説明

Fターム[4K058FC21]の内容

金属の電解製造 (5,509) | 電解液(浴)の製造、再生、精製 (444) | 分離手段 (241) | 電気化学的 (42)

Fターム[4K058FC21]の下位に属するFターム

Fターム[4K058FC21]に分類される特許

1 - 20 / 33


【課題】銅と鉄とが共存する硫化鉱物から、効率良く且つ経済的に高品位の銅を回収する方法を提供すること。
【解決手段】本発明の銅及び鉄を含有する硫化鉱物から銅を回収する方法は、銅及び鉄を含有する硫化鉱物を微粉砕する粉砕工程S1と、この粉砕工程S1にて得られた硫化鉱物の粉末を溶液に懸濁した後、105〜180℃の温度にて、高圧下で酸素と接触させ、銅を浸出させる銅浸出工程S2と、この銅浸出工程S2にて得られた浸出液に中和剤を添加し、鉄を沈殿させる鉄沈殿工程S3と、この鉄沈殿工程S3にて得られたスラリーを固液分離処理し、銅を含有する溶液を得る固液分離工程S4と、上記銅を含有する溶液を電解始液として電解採取処理し、銅を回収する銅回収工程S5と、を有することを特徴とする。 (もっと読む)


【課題】従来の電解用陽極よりも、低い塩素過電圧を示すことができ、電力消費量を大幅に削減することのできる金属電解採取方法を提供すること。
【解決手段】電解用陽極を使用し、塩化浴を使用した金属電解採取方法において、電解用陽極として、チタン又はチタン合金よりなる基体と該基体の表面に積層された複数の単位層からなる被覆層よりなり、該単位層が、酸化イリジウムと酸化ルテニウムと酸化チタンの混合物よりなる第1被覆層と、白金と酸化イリジウムの混合物よりなる第2被覆層とよりなり、前記基体表面上に形成された単位層中の内側の第1被覆層を前記基体表面と接触させ、かつ前記被覆層の最外層に形成された単位層中の外側の被覆層を第2被覆層とし、前記基体の表面に熱分解焼成法により前記複数の被覆層を設けた後、前記熱分解焼成法による焼成温度より高い温度でポストベークした電解用陽極を使用して、金属の電解採取を行うことを特徴とする金属電解採取方法。 (もっと読む)


【課題】Pb−free廃はんだから、効率的かつ経済的に高収率で、高純度のスズまたは銀を回収する方法を提供する。
【解決手段】1)スズ、銀またはこれらの混合物を含むPb−free廃はんだから陽極を製造する段階と、2)塩化物イオンを含む電解液内で、1)から製造された陽極及び陰極に電流を印加する段階と、3)前記印加された電流によって開始された反応に応じて、陽極表面に銀が濃縮された陽極スライムを形成させ、陰極にスズを電着させる段階と、4)銀が濃縮された陽極スライムを化学的に溶解した後、固液分離を行い、残渣である銀及び濾過液から抽出された銀粉末で粗銀陽極を製造し、硝酸銀電解液内で銀を電解精錬する段階と、を含む。 (もっと読む)


【課題】カソード吊手の金具形状に不具合があっても、金属粒の発生を抑制しアノードボックスを損傷することがない電解採取設備を提供する。
【解決手段】カソード2と、カソード2に対置して用いるアノード1とからなる組を電解槽内に設置して電解採取する電解採取設備であって、カソード2が、カソードビーム22からカソード吊手23を介して吊り下げられたカソード板21からなり、アノード1が、アノードビーム12からアノード吊手13を介して吊り下げられたアノード板11と、アノード板11を囲む箱状のアノードボックス14とからなり、アノードボックス14における、カソード吊手23に対向する部位に電気的遮蔽物としての濾布19が貼付されている。濾布19によりカソード吊手23とアノードボックス14の間の通電が遮蔽されるので、金属粒子が生成しにくくなり、引き上げ時のアノードボックス14の損傷も生じない。 (もっと読む)


