説明

Fターム[5E040AA11]の内容

硬質磁性材料 (8,571) | 磁性材料(金属・合金) (1,628) | Feを主とする金属、合金 (244)

Fターム[5E040AA11]に分類される特許

81 - 100 / 244


【課題】電子機器から放出される不要電磁波の低減及び電子機器内の不要電磁波の干渉によって生じる電磁障害の抑制が可能で、表面の滑り性に優れ、高い難燃性及びノイズ抑制効果を有し、しかも環境への負荷が小さい磁性シート、並びにその簡易かつ低コストで効率的な製造方法の提供。
【解決手段】本発明の磁性シート100は、磁性層10と、凹凸形成層20とを有してなり、磁性層10は、バインダー、磁性粉、及び難燃剤を少なくとも含有し、該難燃剤が、ケイ素原子を含むメラミンシアヌレート及びカルボン酸アミドを含むメラミンシアヌレートの少なくともいずれかを少なくとも含み、凹凸形成層20は、難燃性を有し、かつベック平滑度が、20秒/mL以下である。本発明の磁性シートの製造方法は、磁性層形成工程と、形状転写工程とを少なくとも含む。 (もっと読む)


【課題】腫瘍細胞を選択的に破壊する等、種々の用途に効果的に利用可能な新規な形状の磁性微粒子、その製造方法及びその製造装置を提供する。
【解決手段】コア部1とそのコア部2の周りにある多数のヒゲ状突起3とからなり、そのヒゲ状突起3を含む粒子径Dに対するヒゲ状突起3の長さLの割合が5%以上30%以下である磁性微粒子1により、上記課題を解決する。このとき、ヒゲ状突起3を含む粒子径Dの平均が100nm以上300nm以下の範囲内である磁性微粒子1は、ガスフロースパッタ法で形成された鉄微粒子として好ましく得ることができ、腫瘍細胞内に貪食又はエンドサイトーシスされて外部から加わる変換磁場により該腫瘍細胞を破壊する磁性微粒子として利用できる。 (もっと読む)


【課題】軟磁性相の硬磁性相に対する体積比率を上げても保磁力の低下を起こすことなく、飽和磁化を向上させることができる交換スプリング磁性粉末を提供する。
【解決手段】硬磁性相と軟磁性相との各々の粒子サイズを、超常磁性臨界径より大きく単磁区臨界径以下とし、粒子自体がナノサイズの単結晶粒子構造となるようにすることで、軟磁性相の硬磁性相に対する体積比率を上げても保磁力の低下を起こすことなく、飽和磁化を向上させることができるようにした。 (もっと読む)


【課題】高保磁力、優れたコンパウンド流動性を維持しながら、着磁特性、金型等磨耗性が改善された鉄基希土類系ナノコンポジット磁石を提供する。
【解決手段】組成式T100-x-y-z-t-m(B1-p+CpxyZrzTitm(TはFeまたは、CoおよびNiからなる群から選択された1種以上の元素とFeとを含む遷移金属元素、Rは1種以上の希土類元素、Mは、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Nb、Mo、Ag、Hf、Ta、W、Pt、Au、およびPbからなる群から選択された1種以上の金属元素)で表現される鉄基希土類系ナノコンポジット磁石である。組成比率x、y、z、t、m、およびpが、それぞれ、7≦x≦9原子%、6.5≦y≦9原子%、2≦z≦5原子%、0.5≦t≦3原子%、4≦z+t≦7原子%、0.5≦z/(z+t)≦0.95、0≦m≦5原子%、0≦p≦0.5を満足する。 (もっと読む)


【課題】還元・窒化に要する時間を短縮し、磁気特性に優れた窒化鉄系磁性微粒子を効率良く製造する方法を提供する。
【解決手段】本発明の窒化鉄系磁性微粒子の製造方法では、まず、酸化鉄微粒子を用意する(第1工程)。次に、水素を含むプラズマによって前記酸化鉄微粒子に対する還元処理を行い、前記酸化鉄微粒子からα−Fe金属微粒子を形成する(第2工程)。更に、窒素を含むプラズマによってα−Fe金属微粒子に対する窒化処理を行い、α−Fe金属微粒子からFe162化合物微粒子を形成する(第3工程)。第2工程と第3工程との間において前記α−Fe金属微粒子を大気に暴露しない、窒化鉄系磁性微粒子の製造方法。 (もっと読む)


【課題】大きなピークや傾斜をもたない平坦なスペクトルを示す、換言すれば、より一層広い波長範囲に渡って一様に高い放射率特性を得ることができる電磁波放射体を提供する。
【解決手段】規則的な方向に配向した複数のカーボンナノチューブから成るカーボンナノチューブ配向集合体を備える電磁波放射体であって、前記カーボンナノチューブ配向集合体が、かさ密度が0.002〜0.2g/cmであり、かつ厚みが10μm以上であると共に、その配向度が、特定の条件で定義されるものとすること。 (もっと読む)


