説明

Fターム[5F058BF02]の内容

絶縁膜の形成 (41,121) | 無機絶縁膜の形成法 (10,542) | 気相堆積 (7,977) | 化学気相堆積 (2,639)

Fターム[5F058BF02]の下位に属するFターム

Fターム[5F058BF02]に分類される特許

81 - 100 / 519


【課題】疎水性基板上に良好な酸化膜を形成する成膜方法を提供する。
【解決手段】室温以上且つ水の沸点未満の第1の基板温度T1で、水の過飽和状態にした疎水性の基板11の基板表面110上に下地酸化膜12を原子層堆積法を用いて形成するステップと、第2の基板温度T2で、下地酸化膜12上に上部酸化膜13を原子層堆積法を用いて形成するステップとを含む。 (もっと読む)


【課題】塗布法や堆積法を用いて高品質な絶縁部材を半導体素子周辺に形成することのできる半導体装置の製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100の製造方法は、半導体基板2上に、Si系絶縁材料からなる絶縁膜10を付加的に形成する工程と、絶縁膜10上に触媒金属膜11を形成する工程と、触媒金属膜11を触媒として用いて絶縁膜10に酸化処理を施す工程と、酸化処理を施した絶縁膜10を加工してゲート絶縁膜4を形成する工程と、ゲート絶縁膜4を含むMOSFET1を形成する工程と、を含む。 (もっと読む)


【課題】耐湿性に優れ、信頼性に優れた低誘電率膜を用いて、高性能なパッシベーション膜を備えた表示装置を提供する。このようなパッシベーション膜を用いることにより、表示装置の薄膜化、軽量化、製造コスト削減が可能となる。
【解決手段】ボラジン骨格を有する重合体を含むことを特徴とする表示装置用パッシベーション膜とする、もしくはボラジン骨格を有する化合物及び/または重合体から得られる表示装置用パッシベーション膜を用いる。 (もっと読む)


酸化ケイ素層を形成する方法が開示される。これらの方法は、ラジカル前駆体とラジカル酸素前駆体の両方を炭素のないケイ素含有前駆体と同時に組み合わせるステップを含む。ラジカル前駆体およびケイ素含有前駆体の1つは窒素を含有する。このような方法の結果、ケイ素、酸素、および窒素含有層が基板上に堆積される。次いで、ケイ素、酸素、および窒素含有層の酸素含有量を増大させて、窒素をほとんど含有しない酸化ケイ素層を形成する。ラジカル酸素前駆体およびラジカル前駆体は、別個のプラズマまたは同じプラズマ内で作り出すことができる。酸素含有量の増大は、酸素含有雰囲気の存在下でこの層をアニールすることによって引き起こすことができ、膜の密度は、不活性環境中の温度をさらに高くすることによって、さらに増大させることができる。
(もっと読む)


酸化ケイ素層を形成する方法を説明する。この方法は、無炭素ケイ素含有前駆体を活性窒素および/または水素前駆体と混合するステップと、ケイ素窒素水素含有層を基板上に堆積するステップを含みうる。次に、ケイ素窒素水素含有層をケイ素酸素含有層に変換することが、オゾン含有雰囲気中で低温アニール(「硬化」)によって開始される。このオゾン含有雰囲気中でのケイ素窒素含有膜の酸化ケイ素への変換は不完全でもよく、酸素含有環境中でより高温のアニールによって増大させることができる。
(もっと読む)


【課題】冷却効率に優れ、安定的に絶縁膜を所望の特性に改質できる、冷却機構を有する紫外線照射装置を備えた半導体製造装置を提供する。
【解決手段】半導体製造装置は、紫外線発光部101と、紫外線発光部101との間に空間103が形成されるように、紫外線発光部101を覆うように配置された外套管102とを備える。外套管102は、冷却媒体が空間103の内部に流入する冷媒流入口104と、冷却媒体が空間103の外部に流出する冷媒流出口105とを有し、冷媒流出口105近傍における外套管102の内壁の上部高さは、冷媒流入口105近傍における外套管102の内壁の上部高さよりも大きい。 (もっと読む)


パターン付き基板上に高密度の間隙充填酸化ケイ素を形成するプロセスについて記載する。このようなプロセスは、特に狭いトレンチ内で間隙充填酸化ケイ素の密度を増大させる。密度は、広いトレンチおよび凹んだ開放領域内でも増大させることができる。処理の後では、狭いトレンチと広いトレンチ/開放領域内の間隙充填酸化ケイ素の密度は互いに接近し、エッチング速度の一致度が高まる。この効果は、パターンローディング効果の低減として説明することもできる。このプロセスは、酸化ケイ素を形成し、次いで平坦化するステップを伴う。平坦化により、狭いトレンチに近接して配置された新しい誘電体インターフェースが露出する。新しく露出されたインターフェースは、平坦化された表面をアニールし、かつ/またはプラズマに露出させることによって、高密度化処理を容易にする。
(もっと読む)


