説明

Fターム[4K030AA16]の内容

CVD (106,390) | 原料ガス (20,169) | キャリヤーガス (5,016)

Fターム[4K030AA16]の下位に属するFターム

Fターム[4K030AA16]に分類される特許

41 - 60 / 798


【課題】原料ガスの濃度の低下を抑制する。
【解決手段】原料ガス発生装置101は、容器111内の固体原料102を加熱し、CVD加工用の原料ガスを発生させる。通気管113を介して容器111内に導入されたキャリアガスは、ガス拡散部材115の拡散体131により拡散され、開口部115Aから鉛直下方向に噴出される。固体原料102から発生した原料ガスは、キャリアガスとともに固体原料102の上方から、通気管116を介して容器111の外に排出される。本発明は、例えば、CVD加工用の原料ガスを発生する原料ガス発生装置に適用できる。 (もっと読む)


【課題】本発明は、新規水素化シリコンゲルマニウム化合物、それらの合成法、それらの成膜法、およびそれらの新規化合物を用いて作製された半導体構造を提供する。
【解決手段】これらの化合物は、式:(SiHn1)x(GeHn2)yによって定義される。式中、xは2,3または4であり;yは1,2または3であり;x+yは3,4または5であり;n1は、化合物中の各Si原子に関して独立に0,1,2または3であって原子価を満たし;n2は、化合物中の各Ge原子に関して独立に0,1,2または3であって原子価を満たし;但し、yが1のとき、n2は0ではなく;さらに、xが3、かつ、yが1のとき、n2は2または3であり;さらに、xが2、かつ、yが1のとき、n2は3である。 (もっと読む)


【課題】構造が簡素でかつ低コストの白色発光素子を提供する。
【解決手段】基板はSi(100)もしくはGaAs(100)面を使用し、その上に水素化窒化炭素薄膜をスパッタ装置およびプラズマCVD装置によって2層もしくは多層成長し、膜厚増加方向に窒素含有量が増加するように成長させる。窒素含有量が増加するとバンドギャップが広がるので、バンドギャップの狭い下部の水素化窒化炭素からも吸収することなく白色発光を得ることができる。 (もっと読む)


【課題】マイクロ波プラズマ処理装置において、ALD法プラズマ処理の処理時間を短くする。
【解決手段】プラズマ処理装置10は、被処理基体を搭載するステージ14、処理容器12、第1のガス供給手段30、遮蔽部20、誘電体部材40、マイクロ波導入手段42、及び、第2のガス供給手段46を備えている。第1のガス供給手段30は、処理空間に層堆積用の第1のプロセスガスを供給する。遮蔽部20は、導電性を有し、一以上の連通孔20aが設けられている。誘電体部材40には、一以上の連通孔40cに接続する一以上の空洞40aが設けられている。マイクロ波導入手段42は、誘電体部材40にマイクロ波を導入する。第2の供給手段46は、誘電体部材40の空洞40a内にプラズマ処理用の第2のプロセスガスを供給する。 (もっと読む)


【課題】ハロゲン系腐食性ガスに対して高い耐食性を有すると共に、高い硬度を有し、耐擦傷性に優れた部材を提供すること。
【解決手段】基材表面の全部又は一部が、相対密度が50%以上98%未満である、CVD法によって調製された、膜割れが生じない窒化アルミニウム(AlN)膜によって被覆された部材。前記窒化アルミニウム(AlN)膜が、ナノインデンテーション法によりダイヤモンドバーコビッチ圧子を用いて測定した室温におけるナノインデンテーション硬さが、10GPa以上30GPa未満であることが特徴である。 (もっと読む)


【課題】大気開放することなく真空槽内に付着したZr化合物を除去することのできるZrBO膜の形成装置を提供する。
【解決手段】プラズマCVD装置10は、基板Sを収容して接地電位に接続される真空槽と、載置された基板Sを加熱する基板ステージ13と、真空槽内に活性状態の酸素ガスと、Zr(BHとを各別に供給するシャワープレート16とを備え、加熱された基板S上でZrBO膜を形成する。シャワープレート16は、チャンバ本体11に対して電気的に絶縁された導体であり、シャワープレート16に接続された高周波電源RF1と、真空槽内にフッ素ガスを供給するクリーニングガス供給部とを備え、基板Sが真空槽内に収容されていない状態で、クリーニングガス供給部は、真空槽内にフッ素ガスを供給し、高周波電源RF1は、シャワープレート16に供給する高周波電力でフッ素ガスをプラズマ化して真空槽内に付着したZr化合物を除去する。 (もっと読む)


【課題】低透過性の高いガスバリアフィルムを成膜することが可能な成膜装置、成膜方法を提供すること、および低透過性の高いガスバリアフィルムを提供することを目的とする。
【解決手段】成膜装置1は、基材81の成膜面810にガスバリアフィルム82を成膜する。成膜装置1は、基材81が配置されるプラズマ生成室20と、プラズマ生成室20に露出する誘電体21と、を有する減圧容器2と、プラズマ生成室20に原料ガスを供給する原料ガス供給部50と、プラズマ生成室20にキャリアガスを供給するキャリアガス供給部51と、マイクロ波MWをプラズマ生成室20に導入するスロットアンテナ3と、誘電体21と基材81との間に配置され負のバイアス電圧が周期的に印加される加速部材4と、ガスバリアフィルム82を成膜する際に基材81を冷却する冷却部材4と、を備える。 (もっと読む)


