説明

Fターム[4K030BA17]の内容

CVD (106,390) | 皮膜材質 (16,728) | 金属成分を含む皮膜 (5,409) | Ta (218)

Fターム[4K030BA17]に分類される特許

201 - 218 / 218


【目的】 ポーラス状に形成される多孔質低誘電率(p−lowk)膜内へのバリアメタルに用いたメタルの拡散を抑制することを目的とする。
【構成】 p−lowk膜を基体上に形成するp−lowk膜形成工程(S102)と、前記p−lowk膜表面側に形成される空孔が前記p−lowk膜内部側の空孔へ連結する連結位置における開口サイズより大きい分子(Ta−R1)を前記p−lowk膜表面に吸着させるTa[N(C供給工程(S106)と、前記分子(Ta−R1)と反応するNHを供給し、TaN膜を形成するNH供給工程(110)と、前記開口サイズより小さい分子(Ta−R2)を吸着させるTaCl供給工程(S114)と、前記分子(Ta−R2)と反応するNHを供給し、TaN膜をさらに形成するNH供給工程(120)と、を備えたことを特徴とする。 (もっと読む)


【課題】高速原子層堆積装置及び使用方法
【解決手段】処理チャンバ(100)と、前記処理チャンバ内に設けられた基板ホルダ(120)と、前記処理チャンバ(100)に、第1のプロセスガス及び第2のプロセスガスを供給するように構成されたガス注入装置(140)とを含む、原子層堆積(ALD)を実行する処理システム(100)。前記ガス注入装置(140)は、前記第1のプロセスガス及び第2のプロセスガスを、前記処理チャンバ(100)の第1の位置及び第2の位置から導入するように構成されており、前記第1のプロセスガス及び第2のプロセスガスの少なくとも一方は、前記第1の位置と第2の位置とから、交互にかつ連続に導入される。 (もっと読む)


【課題】低k材料上にタンタル−窒化物(TaN)拡散バリア領域を堆積する方法を提供する。
【解決手段】この方法は、チャンバにおいてタンタル系前駆物質および窒素プラズマからプラズマ増強原子層堆積(PE−ALD)を実行することによって、低k材料基板(102)上に保護層(104)を形成することを含む。保護層(104)は、そのタンタル含有量よりも大きい窒素含有量を有する。次いで、タンタル系前駆物質ならびに水素および窒素を含むプラズマからPE−ALDを実行することによって、次の実質的化学量論的タンタル−窒化物層を形成する。また、本発明は、このように形成したタンタル−窒化物拡散バリア領域(108)も含む。一実施形態において、金属前駆物質は、五塩化タンタル(TaCl5)を含む。本発明は、低k材料とライナ材料との間に鮮鋭な界面を生成する。 (もっと読む)


本発明の実施形態は、原子層堆積法(ALD)などの気相堆積プロセス中に基板上に誘電材料を堆積するための方法を提供する。一例では、方法は、基板をハフニウム前駆体および酸化ガスに順次暴露して、その上に酸化ハフニウム材料を堆積するステップを含む。別の例では、ケイ酸ハフニウム材料が、基板を該酸化ガスと、ハフニウム前駆体およびシリコン前駆体を含有するプロセスガスとに順次暴露することによって堆積される。該酸化ガスは、水素源ガスおよび酸素源ガスを水蒸気発生器を介して流すことによって形成された水蒸気を含有する。 (もっと読む)


本発明は、式i−PrN=Ta(NR[式中、R及びRは、同じか又は異なり、1〜3個の炭素原子を有するアルキルであり、但し、(i)Rがエチルの場合、Rはエチル以外であり、(ii)Rがエチルの場合、Rはエチル以外である]により表される有機金属前駆体化合物、並びに前記有機金属前駆体化合物から被膜、コーティング又は粉末を製造する方法に関する。 (もっと読む)


