説明

Fターム[4M104DD89]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 電極材料の処理 (7,014) | 限定部分の物質、物性の変換 (333) | 電極表面のみ(電極層間界面を含む) (197)

Fターム[4M104DD89]の下位に属するFターム

Fターム[4M104DD89]に分類される特許

121 - 140 / 172


可変抵抗材料を含むメモリセルを有するメモリデバイスは、単一のナノワイヤを含む電極を含む。各種方法は、そのようなメモリデバイスを形成するために使用し得、そのような方法は、メモリセルに、単一のナノワイヤの第1の端部と一定量の可変抵抗材料の間に接点を設置することを含む。電子システムは、そのようなメモリデバイスを含む。
(もっと読む)


【課題】半導体装置の製造方法に関し、ゲート電極のトリミングを良好に実施できるように、また、レジストトリミングを行ってもレジスト倒れやレジスト変形が発生しないように、更に、従来のトリミングがプラズマエッチングで実施されていることに起因する問題を解消し、更にまた、ゲート電極のトリミングに関連してサイドウォールの形成時にSTI部が過剰に損傷されないようにしようとする。
【解決手段】金属を含む材料である金属シリサイド或いは金属単体から成るゲート電極をもつ半導体装置を作製する工程に於いて、ゲート電極14Gのエッチング後にゲート部の表面を酸化させ、ゲート部を有機酸を含むガス状物質に曝露すると共に加熱して金属と有機酸との反応生成物を揮発させてゲート電極14Gのトリミングを行う。 (もっと読む)


【課題】金属ペーストを用いた直描方式パターニング配線を形成するに際して、低温かつ短時間でひび割れなく金属ペーストを乾燥させ、導電性の高い金属配線を提供する。
【解決手段】本発明は、有機溶媒中に金属粒子が含有されている金属ペーストを用いたパターニング配線を直描方式により形成し、該配線に対して、有機溶媒を昇華させる凍結乾燥処理を行い、そして、凍結乾燥処理配線を原子状水素により金属表面酸化膜の還元をする。 (もっと読む)


【課題】信頼性の高いフルシリサイドMOSFETおよびシリサイドMOSFETを従来よりも簡単に同一基板上に形成することができる半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、半導体基板10上にゲート絶縁膜30を形成し、ゲート絶縁膜上に第1のゲート電極40および第2のゲート電極42を形成し、第1のゲート電極および第2のゲート電極上にマスク材料90を堆積し、第2のゲート電極を被覆したまま第1のゲート電極の上面を露出させるようにマスク材料をパターニングし、マスク材料を利用して第1のゲート電極の上部をエッチングし、マスク材料を除去し、第1のゲート電極および第2のゲート電極上に金属膜100を堆積し、第1のゲート電極の全部および第2のゲート電極の上部をシリサイド化することを具備する。 (もっと読む)


【課題】窒化シリコン膜の成膜工程において、ポリメタルゲートの一部を構成する高融点金属の酸化物による基板の汚染を低減する半導体集積回路装置の製造技術を提供する。
【解決手段】タングステン膜を含むゲート電極7A、7B、7C上に窒化シリコン膜11を形成する際、CVD装置のチャンバ内をタングステンの酸化物が還元される雰囲気にし、チャンバ内にアンモニアを供給し続けながら、ウエハ1を600℃以上の温度で昇温する。次に、チャンバ内にアンモニアとモノシランとを供給し、これらのガスを反応させることによって窒化シリコン膜11を堆積する。次に、モノシランの供給を止め、チャンバ内にアンモニアのみを供給し続けながらウエハ1を400℃まで降温した後、チャンバ内を窒素で置換し、ウエハをアンロードする。 (もっと読む)


【課題】プラスチック基板やガラス基板などに低温工程で形成するものの、数nmの厚みでゲート絶縁膜を形成することにより、低電圧動作、且つ商用化が容易な有機薄膜トランジスタ及びその製造方法を提供する。
【解決手段】基板上に金属をパターニングし、蒸着してゲート電極12を形成した後、常温乃至100℃以下でO2プラズマ工程によりゲート電極12を直接酸化して10nm以下の厚みで金属酸化膜を成長させることで、ゲート電極の表面に沿ってゲート絶縁膜13を形成する。次いで、ゲート絶縁膜13の上に有機半導体膜14を蒸着し、有機半導体膜14上にソース/ドレイン電極15/16を互いに一定の距離をもって離隔するように形成する。二重ゲート絶縁膜とする場合には、有機絶縁膜を、自己組立工程またはスピンコーティング工程で金属酸化膜の上に形成する。 (もっと読む)


