説明

Fターム[5F045AD11]の内容

気相成長(金属層を除く) (114,827) | 成膜条件−成膜温度 (8,040) | 700≦T<800℃ (666)

Fターム[5F045AD11]に分類される特許

121 - 140 / 666


【課題】最大発振周波数fmaxを高くしてダイヤモンド電界効果トランジスタの特性を大きく向上させ、かつ電圧降下を小さく抑えることにより実用レベルに到達させること。
【解決手段】「ソース・ゲート電極間隔dSG、ゲート・ドレイン電極間隔dGDを狭くすること」と「ソース電極の厚さt、ドレイン電極の厚さtを厚くすること」とを両立させるために、ソース電極およびドレイン電極を、エッチング溶液を用いてエッチングする層とレジストを用いてリフトオフする層とに分けて形成する。これにより電極の逆メサ部を小さくすることができるため、ソース電極とゲート電極との間隔を小さくして最大発振周波数fmaxを上げ、かつソース電極およびドレイン電極の厚みを厚くして電圧降下を小さく抑えることができる。 (もっと読む)


【課題】ダイヤモンド薄膜内に存在する結晶欠陥、不純物等を減少させ、高品質なダイヤモンド薄膜を作製可能なダイヤモンド薄膜作製方法を提供すること。
【解決手段】ダイヤモンドが安定な高圧力下でアニールを行う。これにより、結晶中に含まれる格子欠陥等が回復、除去され、ダイヤモンド結晶薄膜を高品質化する事ができる。「(ダイヤモンドが)安定な、安定に」とは、ダイヤモンドがグラファイト化せずにダイヤモンドの状態を保つ状態を指す。ダイヤモンドが安定にアニール出来る領域内でアニールを行う温度(アニール温度、とも呼ぶ)Tおよびアニールを行う圧力(アニール圧力、とも呼ぶ)Pが決定される。この領域は、図21に示される、P>0.71+0.0027TまたはP=0.71+0.0027Tを満たし、なおかつP≧1.5GPaの領域である。このような領域は、図21中の斜線部分である。 (もっと読む)


【課題】従来よりも原子レベルで平坦な表面を有する窒化物半導体薄膜及びその成長方法を提供すること。
【解決手段】ミスカットを有するGaN基板101のステップフロー成長(第1の成長工程)により制限領域102内に形成されたテラス202に、第1の成長工程よりも大きな供給量でTMG又はTEGを供給する。これにより、テラス202の上にGaNの2次元核301が発生するが(図3(a)参照)、発生する2次元核301の個数が1個以上100個以下発生するだけの時間だけこの第2の成長工程を行う。次に、TMG又はTEGの供給量を、第2の成長工程よりも小さくする(第3の成長工程)。これにより、複数の2次元核301が横方向成長して1分子層の厚さの連続的なGaN薄膜302となる(図3(b)参照)。第2と第3の工程を交互に繰り返すことにより、2分子層以上の厚さのGaN薄膜303を成長することも可能である(図3(c)参照)。 (もっと読む)


【課題】ダイヤモンド半導体膜へのV族元素のドーピング効率を向上させて、電子素子への実用に供することが可能なダイヤモンドのn型半導体膜を提供する。
【解決手段】気体におけるAsと炭素Cとの比率(As/(As+C))が2ppm〜500000ppmの範囲になるように炭素を含む原料ガスとAsドーパントガスを用い、マイクロ波パワーが350Wから750Wの範囲にあり、基板表面温度が700℃から900℃の範囲にあり、As流量が1マイクロモル毎分から750マイクロモル毎分までの範囲にあるマイクロ波プラズマ化学気相堆積(CVD)法によりn型ダイヤモンドが得られる。マイクロ波パワーが350Wから750Wの範囲で、移動度は200cm2/(Vs)程度になり、n型伝導が実現さる。ドーパントとしてAsの代わりにSbを用いても同様の効果が得られる。 (もっと読む)