【課題】アミン系剥離液使用により蓄積するレジスト樹脂、炭酸アンモニウム塩、溶解金属を連続的に除去し、剥離液の再生装置、方法を提供する。
【解決手段】剥離装置1内で循環する使用済み剥離液2を配管経路3を通じて電解槽4の陽極ドラム5およびカチオン交換膜6間に導入する。一方で電解槽4には陽極ドラム5に対向する陰極7が、カチオン交換膜6を介して設置されており、陰極7は再生済みの剥離液8によって満たされている。陽極と陰極間の電気伝導は陽イオンの移動による電気伝導が可能となっているので電気的には隔離されていない。陽極ドラム5及び陰極には、電気給手段として電源9が接続されている。陰極及び陽極間に直流電流を通電することで、使用済み剥離液に含まれるレジスト樹脂を陽極ドラム5の表面上に電着でき、剥離液中からレジスト樹脂を除去できる。 (もっと読む)


【課題】白金族元素及び希土類元素を単一のイオン液体に溶解させ、これらを選択的に分離する白金族元素及び希土類元素の回収方法、並びに該回収方法に用いる回収装置の提供。
【解決手段】イオン液体34中に白金族元素及び希土類元素を含有する資源15を溶解させた後、該イオン液体から該白金族元素を電解析出により回収し、該白金族元素の回収処理を経たイオン液体から該希土類元素を電解析出により回収した後、該希土類元素の回収処理を経たイオン液体に残存する希土類元素を電気泳動により濃縮する白金族元素及び希土類元素の回収方法であり、前記イオン液体は、四級ホスホニウムのカチオン、又は四級アンモニウムのカチオンと、(SOF)、N(CN)、[CF(CFSO、CFSO、PF、及びBFからなる群から選択されるアニオンとから構成される。 (もっと読む)


【課題】高価で寿命の短い剥離液を使用せず、剥離後のエッチングもすることなく、連続して効率良く、ニッケルめっきが施された銅又は銅合金屑からニッケルを剥離して、ニッケルめっきが剥離された銅又は銅合金屑を銅又は銅合金の製造用原料として使用し、しかも剥離液の廃液処理の問題も解消し、その廃液からニッケルも回収する。
【解決手段】剥離液Eとして硫酸溶液が貯留された第一電解槽2中に、表面にニッケルめっきが施された銅又は銅合金屑Cを浸漬することにより、Ni+HSO→NiSO+Hなる化学反応によりニッケルめっきを剥離し、剥離されたニッケルを含有する使用済み剥離液を圧力透析装置3にて、濃縮された硫酸ニッケル溶液Mと濃縮された硫酸溶液Rとに分離し、濃縮された硫酸ニッケル溶液Mを第二電解槽4中にて電解することによりニッケルDを回収し、濃縮された硫酸溶液Rは第一電解槽2に戻す。 (もっと読む)


【課題】アルカリ金属アマルガムを含むアノード、アルカリイオン伝導性を有する固体電解質、及び融解アルカリ金属であるカソードを用いた電気分解によりアルカリ金属アマルガムからアルカリ金属を製造する方法。
【解決手段】大気圧下または大気圧よりわずかに大きな圧力下で攪拌することにより、アノードであるアルカリ金属アマルガムに運動状態が付与されることを特徴とする、アルカリ金属アマルガムからアルカリ金属を製造する方法。 (もっと読む)


【課題】一連のプロセスにおいてレアメタルを単離・回収することを可能とし、二次廃棄物の発生量を低減させるレアメタルの製造技術を提供する。
【解決手段】電解質溶液を電解して陰電極にRe酸化物を採取する工程(S15)と、前記Re酸化物を回収し溶融塩電解質において電解してRe金属を採取する工程(S17)と、Nd含有残渣液を回収する工程(S21)と、前記Nd含有残渣液を処理してNd酸化物を生成する工程(S22〜S26)と、前記Nd酸化物を溶融塩電解質において電解してNd金属を採取する工程(S27)と、Dy含有残渣液を回収する工程(S31)と、前記Dy含有残渣液を処理してDy酸化物を生成する工程(S32〜S34)と、前記Dy酸化物を溶融塩電解質において電解してDy金属を採取する工程(S35)と、を含む。 (もっと読む)


