説明

Fターム[4K030CA05]の内容

CVD (106,390) | 基体 (14,903) | 材質 (8,740) | セラミックからなるもの (756)

Fターム[4K030CA05]に分類される特許

61 - 80 / 756


【課題】本発明は、エピタキシャル構造体及びその製造方法に関する。
【解決手段】本発明のエピタキシャル構造体の製造方法は、少なくとも一つのエピタキシャル成長面を有する基板を提供する第一ステップと、前記基板のエピタキシャル成長面の上に複数の空隙を含むカーボンナノチューブ層を懸架するように配置する第二ステップと、前記基板のエピタキシャル成長面にエピタキシャル層を成長させて、前記カーボンナノチューブ層を包む第三ステップと、を含む。 (もっと読む)


【課題】金属および金属化合物のターゲットを主原料とすることで、有機金属ガス等の有害なガスを使用する必要がなくなり、大気圧プラズマを反応場として利用すると共に、熱源としても利用することで高融点材であるシリコンやセラミックス等の基板上へ密着性の良好な金属またはその酸化物若しくは窒化物等の金属化合物薄膜の形成方法及びその形成装置を提供する。
【解決手段】マイクロプラズマ法による薄膜作製方法において、全体に亘って内径が均一である細管1内に薄膜形成用の原料ワイヤー3を設置し、細管1に不活性ガスを導入すると共に高周波電圧を印加して細管1内部に高周波プラズマを発生させ、1又は複数の細管1内部のプラズマガスの流速及びプラズマガス温度を高温に維持しながら原料を加熱・蒸発させ、蒸発した材料を細管1から噴出させて基板上に照射し、プラズマガスにより基板を加熱すると共に、照射した材料を大気圧下で基板上に堆積させる。 (もっと読む)


【課題】本発明は、エピタキシャル構造体の製造方法に関する。
【解決手段】本発明のエピタキシャル構造体の製造方法は、少なくとも一つの結晶面を有する基板を提供する第一ステップと、前記基板の結晶面に複数の空隙を含むカーボンナノチューブ層を配置し、前記基板の結晶面の一部を前記カーボンナノチューブ層の複数の空隙によって露出させる第二ステップと、前記基板の結晶面にエピタキシャル層を成長させ、前記カーボンナノチューブ層を覆う第三ステップと、前記基板及び前記カーボンナノチューブ層を除去する第四ステップと、を含む。 (もっと読む)


【課題】本発明は、エピタキシャル構造体及びその製造方法に関する。
【解決手段】本発明のエピタキシャル構造体の製造方法は、少なくとも一つのエピタキシャル成長面を有する基板を提供する第一ステップと、前記基板のエピタキシャル成長面に複数の空隙を含む第一カーボンナノチューブ層を配置する第二ステップと、前記基板のエピタキシャル成長面に第一エピタキシャル層を成長させて、前記第一カーボンナノチューブ層を包ませる第三ステップと、前記第一エピタキシャル層の表面に複数の空隙を含む第二カーボンナノチューブ層を配置し、前記第二カーボンナノチューブ層が配置された表面は、前記第一エピタキシャル層のエピタキシャル成長面である第四ステップと、前記第一エピタキシャル層のエピタキシャル成長面に第二エピタキシャル層を成長させて、前記第二カーボンナノチューブ層を包ませる第五ステップと、を含む。 (もっと読む)


【課題】本発明は、エピタキシャル構造体及びその製造方法に関する。
【解決手段】本発明のエピタキシャル構造体の製造方法は、少なくとも一つのエピタキシャル成長面を有する基板を提供する第一ステップと、前記基板のエピタキシャル成長面にバッファ層を成長させる第二ステップと、前記バッファ層の表面に複数の空隙を含むカーボンナノチューブ層を配置し、前記基板のエピタキシャル成長面の一部を前記カーボンナノチューブ層の複数の空隙によって露出させる第三ステップと、前記バッファ層の表面にエピタキシャル層を成長させ、前記カーボンナノチューブ層を覆う第四ステップと、前記基板を除去する第五ステップと、を含む。 (もっと読む)


【課題】基板収容孔に基板を収容したトレイを基板サセプタ上に配置するプラズマ処理装置において、トレイを高効率で冷却する。
【解決手段】トレイ15の厚み方向に貫通する基板収容孔19A〜19Dに基板2が収容される。チャンバ3内の誘電体板23は、トレイ15の下面15cを支持するトレイ支持面28と基板載置部29A〜29Dを備え、静電吸着用電極40,202,204を内蔵している。トレイ15がトレイ支持面28に載置されると、基板載置部29A〜29Dの上端面である基板載置面31に基板2が載置される。基板2は静電吸着用電極40,204により基板載置面31に静電吸着され、トレイ15は静電吸着用電極202,204によりトレイ支持面28に静電吸着される。冷媒循環装置61により誘電体板23が冷却される。 (もっと読む)