【課題】 原子層堆積を実行するための方法およびシステムを提供することである。
【解決手段】 原子層堆積(ALD)を実行するためのプラズマ処理システムは、処理チャンバと、処理チャンバ内で提供される基板ホルダと、処理チャンバに第1のガスおよび第2のガスを供給するように構成されたガス注入システムとを具備する。システムは、処理チャンバに連続的に第1のガス流れを流し、第1の時間に処理チャンバに第2のガス流れをパルス化して流すガス注入システムを制御するコントローラを含む。コントローラは、第2の時間に基板ホルダにRF電力をパルス化する。 (もっと読む)


炭素を含まないシリコン源(たとえば、(SiH33N)、一般式MXnをもつ金属前駆体(たとえば、Hf(NEt24)、および酸化剤(たとえばO2)をCVDチャンバーへ導入し、基板の表面でこれらを反応させることによって、金属シリコン(オキシ)ナイトライドを製造する方法。MSiN、MSiOおよび/またはMSiON膜を得ることができる。これらの膜はhigh−k絶縁膜として有用である。 (もっと読む)


【課題】類似の方法を、低スループット等の弱点が十分に回避されかつそれにもかかわらず原子層成膜が可能なように、さらに改良することである。
【解決手段】本発明は、プロセスチャンバ内で少なくとも1つの膜を少なくとも1つの基板上に堆積する方法であって、膜が少なくとも1つの成分からなり、少なくとも第1の金属成分が、液体の又は液体に溶解した第1の原料を不連続に吐出する使用のもと、特に温度調節されたキャリアガス内で蒸発し、少なくとも第2の成分の化学反応原料が供給される方法に関する。原料が切換えられてプロセスチャンバ内に供給され、2番目の原料が化学反応ガス又は化学反応溶液であることが、本質的である。 (もっと読む)


プロセスチャンバ構成要素の表面からタンタル含有堆積物を洗浄する方法は、構成要素の表面をHFとHNOの重量比が約1:8〜約1:30の洗浄溶液に浸漬するステップを含んでいる。他の変形例においては、洗浄溶液はKOHとHのモル比が約6:1〜約10:1である。銅表面を洗浄するのに適した更に他の変形例においては、洗浄溶液はHFと酸化剤を少なくとも約6:1のHFと酸化剤のモル比で含んでいる。表面をほとんど浸食することなくタンタル含有堆積物を表面から除去することができる。 (もっと読む)


【課題】電界効果デバイスのゲート材料を提供すること。
【解決手段】電界効果デバイスのゲート材料として用いられるTaおよびNの化合物であって、さらに別の元素を含む可能性があり、約20mΩcmより小さな比抵抗を有し、約0.9より大きなN対Taの元素比を有する化合物が開示される。そのような化合物の代表的な実施態様であるTaSiNは、誘電体層および高k誘電体層を含むSiO上の一般的なCMOSプロセス温度で安定であり、n型Siの仕事関数に近い仕事関数を有する。第3アミルイミドトリス(ジメチルアミド)Ta(TAIMATA)などのアルキルイミドトリス(ジアルキルアミド)Ta化学種をTa前駆体として用いる化学的気相堆積方法によって、金属性Ta−N化合物を堆積する。この堆積は共形であり、これらのTa−N金属化合物のCMOSプロセスフローへの融通の利く導入を可能にする。TaNまたはTaSiNを用いて加工されたデバイスは、ほぼ理想的な特性を示す。 (もっと読む)


化学蒸着及び原子層堆積などの方法により、窒化タンタル又は酸化タンタル材料を基板上に堆積させるのに有用なタンタル前駆体。前駆体は、銅金属化及び/又は強誘電性薄膜を特徴とするマイクロエレクトロニクス素子構造上にタンタルベースの拡散バリヤ層を形成するのに有用である。

(もっと読む)


総括的には本発明は、限定ではないが、高誘電率ゲート誘電体膜などの高誘電率誘電体膜又は層の堆積方法を提供する。1つの実施形態では、オゾンが別個のサイクルのチャンバに選択的に運ばれて、属酸化物層が最小厚さの界面酸化物層を有する基板の表面上に金属酸化物層を形成する原子層堆積(ALD)サイクルが実施される。 (もっと読む)