【課題】水素還元熱処理することによってFeの粗大化部分の形成が抑制されて個々の粒子が孤立したFePd/Fe磁性ナノ粒子を与え得るPd/Feナノ粒子、その製造方法、およびFeの粗大化部分の形成が抑制されて個々の粒子が孤立しているFePd/Fe磁性ナノ粒子を提供する。
【解決手段】TEM像、HAADF像およびEDXによる元素分析の少なくとも1つで評価してコア/シェル構造が確認できるPdコア相とFeシェル相とからなり、EDXで求めた平均のPd組成比率が50atm%以下であるコア/シェル型のPd/Feナノ粒子、そのコア/シェル型のPd/Feナノ粒子の製造方法、コア/シェル型Pd/Feナノ粒子を水素還元熱処理してなるFePd/Feナノ粒子。 (もっと読む)


【課題】磁性金属粒子と、磁性金属粒子より熱伝導性がよい熱伝導性粒子との高充填化を図ることで、熱伝導特性と電磁波抑制特性の両者の機能が良好な熱伝導性シートを提供する。
【解決手段】電子部品14と、この電子部品14が発熱する熱を放熱させる金属製放熱部材12との間に配置される熱伝導性シート11において、電子部品14から放出される電磁波を吸収する球状の磁性金属粒子と、磁性金属粒子よりも熱伝導性が高い熱伝導性粒子とを含有する可撓性樹脂からなり、磁性金属粒子の平均粒径は、熱伝導性粒子の平均粒径よりも大きく、当該熱伝導性シートに占める磁性金属粒子の体積率は55[vol%]以上であることを特徴とする。 (もっと読む)


【課題】海水に対して耐食性、耐久性に優れた耐海水用磁性材料を提供する。
【解決手段】磁性体からなる基板の海水と接触する表面に、CrN、TiN、AlN、BN、BCN、AlBNからなるナイトライド系材料、および水素を含むダイヤモンドライクカーボン(DLC)、TiCからなるカーボン系材料から選択される少なくとも1種以上の材料で構成される被覆層を有し、該被覆層は1層もしくは2層以上の被覆層で構成されていることを特徴とする。 (もっと読む)


【課題】工業的利用に適した生産性の高い方法で、絶縁性が高く、飽和磁化の劣化が小さく、さらには生体物質抽出能に優れた金属微粒子を提供する。
【解決手段】磁性金属を主成分とする平均10μm以下の粒径を有する磁性金属粒子核が、互いに異なる2種以上の無機材料で多層に被覆されており、前記金属粒子核に接して一部分または全体を被覆する前記無機材料は、Si、V、Ti、Al、Nb、Zr、Crの少なくとも1種の元素の酸化物で構成され、前記金属粒子核に接して一部分または全体を被覆する無機材料の外側に、非晶質のケイ素酸化物の被覆層を有することを特徴とする。 (もっと読む)


【課題】本発明は、表面加工された合金の製造方法及び表面加工された合金を提供することを目的とする。
【解決手段】塑性加工処理されたFe−Al合金に光輝焼鈍を施し、該光輝焼鈍が施された合金を700〜1200℃で加熱することを特徴とする、表面加工されたFe−Al合金の製造方法である。 (もっと読む)


本発明は、正6面体または8面体状のフェライトナノ粒子およびその製造方法に関する。より詳しくは、本発明は、超常磁性またはフェリ磁性を帯びるフェライトナノキューブまたは8面体のフェライトナノ粒子、金属前駆体、界面活性剤および溶媒の混合物を加熱する段階を含む、フェライトナノキューブの製造方法に関する。
(もっと読む)


【課題】高周波で広帯域の電磁波を吸収する電波吸収材料を得る。
【解決手段】電波吸収材料は、超常磁性及び単磁区構造を示す粒径を含むような粒度分布を有する磁性ナノ粒子を、非磁性絶縁体中に分散させることで得られる。超常磁性かつ単磁区構造の磁性ナノ粒子を用いることにより、強磁性共鳴周波数を超えた周波数に磁気共鳴を持たせることができる。また、これらの磁性ナノ粒子に粒度分布を付与することにより、共鳴周波数が分布をもつため広帯域での磁気損失を生じさせる。更に、磁性ナノ粒子を非磁性絶縁体中に分散させることにより、高電気抵抗が得られるため渦電流損失を抑制することが可能となり、低周波での損失を抑制することが可能となる。よって、高周波で広帯域の電磁波を吸収する電波吸収材料を得ることが可能となる。 (もっと読む)