【課題】液晶基板等をエッチング又は酸洗した塩化鉄系廃液の処理を行うに際し、これまで着目されていなかった硝酸を含有する塩化鉄系廃液を処理対象とし、当該塩化鉄系廃液からインジウムを金属単体又は合金として効果的に回収することが可能な塩化鉄系廃液の処理方法を提供する。
【解決手段】少なくともインジウム及び塩化第二鉄を含有する塩化鉄系廃液の処理方法であって、塩化鉄系廃液は硝酸を含有するものであり、塩化鉄系廃液に塩酸及び鉄を添加することにより、硝酸を還元除去するとともに、塩化第二鉄を塩化第一鉄に還元する還元工程と、還元された塩化鉄系廃液からインジウムを金属単体又は合金として回収する回収工程と、を包含する。 (もっと読む)


【課題】非鉄製錬、基板や電子部品などのリサイクル原料の溶融炉や産業廃棄物の溶融処理炉の煙灰から鉛を回収する方法において、アノード鋳造された鉛の電解精製においてフッ素除去設備を設置する必要なく、平滑な電着鉛を回収することができる鉛の電解方法を提供する。
【解決手段】鉛、スルファミン酸からなる電解液中にノイゲンBN-1390及び又はノイゲンBN-2560を1〜700mg/Lになるように添加することで平滑な電着鉛を回収することを特徴とする鉛の電解方法。 (もっと読む)


【課題】タリウム含有硝酸カリウムに含まれるタリウムを回収し有効利用するとともに、硝酸カリウムについても回収して有効利用することができるタリウム及び硝酸カリウムの回収方法及び回収装置を提供する。
【解決手段】タリウム含有硝酸カリウムを溶解槽1にて水に溶解して水溶液とし、電気分解槽3にてこの水溶液直流電流を通電することにより、溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、金属タリウムまたは酸化タリウムを回収するタリウム回収工程と、固液分離機5によってタリウムが除去された水溶液を結晶缶6にて濃縮することにより、溶存する硝酸カリウムを結晶として析出させ、固液分離機8によって硝酸カリウム結晶を回収する硝酸カリウム回収工程と、を有する。 (もっと読む)


【課題】工程数が少なく、二次廃棄物の発生量が少ない方法で、ハフニウムを含むジルコニウム化合物から金属ジルコニウムを得る製造方法を提供する。
【解決手段】金属ジルコニウムの製造方法は、ジルコニウム酸塩化物およびハフニウム酸塩化物を含む第1の物質からハフニウム酸塩化物を分離することにより、ジルコニウム酸塩化物の含有率が高くなった第2の物質を得る分離工程と、前記第2の物質を仮焼して、ジルコニウム酸塩化物およびジルコニウム酸化物の少なくともいずれかを含む第3の物質を得る仮焼工程と、前記第3の物質を陰極57に接触させた状態で溶融塩13中に保持し、陽極56との間に電圧を印加して直接還元することにより金属ジルコニウムを得る直接還元工程と、を有する。 (もっと読む)


【課題】Auと酸化剤を含有する水溶液中のAuを、低コストで効率良く、しかも高い回収率で回収する方法を提供する。
【解決手段】貯留層2に収容されたAuと酸化剤を含有する水溶液からAuを回収する際に、前記水溶液を貯留層2と電解槽1に循環させながら電気分解し、Auを析出させる工程と、電解槽1において析出したAuを、弁5,6をとじることによって前工程の水溶液よりも少ない量のAu再溶解液に溶解してAu濃縮液を得る工程と、前記Au濃縮液を電解槽7に移し、酸化剤を中和してから電気分解を行いAuを回収する工程と、を含む方法。 (もっと読む)


【課題】 パーマネントカソード(PC)方式の銅電解精製工場において、計画停電後にできる電気銅外層の薄膜電着により、剥ぎ取り困難となる状況をできるだけ回避することを目的とする。
【解決手段】
PC法による銅の電解精製において、電解精製工場の計画停電時に、該電解精製工場に常設された主整流器より電解槽へ定常通電される電流を穏やかに落とし、次に、該電解精製工場に付設された補助整流器により、低い電流で停電復旧まで通電を行う。
(もっと読む)