【課題】気相成長時に原料ガス流量は大きく変化した場合においても、基板上において、膜質劣化のない膜体を高い再現性の下に作製することが可能な気相成長装置及び気相成長方法を提供する。
【解決手段】実施形態の気相成長装置は、ガス導入部、及びこのガス導入部と連続するようにして設けられたガス反応部を含む反応管と、前記反応管の、前記ガス反応部の内部に表面が露出し、前記表面に基板を載置及び固定するためのサセプタとを具える。また、前記反応管の前記ガス導入部において、前記反応管の高さ方向において順次に配置されてなる複数のガス導入菅と、前記反応管の外部において、前記複数のガス導入管それぞれに供給すべきガスを切り替えるための切替装置とを具える。 (もっと読む)


【課題】異なる組成の半導体層のそれぞれを、高面内均一性及び高再現性で形成できる気相成長装置を提供する。
【解決手段】III族原料ガスとV族原料ガスとを用いて基板上に窒化物系半導体層を気相成長させる気相成長装置が提供される。気相成長装置は、基板が配置される反応室と、反応室に連通し、III族及びV族原料ガスのいずれか一方を基板に向けて供給する第1ガス供給部と、反応室に連通し、III族及びV族原料ガスのいずれか他方を基板に向けて供給する第2ガス供給部と、を備える。第1及び第2ガス供給部の少なくともいずれかは、III族及びV族原料ガスを混合する混合部を有する。ガス供給部は、III族及びV族原料ガスの一方を供給して第1半導体層を成長させる動作と、混合されたガスを供給してIII組成比が第1半導体層とは異なる第2半導体層を成長させる動作と、を切り替え可能である。 (もっと読む)


【課題】 半導体素子を歩留まりよく製造する。
【解決手段】 (a)成長基板上に、III族窒化物系化合物半導体から構成され、空洞を備える空洞含有層を形成する。(b)空洞含有層上に、n型のIII族窒化物系化合物半導体から構成され、空洞を閉じるn層を形成する。(c)n層上に、III族窒化物系化合物半導体から構成される活性層を形成する。(d)活性層上に、p型のIII族窒化物系化合物半導体から構成されるp層を形成する。(e)p層上方に、支持基板を接着する。(f)空洞が形成されている位置を境界として、成長基板を剥離する。工程(a)または(b)において、空洞を閉じる前に、加熱を行いながら、層を構成する材料の少なくとも一部の供給を減少させる。 (もっと読む)


【課題】コーティング付き基材および同基材を作製する方法を提供する。
【解決手段】コーティングは、チタンオキシカーボナイトライドまたはチタンアルミニウムオキシカーボナイトライドの少なくとも1つの層を含み、該層は、酸素原子のチタン原子に対するパーセント比が約0.01〜約0.09の範囲内、アルミニウム原子のチタン原子に対するパーセント比が約0〜約0.1の範囲内にある。コーティングは、硬度のヤング率に対する比率が少なくとも0.06である。基材は切削インサートとすることができる。上記コーティング付き基材を作製する方法も開示され、その方法では、チタンオキシカーボナイトライドまたはチタンアルミニウムオキシカーボナイトライドを含むコーティング層は、ガスの混合物を使用して、約750℃〜約950℃で基材に中温化学蒸着(MT−CVD)により堆積され、水素ガスの窒素ガスに対する比率は5を超える。 (もっと読む)


【課題】処理対象である複数の基板が多段に配置される熱処理装置であって、プロセスガスの温度の差を基板間で低減することにより処理の均一性を改善することができ、基板到達前にプロセスガスが分解するのを抑制することが可能な熱処理装置を提供する。
【解決手段】複数の基板を多段に支持する支持体;前記支持体を内部に収容可能な反応管であって、該反応管の側部に設けられ前記反応管の内部にガスを供給する複数のガス供給管と、該複数のガス供給管の対向位置からずれて設けられ前記ガスを排気する排気部とを有する当該反応管;及び前記反応管の内部に収容された前記基板を加熱する第1の加熱部であって、該第1の加熱部の下端から上端まで延び、前記複数のガス供給管が通り抜けられるスリットを有し、該スリット以外の内面が前記反応管の側部に面する第1の加熱部;を備える熱処理装置が開示される。 (もっと読む)


【課題】高周波電極の基板が載置されている側の空間におけるプラズマ生成密度の均等化を図ることができる基板支持部材を提供する。
【解決手段】高周波電極12には孔121またはスリット122が設けられている。高周波電極12はそのα倍(0.25≦α≦0.75)の半径αrを有する同心円Cにより複数の範囲に区分されている。当該範囲のそれぞれにおける孔121またはスリット122の分布または配置態様が差別化されている。 (もっと読む)