【課題】ピットの拡大を防ぎかつクラスターの発生を抑制して高品質の窒化物半導体を得ることを可能にする。
【解決手段】不活性ガスからなる第1キャリアガスを用いて基板上にInGa1−xN(0<x≦1)を含む第1半導体層を第1成長温度で成長させる工程と、前記不活性ガスと、この不活性ガスよりも少量の水素とを含む第2キャリアガスを用いて、前記第1半導体層上に、前記第1成長温度よりも高い第2成長温度でInGa1−yN(0≦y<1、y<x)を含む第2半導体層を成長させる工程と、
前記第2キャリアガスよりも水素の含有量の少ない第3キャリアガスを用いて、前記第2半導体層上に、前記第2成長温度で、InGa1−zN(0≦z<1、z<x)を含む第3半導体層を成長させる工程と、を備えている。 (もっと読む)


【課題】 窒化物半導体結晶膜を均一成長させることが出来る窒化物半導体結晶膜成長装置を提供する。
【解決手段】 窒化物半導体結晶膜成長装置は、内部の温度及び圧力を制御可能なチャンバと、前記チャンバ内において回転軸で支持され、成長基板を設置するためのサセプターと、前記サセプター上の成長基板に対して、前記成長基板表面と水平方向に原材料ガスを噴射する原材料ガス供給手段と、前記サセプター上の成長基板の上方から、前記成長基板表面に対して三次元方向45°〜90°の傾斜角度で、前記原材料ガスの噴射方向と同一面内方向に向けて、前記原材料ガスを押圧する第1の押圧ガスを噴射する第1の押圧ガス供給手段と、前記サセプター上の成長基板の上方から、前記成長基板表面に対して三次元方向45°〜90°の傾斜角度で、前記成長基板端部における前記原材料ガスを除去する第2の押圧ガスを噴射する第2の押圧ガス供給手段と、前記チャンバ内から排気ガスを搬出する排気手段とを有する。 (もっと読む)


【課題】表面に結晶粒界がない高配向ダイヤモンド膜を、一定の形状及び寸法で規則的に配列することができ、意図せぬ方位の結晶が発生しないようにした低コストの高配向ダイヤモンド膜の製造方法を提供する。
【解決手段】(001)オフ面基板上に、[100]方向に成長するように、第1の高配向ダイヤモンド膜1を成長させる。次いで、格子状のマスク2を第1の高配向ダイヤモンド膜1上に形成し、その後、平坦化膜としての第2の高配向ダイヤモンド膜をステップフロー成長により成長させる。その後、マスクを除去する。 (もっと読む)


【課題】ブラスト処理が困難な凹凸の大きい複雑な表面やアスペクト比の大きな穴内面などに対しても適切に表層部を除去して内部の略均一な組織を露出させ、高い付着強度でダイヤモンド被膜をコーティングできるようにする。
【解決手段】ステップS1のコーティング前処理では、酸素プラズマにより基材12の表面を酸化させるとともに、超音波洗浄でその酸化物を除去するため、本焼結の際に形成される焼結肌が適切に除去され、その上に形成されるダイヤモンド被膜18の付着強度が向上する。ステップS1−1の酸化処理では、基材12に負のバイアス電圧を印加するため、基材12の表面に沿って高密度の酸素プラズマが略均一に生成され、アスペクト比の大きな穴内面16に対しても適切に酸化処理が施され、穴内面16を含む基材12の表面全域において焼結肌が短時間で適切に除去される。同様の処理でダイヤモンド被膜18の脱膜処理を行うこともできる。 (もっと読む)


【課題】面内均一性の高い膜を形成する。
【解決手段】石英材で構成された複数のリング状プレートを、少なくとも表面が炭化珪素材で構成された複数本の支柱にて支持したボートにて、各リング状プレートの内周側に基板周縁が配置されるように複数の基板を保持しつつ処理室に搬入する工程と、前記処理室にシリコン含有ガスと酸素含有ガスを供給し、前記ボートに保持された前記複数の基板上及び前記複数のリング状プレートに酸化シリコン膜を形成する工程とを有する。 (もっと読む)