本発明は、薄膜蒸着方法を提供する。ウェーハブロック上に基板をローディングする基板ローディングステップと、基板ローディング後に第1反応ガス及び熱的に活性化された第2反応ガスを、第1噴射孔及び第2噴射孔を介して基板上に噴射することによって薄膜を蒸着する薄膜蒸着ステップと、薄膜蒸着ステップ以後、水素原子を含む熱処理ガスを流して、薄膜内に含まれた不純物の含量を減らす後処理ステップと、後処理ステップ以後、薄膜が蒸着された基板をウェーハブロックでアンローディングするアンローディングステップと、を含み、ここで、第2反応ガスは、ガス加熱流路部を経る前にTの温度を、そして、そのガス加熱流路部を経た後にTの温度を有するとき、Tが前記Tより大きく、熱処理ガスは、ガス加熱流路部を経る前のTの温度を、そして、そのガス加熱流路部を経た後にTの温度を有するとき、TがTと同じであるか、または大きいことを特徴とする。
(もっと読む)


集積回路デバイス製造のための半導体基板のような基板上への、超臨界流体を利用した物質の蒸着。蒸着は、基板表面に蒸着される物質の前駆体を含む、超臨界流体をベースとする組成物を使用して行われる。そのようなアプローチにより、気相蒸着工程に必要な揮発性および搬送性がないために、蒸着への適用には全く不適切であった前駆体の使用が可能になる。 (もっと読む)


窒化タンタル/タンタルバリア層を堆積させるための方法および装置が、集積処理ツールでの使用のために提供される。遠隔発生プラズマによる洗浄ステップの後、窒化タンタルは原子層堆積法で堆積され、タンタルはPVDで堆積される。窒化タンタル/タンタルは、堆積された窒化タンタルの下の導電性材料を露呈するために、誘電体層の部材の底部から除去される。場合によって、さらなるタンタル層が、除去ステップの後に物理気相堆積法で堆積されてもよい。場合によって、窒化タンタル堆積およびタンタル堆積は同一の処理チャンバで生じてもよい。シード層が最後に堆積される。 (もっと読む)


1以上の物質層のバリヤ層を原子層堆積により堆積させるために基板を処理する方法が提供される。一態様においては、金属含有化合物の1以上のパルスと窒素含有化合物の1以上のパルスを交互に導入することにより基板表面の少なくとも一部上に金属窒化物バリヤ層を堆積させるステップと、金属含有化合物の1以上のパルスと還元剤の1以上のパルスを交互に導入することにより金属窒化物バリヤ層の少なくとも一部上に金属バリヤ層を堆積させるステップとを含む基板を処理する方法が提供される。金属窒化物バリヤ層及び/又は金属バリヤ層の堆積前に基板表面上で浸漬プロセスが行われてもよい。 (もっと読む)


本発明の実施形態は、半導体処理システム(320)の前駆物質を生成する装置に関する。装置は、側壁(402)、上部、底部を有するキャニスタ(300)を含んでいる。キャニスタ(300)は、上の領域(418)と下の領域(434)を有する内容積(438)を画成している。一実施形態においては、装置は、更に、キャニスタ(300)を部分的に取り囲んでいるヒータ(430)を含んでいる。ヒータ(430)によって、上の領域(418)と下の領域(434)間に温度勾配が生じる。また、精製ペンタキス(ジメチルアミド)タンタルから原子層堆積によってバリヤ層、例えば、窒化タンタルバリヤ層を形成する方法も特許請求される。 (もっと読む)


【課題】 MOCVD法に適した有機タンタル化合物及びこれを用いて形成される高誘電体薄膜又は強誘電体薄膜として優れたタンタル含有薄膜を得る。均一で安定した気化が行われ、高い成膜速度で高純度の所望のSBT薄膜が得られる。
【解決手段】 次の一般式(2)で示される有機金属化学蒸着用の有機タンタル化合物単体からなるか、又は前記有機タンタル化合物を有機溶媒に溶解してなる有機金属化学蒸着用原料である。
【化9】


有機溶媒としては炭素数4〜10の直鎖状、分岐状又は環状の有機化合物が挙げられる。 (もっと読む)


201 - 218 / 218