【課題】鉄、ヒ素その他の不純物元素を含有する塩化ニッケル水溶液から、鉄及びヒ素を効率的に除去することができる塩化ニッケル水溶液の精製方法を提供する。
【解決手段】鉄、ヒ素その他の不純物元素を含有する塩化ニッケル水溶液に、酸化剤とpH調整剤を添加し、酸化還元電位(Ag/AgCl電極基準)を1050〜1080mVに、かつpHを1.95〜2.00に調整して、鉄及びヒ素を水酸化物沈殿として除去することを特徴とする。 (もっと読む)


【課題】少ない労力とエネルギーを用い塩化鉄液中のインジウムおよび/または錫を回収するとともに塩化鉄溶液を再利用することができるインジウムおよび/または錫を含有する塩化鉄溶液の処理方法および処理装置を提供する。
【解決手段】インジウムおよび/または錫を含有する塩化鉄溶液の再生処理方法であって、前記塩化鉄溶液中の塩化第二鉄を塩化第一鉄に還元して第1溶液を作製する還元工程と、前記第1溶液中のインジウムおよび/または錫を分離して第2溶液を作製する分離工程と、前記第2溶液中の塩化第一鉄を塩化第二鉄に酸化する酸化工程を含む塩化鉄溶液の再生処理方法と、該方法を行なう再生処理装置を提供する。 (もっと読む)


【課題】系外(亜鉛製錬工程など)へインジウムを極力排出することのなく自工程でのインジウム実収率が高く且つ低コストのインジウム回収方法を提供する。
【解決手段】In、Cu、Cd等を含有する原料を浸出して酸浸出液を得る工程と、この液にS0を添加してCuの一部を硫化銅としたスラリーを得る1段目工程と、このスラリーに硫化剤を添加してCuの残部を硫化物として脱銅液と銅残渣を得る2段目工程と、脱銅液に硫化剤を添加して硫化物を得る硫化工程と、硫化物に酸溶液中でSO2ガスを吹き込みSO2浸出液とS0含有残渣を得るSO2浸出工程と、S0含有残渣をS0として1段目工程に繰り返す工程を有し、好ましくはさらに、SO2浸出液に亜鉛末を添加してスポンジを析出させる工程と、スポンジを浸出する工程と、浸出液に硫化剤を添加してCdを硫化物とし精製In溶液を得る工程と、精製In溶液を電解採取し高純度Inを得る工程とを有する。 (もっと読む)


【課題】銅、鉄、及びコバルトのほかに、鉛、亜鉛等の不純物元素や水素のようなガス成分を除去することができる高純度ニッケルの製造方法を提供する。
【解決手段】不純物元素を含有する酸性塩化ニッケル水溶液を、強塩基性陰イオン交換樹脂と接触させ、不純物元素イオンを吸着除去し、精製液を得る工程(A)、該精製液を、カソードを設置したカソード室と不溶性アノードを設置したアノード室とを備えた電解槽を用いて電解採取に付し、電解ニッケルを得る工程(B)、及び該電解ニッケルを、5000℃以上の水素含有高温雰囲気下に水素プラズマ溶解に付し、電解ニッケルに残存する蒸発成分を除去し、精製金属ニッケルを得る工程(C)を、含むことを特徴とする。 (もっと読む)


【課題】Ca、Na等のメタルフォグ形成金属含有溶融塩を含む溶融塩に溶解しているメタルフォグ形成金属を除去して他方の溶融塩中へ移行、高濃度化させる方法及び装置を提供する。
【解決手段】メタルフォグ形成金属除去濃縮槽1aの濃縮領域2及びこの領域と隔てられた除去領域3に、メタルフォグ形成金属含有溶融塩を含み且つ前記メタルフォグ形成金属が溶解した溶融塩を保持し、更にこれら両領域内の溶融塩と接触させてメタルフォグ形成金属を含有する溶融合金5を保持し、前記除去領域内の溶融塩側の電極板が濃縮領域内の溶融塩側に対して+極となるように前記メタルフォグ形成金属含有溶融塩の分解電圧未満の電圧を印加する。この方法は、本発明の装置により容易に且つ好適に実施できる。なお、この方法及び装置は、Ti又はTi合金の製造方法を実施する際に有効に適用できる。 (もっと読む)


1 - 20 / 33