【課題】高誘電率ゲート絶縁膜およびメタルゲート電極を有するMISFETを備えた半導体装置の信頼性向上を図る。
【解決手段】nチャネル型MISFET用の高誘電率ゲート絶縁膜としてHfとLaとOとを主成分として含有するHf含有絶縁膜4aを形成し、pチャネル型MISFET用の高誘電率ゲート絶縁膜としてHfとAlとOとを主成分として含有するHf含有絶縁膜4bを形成する。それから、金属膜7とシリコン膜8を形成し、これらをドライエッチングでパターニングしてゲート電極GE1,GE2を形成する。その後、ゲート電極GE1,GE2で覆われない部分のHf含有絶縁膜4a,4bをウェットエッチングで除去するが、この際、フッ酸を含有しない酸性溶液でのウェット処理とアルカリ性溶液でのウェット処理とを行ってから、フッ酸を含有する酸性溶液でのウェット処理を行う。 (もっと読む)


【課題】常圧下で窒化源を用いたIII−V族半導体薄膜の結晶成長を行う窒化物薄膜成膜装置において、ガスの流量を維持しつつ、成膜されるシリコン窒化膜の膜厚を均一にすることができる窒化物薄膜成膜装置を提供する
【解決手段】基板10の表面に、常圧下において窒化源を用いてIII−V族窒化物半導体薄膜を成膜するためのシランガスとアンモニアガスとを含むガスを供給源としてシリコン窒化膜を成膜する窒化物薄膜成膜装置100であって、基板が載置されるサセプタ12aと、サセプタを下面から加熱するヒータ13と、サセプタの上面の前記ヒータによる均熱領域内に、基板の上流側に設けた基板の上面より高さが高い石英製のリング(障壁部材)11とを備えることを特徴とする。 (もっと読む)


【課題】パターニングされた段階化キャップ層の表面上に配される少なくとも1つのパターニングされ且つ硬化されたlow−k物質を含む配線構造を提供する。
【解決手段】少なくとも1つの硬化され且つパターニングされたlow−k物質およびパターニングされた段階化キャップ層は、その中に組み込まれる導電的充填領域を各々有する。パターニングされ且つ硬化されたlow−k物質は、1つ以上の酸感受性イメージング可能基を有する機能性ポリマー、コポリマー、あるいは少なくとも2種の任意の組み合わせのポリマー類もしくはコポリマー類またはその両方を含むブレンドの硬化生成物であり、段階化キャップ層はバリア領域として機能する下部領域および恒久的な反射防止膜の反射防止特性を有する上部領域を含む。 (もっと読む)


【課題】TiO膜とHfO膜との相互拡散を抑制でき、リーク電流の増加を抑制させる。
【解決手段】基板上に第1の高誘電率絶縁膜を形成する工程と、第1の高誘電率絶縁膜上に絶縁膜を形成する工程と、絶縁膜上に第2の高誘電率絶縁膜を形成する工程と、第1の高誘電率絶縁膜、絶縁膜および第2の高誘電率絶縁膜が形成された基板に対して熱処理を行う工程と、を有し、第1の高誘電率絶縁膜、絶縁膜および第2の高誘電率絶縁膜は、それぞれが異なる物質で構成されると共に、絶縁膜は、酸化アルミニウム膜、窒化アルミニウム膜、または、窒化シリコン膜で構成される。 (もっと読む)


【課題】ハイブリッド誘電体を有する拡張型バック・エンド・オブ・ライン(BEOL)相互接続構造を提供すること。
【解決手段】ビア・レベルでの層間誘電体(ILD)は、ライン・レベルでのILDとは異なることが好ましい。好ましい実施形態では、ビア・レベルのILDを低k SiCOH材料で形成し、ライン・レベルのILDを低kポリマー熱硬化性材料で形成する。 (もっと読む)


【課題】 膜中の炭素、水素、窒素、塩素等の不純物濃度が極めて低い絶縁膜を低温で形成する。
【解決手段】 基板を収容した処理容器内に所定元素を含む原料ガスを供給することで、基板上に所定元素含有層を形成する工程と、処理容器内に窒素を含むガスを活性化して供給することで、所定元素含有層を窒化層に変化させる工程と、大気圧よりも低い圧力に設定された処理容器内に酸素を含むガスと水素を含むガスとを活性化して供給することで、窒化層を酸化層または酸窒化層に変化させる工程と、を1サイクルとして、このサイクルを複数回繰り返すことで、基板上に所定膜厚の酸化膜または酸窒化膜を形成する工程を有する。 (もっと読む)