【課題】チャネリングの発生と製造工程の増加とを防ぐことができる半導体装置及びその製造方法を提供する。
【解決手段】ゲート電極106及び第1,第2のソース/ドレイン領域119A,119Bの上部が非晶質化シリコン層110となっている。これにより、上記第1,第2のソース/ドレイン領域119A,119Bを形成するための不純物の注入を行っても、非晶質化シリコン層110がその不純物の障壁となるので、チャネリングの発生を防ぐことができる。また、上記非晶質化シリコン層110は除去しなくてもよいので、製造工程の増加も生じない。 (もっと読む)


【課題】半導体装置に使用するための特性が優れて安定したタングステンシリサイド膜を得る。
【解決手段】不活性ガス雰囲気中にシリコンウェーハを配置して昇温し、ジクロルシランを導入してシリコンウェーハの表面反応を起こさせた後、ジクロルシランにWF6を加えて導入して上記シリコンウェーハに薄くタングステンシリサイドを堆積させる。次にWF6 を止めてジクロルシランを導入し、その後に、ジクロルシランに加えてWF6を導入してタングステンシリサイドの堆積を行ないタングステンシリサイド膜を形成する。 (もっと読む)


【課題】 本発明は、基板との密着性が高い酸化被膜を形成して、配線材料等の酸化を防止できると共に、導電率が高い配線、電極又は端子電極を備えた液晶表示装置及びその製造方法を提供することにある。
【解決手段】 本発明では、TFT型液晶表示装置のTFT側基板の上に形成されたゲート配線あるいはゲート電極であって、配線あるいは電極は、二つの異なる絶縁層あるいは絶縁物に挟持された構造を有し、これらは銅を主成分とした第一の層と、当該第一の層の外周部を被覆する酸化物からなる第二の層からなり、さらに第二の層の組成式が、CuXMnYSiZO(0<X<Y,0<Z<Y)であること、を特徴とする。 (もっと読む)


【課題】配線抵抗及び不良が減少したアレイ基板を提供する。
【解決手段】絶縁基板120上にバリア層を形成する。その後、バリア層上に銅または銅合金を含むゲートライン131及びゲートラインに電気的に接続されるゲート電極118を形成する。その後、ゲートライン131及びゲート電極118の表面を窒化プラズマ処理する。続いて、絶縁基板120上にゲートライン131及びゲート電極118をカバーするゲート絶縁膜126を蒸着する。続いて、ゲート絶縁膜126上にデータライン133、データライン133に電気的に接続されるソース電極117、ソース電極117と離隔されて配置されるドレイン電極119、及びゲート電極118上でソース電極117とドレイン電極119との間に配置される半導体パターンを形成する。 (もっと読む)


【課題】 有機TFTにおいて、電子注入効率とホール注入効率を改善した電極と有機半導体の組み合わせをそれぞれ判別する手法を提供し、n型チャネルFETとp型チャネルFETの2種類のFETを実現し、さらに、相補型MOS(CMOS)トランジスタを提供する。
【解決手段】 電極金属−有機半導体界面における真空準位シフトΔを電極と有機半導体の構成元素の物理定数から一般的に導く手法を導く。電極金属を電気化学的な手法により変化させ、電子注入とホール注入を制御できる電極を作成する。それらの電極によりn型チャネルFETとp型チャネルFETの2種類のFETを実現し、さらに、相補型MOS(CMOS)トランジスタを提供する。 (もっと読む)


低接触抵抗CMOS集積回路(50)とその製造方法が提供される。CMOS集積回路(50)は、N型の回路領域(72、74)に電気的に結合された第1遷移金属(102)と、P型の回路領域(76、78)に電気的に結合され、第1遷移金属とは異なる第2遷移金属(98)と、を含む。導電性バリア層(104)は第1遷移金属の各々の上に重なり、第2遷移金属およびプラグ金属(110)は導電性バリア層の上に重なる。
(もっと読む)


【課題】本発明は、微細なコンタクトホールを有する絶縁膜を形成可能な半導体装置の製造方法を提供する。
【解決手段】背面側基板101の表面側に設けられたドレイン電極106の表面の所望の箇所に、撥水性パターンSを塗布形成する第1工程と、ドレイン電極106上を含むゲート絶縁膜104上に、撥水性パターンSよりも表面エネルギーの高い絶縁材料含有液を塗布することで、撥水性パターンS上にコンタクトホール108aを有する層間絶縁膜108を形成する第2工程とを有することを特徴とする半導体装置の製造方法である。 (もっと読む)


【課題】アルミニウムを配線に用いた装置において、ヒロックやウィスカーの発生による影響を防止する。
【解決手段】本発明のアクティブマトリクス型電気光学装置は、珪素膜と、前記珪素膜に接したゲイト絶縁膜と、前記ゲイト絶縁膜に接したゲイト電極と、前記ゲイト電極上の窒化珪素膜と、前記珪素膜に電気的に接続されたソース電極及びドレイン電極とを有し、前記ゲイト電極はアルミニウム膜又はアルミニウムを主成分とする膜からなり、前記ゲイト電極中における酸素濃度が8×1018個cm−3以下であり、炭素濃度が5×1018個cm−3以下であり、窒素濃度が7×1017個cm−3以下であることを特徴とする。 (もっと読む)