【課題】バイポーラ型のPBII装置用電源を用いて低真空下での良好な非晶質炭素膜の成膜を可能とする成膜方法、および、該成膜方法で得られる非晶質炭素膜を提供する。
【解決手段】バイポーラ型のPBII装置用電源を用いた低真空下(1000〜30000Pa程度)での非晶質炭素膜の成膜方法であって、チャンバー1内に、PBII装置用電源6に接続される電源側電極3と、電極3と対向するアース側電極4とを設け、電源側電極3およびアース側電極4のいずれか一方に基材2を配置し、基材2と、基材2を配置しない電極との間において、希ガスと炭化水素系ガスのプラズマを発生させて、基材2の表面に非晶質炭素膜を成膜する。 (もっと読む)


【課題】窒化アルミニウム被覆膜が基材表面に強固に密着してなる耐熱・耐腐食性部材を提供すること。
【解決手段】窒化アルミニウムを主成分とした被覆膜によって、基材の少なくとも一部が覆われた部材。前記被覆膜が、その最表面に0.5原子%以上40原子%以下のフッ素を含有する窒化アルミニウム膜であることを特徴とする。 (もっと読む)


【課題】 成膜ドラムを用いるロール・トゥ・ロールを利用する、CCP−CVDによる機能性フィルムの製造において、高品質な膜を成膜することができ、かつ、高密度なプラズマに起因する基板の熱損傷も防止できる製造方法を提供する。
【解決手段】 所定の中央領域と、この中央領域の外側の領域とで、ドラム表面温度を異なる温度とすることにより、前記課題を解決する。 (もっと読む)


【課題】 カーボンナノチューブの形成方法及び熱拡散装置に関し、カーボンナノチューブの直径の制御性を高め且つ成長密度を高める。
【解決手段】 基板表面に平均周期が20nm〜100nmの微細な凹凸を有する凹凸形成層を形成し、前記凹凸形成層の表面上に前記凹凸の形状に沿った形状を有する酸素含有皮膜を形成し、前記酸素含有皮膜上に触媒金属層を形成したのち、熱処理を行うことによって前記触媒金属層を溶融して孤立した複数の触媒微粒子にし、炭素含有ガスを利用した化学気相成長法により、前記触媒微粒子上にカーボンナノチューブを成長させる。 (もっと読む)


【課題】既存の基板処理装置に対して新たな設備の導入負荷を少なくし、基板処理装置内壁に付着した厚い堆積膜の除去を行うことができる基板処理装置を得ること。
【解決手段】チャンバ11と、チャンバ11内で基板を保持するステージ12と、基板に対する処理によってチャンバ11内に付着した堆積物を除去するクリーニングガスを前記チャンバ内に供給するクリーニングガス供給系60と、チャンバ11内のガスをチャンバ11の底壁に設けられたガス排出口15から排出する排気系30と、を備える基板処理装置1において、チャンバ11内のガス排出口15の周囲に溝16を備える。 (もっと読む)


【課題】ガスバリア膜において、可視光の透過性と被覆性及び可撓性との良好なバランスを実現することができる技術の提供。
【解決手段】珪素化合物を含有するバッファ層2と、バッファ層2に積層され、珪素酸化物及び/または珪素窒化物を含有するバリア層3と、を含むガスバリア膜1において、バッファ層2についてのフーリエ変換赤外吸収スペクトルにおいて、波数900cm−1での赤外吸光度A1と波数1260cm−1での赤外吸光度A2との比A(A=A1/A2)と、前記ガスバリア膜に含まれるバッファ層の厚みの合計t(nm)とが、A<3未満かつ式(1)を満たすか、又はA≧3かつ式(2)を満たす、t≦15656/A3.313(1)t≦837/A0.648(2)ガスバリア膜。 (もっと読む)


【課題】長尺基材の表面にプラズマCVD法によって薄膜を形成するにあたり、活性種をできる限り多く基材表面に供給して、高品質の薄膜を生産性高く形成できるプラズマCVD装置およびプラズマCVD方法を提供すること。
【解決手段】真空容器内に、冷却ドラムと、該冷却ドラムに対向して配置したプラズマ発生電極とを備え、長尺基材を前記冷却ドラム表面に沿わせて搬送しながら前記基材表面に薄膜を形成するプラズマCVD装置であって、前記冷却ドラムと前記プラズマ発生電極とで挟まれる成膜空間を前記長尺基材の搬送方向の上流側および下流側から挟み込み、前記長尺基材の幅方向に延在する2枚の側壁を設け、前記側壁は前記プラズマ発生電極とは電気的に絶縁されており、前記2枚の側壁のうちいずれか一方の側壁に、プラズマの発生を抑制しながらガスを供給するプラズマ発生抑制型ガス供給口と、プラズマの発生を促進させながらガスを供給するプラズマ発生促進型ガス供給口とを有する。 (もっと読む)