【課題】高い磁気強度を有する永久磁石及び永久磁石回転子の製造方法を提供する。
【解決手段】第1のスリーブ1と、前記第1のスリーブ1の内側開口部を塞ぐべく配置された第1のキャップ2及び第2のキャップ3と、前記第1のキャップ2と第2のキャップ3との間にて前記第1のスリーブ1の前記内側開口部に形成され、強磁性粉末材料軟磁性粉末材料の少なくとも一方、又は強磁性及び軟磁性粉末材料の混合物から成る圧縮された非結合の磁性粉末材料4を含んで構成されている。 (もっと読む)


【課題】異方性を高めたFe/FePdナノコンポジット磁石の製造方法を提供する。
【解決手段】Pdナノ粒子のコアをFeナノ粒子のシェルが被覆するFe/Pdナノ粒子を水素還元熱処理することにより、FePdナノ粒子のコアをFeナノ粒子のシェルが被覆するFe/FePdナノコンポジット磁石の製造方法において、上記水素還元熱処理を磁場中で行う。 (もっと読む)


【課題】FePd相をコアとし、Fe相をシェルとするFePd/Feナノコンポジット磁石を、コアのFePd相の規則度を高め、シェルのFe相の粗大化を防止して合成する方法を提供する。
【解決手段】FePdをコアとし、FeをシェルとするFePd/Feナノコンポジット磁石の製造方法であって、
Pdの塩を界面活性剤を含む溶媒中に溶解させ、還元剤を加えて加熱することでPdナノ粒子を合成する工程1、
Feの塩を界面活性剤を含む溶媒中に溶解させ、上記Pdナノ粒子を添加し、還元剤を加えて加熱することで、該Pdナノ粒子の表面にFeまたはFeの酸化物を析出させてPd/FeOxナノコンポジット粒子(x=0〜1.5)を合成する工程2、
上記Pd/FeOxナノコンポジット粒子を水素雰囲気中で処理温度450℃〜550℃、処理時間3時間以上で熱処理して、上記FePd/Feナノコンポジット粒子を合成する工程3
を含む方法。 (もっと読む)


【課題】平均長軸径が5〜100nmの微粒子でありながら、粒度が均斉であると共に、超微細な粒子の存在割合が低減された、良好な粉体の保磁力分布SFDを有する強磁性金属粒子粉末を提供する。
【解決手段】炭酸水素アルカリ水溶液又は炭酸アルカリ水溶液と水酸化アルカリ水溶液との混合アルカリ水溶液と第一鉄塩水溶液とを反応させて得られる第一鉄含有沈殿物を含む水懸濁液を非酸化性雰囲気下において熟成させた後に、酸化剤によってゲータイト核晶粒子を生成させ、次いで、該核晶粒子表面にゲータイト層を成長させ、得られたゲータイト粒子粉末を100〜250℃で加熱処理し、300〜650℃、水蒸気が90vol%以上で加熱処理してヘマタイト粒子粉末とし、更に、加熱還元する。 (もっと読む)


【課題】
Fe系磁粉の表面にフッ素化合物、とりわけ希土類フッ素化合物を形成した磁石体は、希少資源である希土類の使用量低減、及び磁気特性向上が課題である。
【解決手段】
Fe系磁粉または焼結体または仮成形体の表面に光透過性のあるフッ素化合物系溶液を利用目的に応じ必要な部分に塗布し、内部に層状のフッ素化合物を成長させることにより、少ない希土類使用量で磁気特性を向上できる。
【効果】
高保磁力,高磁束密度,高比抵抗などを満足させることができ、高耐熱,低損失(高効率)の磁気回路に使用できる。 (もっと読む)


【課題】電子機器から放出される不要電磁波の低減、及び電子機器に生じる電磁障害の抑制が可能で、低温―速硬化性であり、臭気を発生させることなく、さらに、腐食が生じることない磁性シート組成物、磁性シート、及び磁性シートの製造方法の提供。
【解決手段】本発明の磁性シート組成物は、アルミニウムキレート系潜在性硬化剤と、下記式(A)で表されるシラノール化合物乃至アルコキシシラン化合物と、エポキシ樹脂と、アクリル樹脂と、磁性粉とを含有することを特徴とする。
【化10】
(Ar)Si(OR) 式(A)
(式中、mは2及び3のいずれかであり、mとnとの和は4である。Arは置換されてもよいアリール基であり、Rは水素原子及びメチル基のいずれかである。nが複数である場合、Rは同一でも異なっていてもよい。) (もっと読む)


【課題】飽和磁化と真の保磁力がさらに高い窒化鉄系磁性粉末材料及び磁気記録媒体を提供すること。
【解決手段】比表面積30m/g以上55m/g以下の酸化鉄粉末を300〜500℃の範囲内で還元処理して金属鉄粉末を生成し、得られた金属鉄粉末を窒化処理し、Fe16相を主相とする窒化鉄系磁性粉末材料とする。上記窒化処理は、アンモニアガス気流中またはアンモニアガスを含んだ混合ガス気流中で行われると良い。 (もっと読む)


81 - 100 / 244