。 (もっと読む)


1 - 20 / 120