【課題】十分な導電性を付与したIII族窒化物結晶を短時間で成長可能とする。
【解決手段】III族のハロゲン化物ガスとNHガスを用いてIII族窒化物結晶を下地基板上に450μm/hourよりも大きく2mm/hour以下の範囲の成長速度で成長する場合において、ドーピング原料としてGeClを用いることによりIII族窒化物結晶
中にGeをドーピングし、III族窒化物結晶の比抵抗が1×10−3Ωcm以上1×10
−2Ωcm以下となるようにする。 (もっと読む)


【課題】反り返りがなく、面内のオフ角のばらつきが小さな窒化物系化合物半導体層を再現性よく成長させることができる窒化物系化合物半導体基板の製造方法、及び半導体デバイスの作製に好適な窒化物系化合物半導体自立基板を提供する。
【解決手段】成長用基板上に窒化物系化合物半導体層をエピタキシャル成長させる窒化物系化合物半導体基板の製造方法において、成長用基板として、(011)面を≒[010]方向に0〜2°(0°を除く)のオフ角で傾斜させた主面を有する希土類ペロブスカイト基板を用いる。 (もっと読む)


【課題】低温成長薄膜の特性を備え、様々な種類の光電素子及び電子素子を改善し、集積回路素子の品質を改善することができる反応装置を提供する。
【解決手段】反応装置500は、第1の加熱ユニット100及び第2の加熱ユニット200を備える。第1の加熱ユニット100と第2の加熱ユニット200とが向かい合うように配置して反応領域150を形成し、第1の加熱ユニット100の内側面と第2の加熱ユニット200の内側面とにより角度が形成され、第1の加熱ユニット100の温度と第2の加熱ユニット200の温度とを個別に制御する。第1の加熱ユニット100上に少なくとも1つの基板300を配置し、少なくとも1つの基板300が第1の加熱ユニット100と第2の加熱ユニット200との間に位置し、第1の加熱ユニット100上の少なくとも1つの基板300上に薄膜を形成する。 (もっと読む)


本発明の実施例として、半導体装置上のエピタキシャル領域を示した。ある実施例では、エピタキシャル領域は、成膜−エッチングプロセスを経て基板に成膜される。周期的な成膜−エッチングプロセスの間に、スペーサの下側に形成されるキャビティは、エピタキシャルキャップ層によって埋め戻される。エピタキシャル領域およびエピタキシャルキャップ層は、チャネル領域での電子移動度を改善し、短チャネル効果が抑制され、寄生抵抗が低下する。
(もっと読む)


【課題】大電流が印加されることにより高い発光出力が得られる半導体発光素子を製造できる半導体発光素子の製造方法を提供する。
【解決手段】基板11上に、第1n型半導体層12aと第2n型半導体層12bと発光層13とp型半導体層14とを順次積層する工程を具備し、第2n型半導体層12bを形成する工程において、基板11の温度を、前記発光層13を形成する際の前記基板11の温度未満の低温にして、前記第2n型半導体層12bに前記第1n型半導体層12aを超える高濃度でSiをドープする半導体発光素子1の製造方法とする。 (もっと読む)


【課題】TiO膜やSrTiO膜の結晶性を制御し、誘電率を増大させる。
【解決手段】基板上に立方晶もしくは斜方晶の結晶性を持つ第1の高誘電率絶縁膜を形成する工程と、第1の高誘電率絶縁膜上に第2の高誘電率絶縁膜を形成し、第1の高誘電率絶縁膜の結晶性を第2の高誘電率絶縁膜に反映させて、第2の高誘電率絶縁膜の結晶性をルチル構造とする工程と、を有する。 (もっと読む)