【課題】金属および金属化合物のターゲットを主原料とすることで、有機金属ガス等の有害なガスを使用する必要がなくなり、大気圧プラズマを反応場として利用すると共に、熱源としても利用することで高融点材であるシリコンやセラミックス等の基板上へ密着性の良好な金属またはその酸化物若しくは窒化物等の金属化合物薄膜の形成方法及びその形成装置を提供する。
【解決手段】マイクロプラズマ法による薄膜作製方法において、全体に亘って内径が均一である細管1内に薄膜形成用の原料ワイヤー3を設置し、細管1に不活性ガスを導入すると共に高周波電圧を印加して細管1内部に高周波プラズマを発生させ、1又は複数の細管1内部のプラズマガスの流速及びプラズマガス温度を高温に維持しながら原料を加熱・蒸発させ、蒸発した材料を細管1から噴出させて基板上に照射し、プラズマガスにより基板を加熱すると共に、照射した材料を大気圧下で基板上に堆積させる。 (もっと読む)


【課題】転写プロセスを用いずに、所期のグラフェンを制御性良く容易且つ確実に安定形成し、信頼性の高い高性能の微細な電子デバイスを実現する。
【解決手段】基板1上に絶縁層2を形成し、絶縁層2に空隙2Aを形成し、空隙2Aに触媒材料4を充填し、絶縁層2における触媒材料4の露出面4aにグラフェン5を形成し、絶縁層2上でグラフェン5の両端部に接続するように一対の電極5,6を形成し、グラフェン5を一部除去してグラフェンリボン8を形成し、グラフェンリボン8の除去された部位である間隙2A1,2A2を通じて触媒材料4を除去する。 (もっと読む)


【課題】サセプタの周縁部から入り込む磁束の透過を制御することによって,サセプタの面内温度を的確に制御する。
【解決手段】 基板を載置する載置面を有する導電性部材であって,周縁部210とこれに囲まれる内側部220とに分けられ,内側部は厚板状発熱体からなり,周縁部は内側部よりも薄い薄板状発熱体を互いに電気的に絶縁した状態で積層してなるサセプタ200と,サセプタの側面からその載置面に平行な方向に交流磁場を形成する電磁石120とを備え,この電磁石に巻回された誘導コイル124に印加する2つの周波数の高周波電流により各薄板状発熱体に発生する誘導電流を制御して内側部までの磁束の透過を制御することによって,各サセプタの周縁部の発熱量と内側部の発熱量との比率を変化させて温度制御を行う。 (もっと読む)


【課題】
従来の無機膜成膜に比べて安価に製造ができ、かつ、煩雑な製造工程を必要とせず、容易に優れたガスバリア性と可とう性を有するガスバリア積層体、その製造方法、このガスバリア積層体からなる電子デバイス用部材、及びこの電子デバイス用部材を備える電子デバイスを提供する。
【解決手段】
基材上に、ガスバリア層を有するガスバリア積層体であって、前記ガスバリア層が、有機ケイ素化合物を原料として用いるCVD法により形成された有機ケイ素化合物薄膜に、イオンが注入されて得られたものであることを特徴とするガスバリア積層体、このガスバリア積層体の製造方法、前記ガスバリア積層体からなる電子デバイス用部材、及び、前記電子デバイス用部材を備える電子デバイス。 (もっと読む)


【課題】結晶性の高い微結晶半導体膜の作製方法を提供することを課題とする。また、電気特性が良好な半導体装置を、生産性高く作製する方法を提供する。
【解決手段】第1の条件により、高い結晶性の混相粒を低い粒密度で有する種結晶を絶縁膜上に形成した後、種結晶上に、第2の条件により混相粒を成長させて混相粒の隙間を埋めるように第1の微結晶半導体膜を形成し、第1の微結晶半導体膜上に、第1の微結晶半導体膜に含まれる混相粒の隙間を広げず、且つ結晶性の高い微結晶半導体膜を成膜する第3の条件で第2の微結晶半導体膜を形成し、第2の微結晶半導体膜上に、第2の微結晶半導体膜に含まれる混相粒の隙間を埋めつつ、結晶成長を促す第4の条件で、第3の微結晶半導体膜を積層形成する。 (もっと読む)


【課題】小径で長尺な筒状の基材であっても、基材の内面を均一厚みのDLC膜で被覆することができる被覆部材の製造方法を提供すること。
【解決手段】プラズマCVD装置1は、直流パルスプラズマCVD法により被覆部材を製造するためのものである。被覆部材の製造時には、円筒状の基材200は、処理室3内で宙吊りにされる。宙吊り状態の基材200は、その軸線Cが水平方向に延びるような姿勢にされている。プラズマ電源8をオンすることにより、隔壁2と基台5との間に直流パルス電圧を印加してプラズマを発生させる。このプラズマの発生により、処理室3内において原料ガスがプラズマ化し、基材200の内周面および外周面にDLC膜が堆積される。 (もっと読む)


41 - 60 / 798