【課題】厚いGaN膜を成長中に剥離して、高品質のGaN自立基板を歩留まり良く製造することができる方法を提供することを目的とする。
【解決手段】GaN自立基板を製造する方法であって、サファイア基板上にZnO膜を形成する工程と、850℃以下の温度で前記ZnO膜上にGaN膜を剥離しないように形成する低温成長工程と、その後、昇温して950℃以上の温度で、GaN膜を追加形成するとともに該GaN膜を基板から剥離させて、GaN自立基板を得る高温成長工程とを含むことを特徴とするGaN自立基板の製造方法。 (もっと読む)


【課題】サファイア、GaAs、シリコンまたは炭化ケイ素といった異種基板上で第3族窒化物の半導体材料の層を1層以上成長させる上で遭遇する、少なくともいくつかの問題に対処する。
【解決手段】ラミネート基板システムは、AlxGa1-xN(5)と支持基板材料(4)(または当該材料と一般化学組成が同一である材料)とが交互に積層された多数の層からなる変成遷移領域(2)を含む。転位密度が低い第3族窒化物半導体素子(2)がラミネート基板システム上に形成される。変成遷移領域(2)の多数の層(4、5)は、格子定数が支持基板(1)(支持基板付近)の格子定数から素子(3)(素子付近)の格子定数へと成長方向に沿って変化する超格子構造を形成する。 (もっと読む)


【課題】優れた結晶性を有する窒化物半導体を再現性良く形成することができる窒化物半導体の製造方法を提供する。
【解決手段】c面を主面とするサファイア基板とアルミニウムを含有するターゲットとを距離をあけて配置する工程と、サファイア基板とターゲットとの間にDC−continuous方式により電圧を印加して行なわれるDCマグネトロンスパッタ法によりサファイア基板の表面上にアルミニウム含有窒化物中間層を形成する工程と、を含み、アルミニウム含有窒化物中間層上に(004)面を主面とする窒化物半導体を形成する工程とを含む窒化物半導体の製造方法である。 (もっと読む)


【課題】潤滑油環境下での摺動において、従来以上に摩擦係数が低減された摺動部材を提供することができるDLC被膜とその製造方法を提供する。
【解決手段】摺動部材の摺動側表面にコーティングされた、少なくとも1種類の金属が含有されたDLC被膜であって、炭素同士の結合の割合および金属と炭素の結合の割合の合計に対して、金属と炭素の結合の割合が20%以下であるDLC被膜。プラズマCVD装置を用いて、DLC被膜を製造するDLC被膜の製造方法であって、炭化水素と不活性ガスの導入雰囲気中で、金属ターゲットをスパッタリングしつつ炭化水素を解離させて、基材上に、前記金属を含有するDLC被膜を成膜するDLC被膜の製造方法。 (もっと読む)


【課題】単結晶炭化ケイ素の液相エピタキシャル成長に要するコストを低減する。
【解決手段】フィード材11及びシード材12のそれぞれは、結晶多形が3Cである多結晶炭化ケイ素を含む表層を有する。フィード材11及びシード材12のそれぞれにおいて、表層の励起波長を532nmとするラマン分光解析によって、結晶多形が3Cである多結晶炭化ケイ素に由来のL0ピークが観察される。L0ピークの972cm−1からのシフト量の絶対値は、フィード材11の方がシード材12よりも小さい。 (もっと読む)


【課題】結晶成長の際に反応室内に付着した堆積物を効果的に洗浄する方法を含むIII族窒化物結晶の製造方法を提供する。
【解決手段】III族窒化物結晶11の成長方法は、反応室110にHClガス1を導入して反応室110内を洗浄する工程と、洗浄された反応室110内でSi原子をドーピングしながらIII族窒化物結晶11を気相成長させる工程と、を含む。または、反応室110にHClガスを導入して反応室110内を洗浄する工程と、洗浄された反応室110に取り付けられたトラップ装置116内に副生成物として生成した塩化アンモニア粉末をトラップしながらIII族窒化物結晶11を気相成長させる工程と、を含む。 (もっと読む)


【課題】サセプタ及び化学気相蒸着装置に関する。
【解決手段】化学気相蒸着装置用サセプタ100は、光透過性物質からなり基板101を収容するポケットを少なくとも一つ備えるサセプタ本体部104と、サセプタ本体部の上面に形成され、光吸収性物質になって前記サセプタ本体部を通過した光を吸収する光吸収部107とを含む。ポケットは、底部と、底部から上昇した位置に基板の周囲部を載せるように形成された係止段差部とを備え、係止段差部は、サセプタ本体部に形成されるか、または、ポケットまで延長されて形成された光吸収部の端部に形成される。 (もっと読む)


【課題】高品質なグラフェンの品質を保ちながら、転写プロセスを必要としない透明の絶縁体基板上にグラフェンを直接成膜する
【解決手段】MgO(111)単結晶薄膜を、NiO(111)エピタキシャル薄膜をバッファー層としてYSZ(111)単結晶基板上に成膜して、このMgO(111)単結晶薄膜の上に単層グラフェンを成膜する。 (もっと読む)


61 - 80 / 756