【課題】 高温領域において、膜中の不純物濃度が極めて低く、膜厚均一性が良好な絶縁膜を形成する。
【解決手段】 基板を収容した処理容器内に原料ガスを供給し排気して所定元素含有層を形成する工程と、加熱された大気圧未満の圧力雰囲気下にある処理容器内に酸素含有ガスと水素含有ガスとを供給し排気して所定元素含有層を酸化層に変化させる工程とを、その間に処理容器内をパージする工程を挟んで交互に繰り返して基板上に酸化膜を形成する工程を有し、所定元素含有層を形成する工程では、原料ガスを基板の側方に設けられたノズルを介して基板に向けて供給し、その際、そのノズルを介して原料ガスと一緒に不活性ガスまたは水素含有ガスを基板に向けて供給することで、基板表面と平行方向に流れる原料ガスの流速を、処理容器内をパージする工程において基板表面と平行方向に流れる不活性ガスの流速よりも大きくする。 (もっと読む)


【目的】
平坦性と配向性に優れ、低欠陥・低転位密度で、基板残留不純物の拡散・蓄積が極めて抑制されたZnO系単結晶の成長方法を提供する。また、高性能かつ高信頼性の半導体素子、特に、発光効率及び素子寿命に優れた高性能な半導体発光素子を提供する
【解決手段】
MOCVD法により、酸素を含まない有機金属化合物と極性酸素材料とを用い、アンモニア(NH)ガスを供給しつつ基板上に600℃ないし850℃の範囲の成長温度でZnO系単結晶層を成長する単結晶成長工程と、上記ZnO系単結晶層上に、n型及びp型ZnO系半導体層のうち少なくとも1つを含むデバイス層を成長する工程と、を有する。 (もっと読む)


【課題】異なる組成の半導体層のそれぞれを、高面内均一性及び高再現性で形成できる気相成長方法及び気相成長装置を提供する。
【解決手段】反応室に接続された複数のガス供給管の前記反応室内の複数の出口からIII族原料ガスとV族原料ガスとを前記反応室内に供給して前記反応室内に配置された基板上に窒化物系半導体層を成膜する気相成長方法であって、III族原料ガスとV族原料ガスとを互いに異なる出口から基板に向けて供給して、III族中におけるAl組成比が10原子パーセント以上の窒化物系半導体を含む第1半導体層を成長させる工程と、III族原料ガスとV族原料ガスとを混合して同じ出口から基板に向けて供給して、III族中におけるAl組成比が10原子パーセント未満の窒化物系半導体を含む第2半導体層を成長させる工程と、を備えた気相成長方法を提供する。 (もっと読む)


本発明の特定の実施形態例は、透明な導電性コーティング(TCC)としてグラフェンを使用することに関する。被覆しようとする表面を有する基材を供給する。自己組織化単分子膜(SAM)テンプレートを、被覆しようとする表面に配置する。前駆体分子を含む前駆体を供給する。ここで、前駆体分子は、多環式芳香族炭化水素(PAH)及びディスコチック分子である。前駆体を溶解して溶液とする。この溶液を、上にSAMテンプレートを配置した基材に適用する。前駆体分子をSAMテンプレートに光化学的に付着させる。基材を少なくとも450℃まで加熱すると、グラフェン含有膜が形成される。有利なことに、グラフェン含有膜は基材に直接、例えばリフトオフ法を必要とせずに、形成することができる。 (もっと読む)


【課題】動作電圧が低い窒化物半導体発光素子を提供することにある。さらには、動作電圧が低く、かつ光取り出し効率の高い窒化物半導体発光素子を提供することにある。
【解決手段】窒化物半導体発光ダイオード素子20は、n型窒化物半導体層12と、n型窒化物半導体層12上に形成された発光層13と、発光層13上に形成された第1のp型窒化物半導体層14と、第1のp型窒化物半導体層14の表面を被覆する部分と露出させる部分とが繰り返されるように第1のp型窒化物半導体層上に形成された中間層15と、中間層15の上に形成された第2のp型窒化物半導体層16とを備え、中間層15は、SiとNとを構成元素として含む化合物からなる。 (もっと読む)


121 - 140 / 666