【課題】ドープしたポリシリコン膜及びチタンシリサイド膜からなるゲート電極表面が再酸化する際、チタンシリサイド膜の非正常的な酸化を防止できる半導体素子のゲート電極形成方法を提供する。
【解決手段】半導体基板上にゲート酸化膜及びポリシリコン膜を形成する段階、前記ポリシリコン膜上に第1TiSix膜を蒸着する段階、前記第1TiSix膜上にシリコン膜を蒸着する段階、前記シリコン膜上に第2TiSix膜を蒸着する段階、熱処理によって、前記第1TiSix膜、前記シリコン膜及び前記第2TiSix膜からシリコン過剰状態のTiSi膜を形成する段階、前記TiSi膜上に絶縁膜を蒸着する段階、前記絶縁膜、TiSi膜、ポリシリコン膜及びゲート酸化膜をパターニングして、TiSi膜/ポリシリコン膜の積層構造のゲート電極を形成する段階、ゲート再酸化を行う段階を含む構成とする。 (もっと読む)


【課題】薄膜トランジスタにおいて、薄膜トランジスタ上に形成される配線の段切れを防止する。
【解決手段】絶縁表面上に設けられ、ソース領域と、ドレイン領域と、チャネル領域と、ソース領域とチャネル領域との間及びドレイン領域とチャネル領域との間に形成された低濃度不純物領域と、を含む半導体層と、半導体層上に設けられたゲイト絶縁膜と、ゲイト絶縁膜上に設けられたゲイト電極と、ゲイト電極の表面に設けられたゲイト電極の酸化物と、ゲイト電極の酸化物を介してゲイト電極の側面に設けられ、且つゲイト電極の側面から低濃度不純物領域と重なる領域まで延在するように設けられた窒化珪素膜と、窒化珪素膜及びゲイト電極の酸化物を介してゲイト電極の側面に設けられ、且つ窒化珪素膜を介して低濃度不純物領域と重なるように設けられたサイドウォールと、を有する薄膜トランジスタを含む。 (もっと読む)


【課題】浅い接合領域上に、浅いニッケルモノシリサイド層を形成する。
【解決手段】絶縁膜で画成されたシリコン面上に金属ニッケル膜を堆積し、シラン雰囲気中、220℃を超えない温度で熱処理し、組成がNi2Siのシリサイド層を、接合領域との界面および金属ニッケル膜表面に、未反応の金属ニッケル膜が残るように形成した後、前記未反応の金属ニッケル膜をエッチング除去し、熱処理してニッケルモノシリサイド層に変換する。 (もっと読む)


【課題】浅い接合領域上に、低抵抗で均一なニッケルモノシリサイド層を形成する。
【解決手段】絶縁膜およびシリコン領域が形成されたシリコン基板上に金属ニッケル膜を、前記絶縁膜およびシリコン領域を覆うように形成し、前記シリコン基板を熱処理し、前記シリコン領域表面および前記金属ニッケル膜の表面に、組成が主としてNi2Siで表される第1のニッケルシリサイド層を形成し、前記第1のニッケルシリサイド層形成工程の後、前記金属ニッケル膜をウェットエッチング処理により除去し、前記第1のニッケルシリサイド層を、シランガス中における熱処理により、ニッケルモノシリサイド(NiSi)を主とする第2のニッケルシリサイド層に変換する。 (もっと読む)


【課題】本発明は、製造工程を単純化してマスク数を低減させることにより、生産性の向上を図る液晶表示装置用アレイ基板及びその製造方法を得ることを目的とする。
【解決手段】
本発明は、従来より少ないマスク工程を利用して液晶表示装置用アレイ基板を製造して工程を単純化して製造効率を向上させるだけでなく製造費用を大幅に節減する。又は、本発明による液晶表示装置用アレイ基板は、別途のアレイ基板保護膜を形成せずに、チャンネル保護膜形成時に酸化膜を形成して保護膜とすることで、不良を防止して画質を向上させるとともに、別途の装備と材料を要しないので材料費が節減される。 (もっと読む)


【課題】異なる高さのコンタクト線を有する高密度MOSFET回路を製造するための構造、方法などを提示すること。
【解決手段】このMOSFET回路は、コンタクト線(500、1300)と、コンタクト線(500、1300)の近くに位置するゲート(310、1210)とを含む。コンタクト線(500、1300)は、ゲート(310、1210)の高さよりも低い高さを含む。このMOSFET回路はさらに、ゲート(310、1210)の近くに位置するゲート・スペーサ(710、715、1610、1615)を含み、コンタクト線(500、1300)とゲート(310、1210)との間のコンタクト線(500、1300)の近くに位置するコンタクト線スペーサを含まない。 (もっと読む)


121 - 140 / 172