【課題】高誘電体ゲート絶縁膜/メタルゲート電極のMOSトランジスタ構造において、メタルゲート電極側壁の酸化層を抑制し、トランジスタ駆動能力を改善する。
【解決手段】基板101上に、金属含有膜110を形成する工程(a)と、反応室内において金属含有膜にアンモニアラジカルを曝露する工程(b)と、反応室内に不活性ガスを供給し、工程(b)において生じたガスを排気する工程(c)と、工程(b)及び工程(c)を所定の回数繰り返した後に、大気曝露することなく、反応室内において金属含有膜110を覆うシリコン窒化膜100aを形成する工程(d)とを備える。 (もっと読む)


基板(3)に上の多層コーティング及び多層コーティングを製造するための方法が提供される。前記コーティングは前記コーティングを通る原子の拡散を最小化するように構成され、前記方法は、基板を反応空間に導入し、前記基板上に第1の材料(1)の層を堆積し、及び前記第1の材料(1)の層上に第2の材料(2)の層を堆積することを含む。前記第1の材料(1)及び第2の材料(2)のの層の堆積は、前記反応空間に前駆体を交互に導入することを含み、続いてそれぞれの前駆体導入後にパージングすることを含む。前記第1の材料は、酸化チタン及び酸化アルミニウムを含む群から選択される前駆体、前記第2の材料は、酸化チタン及び酸化アルミニウムを含む群から選択される他の前駆体である。境界領域が、酸化チタン及び酸化アルミニウムの間に形成される。
(もっと読む)


【課題】誘電率が大きく、電極間に挟んで用いてもリーク電流値の小さい絶縁膜を提供する。
【解決手段】結晶化した酸化ジルコニウムからなる酸化ジルコニウム膜の2つと、非晶質であって、前記結晶化した酸化ジルコニウムよりも大きい誘電率を有する材料からなる結晶粒界分断膜とを有し、前記結晶粒界分断膜が、前記2つの酸化ジルコニウム膜に挟まれている絶縁膜を形成する。例えば、上部電極と下部電極の間に容量絶縁膜を有するキャパシタ素子で構成されたメモリセルを備える半導体装置における容量絶縁膜や、コントロールゲート電極とフローティングゲート電極の間にインターゲート絶縁膜を有する不揮発性メモリ素子を備えた半導体装置におけるインターゲート絶縁膜として好適である。 (もっと読む)


【課題】配線間の寄生容量を十分に低減できる構成を備えた半導体装置を提供することを課題の一とする。
【解決手段】ボトムゲート構造の薄膜トランジスタにおいて、ゲート電極層と重なる酸化物半導体層の一部にチャネル保護層となる酸化物絶縁層を形成し、その酸化物絶縁層の形成時に酸化物半導体層の周縁部(側面を含む)を覆う酸化物絶縁層を形成する。酸化物半導体層の周縁部(側面を含む)を覆う酸化物絶縁層は、ゲート電極層と、その上方または周辺に形成される配線層(ソース配線層や容量配線層など)との距離を大きくし、寄生容量の低減を図る。酸化物半導体層の周縁部を覆う酸化物絶縁層は、チャネル保護層と同一工程で形成されるため、工程数の増加なく、寄生容量を低減できる。 (もっと読む)


【課題】電極とキャパシタ用絶縁膜(金属酸化膜)との間に発生する気泡状の剥がれの発生を防止することができる半導体装置およびその製造方法を提供する。
【解決手段】基体上にソースガスを供給S1して、ALD法により金属窒化膜を3nm以下の膜厚で堆積S2,S3,S4し、金属窒化膜を酸化S5,S6して金属酸化膜を形成する工程を複数回繰り返して、基体上に、金属酸化膜からなる積層膜を形成する。これにより電極とキャパシタ用絶縁膜(金属酸化膜)との間に発生する気泡状の剥がれを防止することができる。 (もっと読む)


【課題】金属ゲート電極/高誘電体ゲート絶縁膜構造のMISトランジスタを有する半導体装置を高性能化する。
【解決手段】シリコン基板1上に、順に、ハフニウムおよび酸素を主体とする高誘電体膜hk1と、第1金属および酸素を主体とし、化学量論的組成よりも多くの第1金属を含むpMIS用キャップ膜Cp1を形成する。その後、シリコン基板1に、第1熱処理と第2熱処理とを順に施す。続いて、pMIS用キャップ膜Cp1上にゲート電極用金属膜EM1を形成し、これらを加工することでpMIS用金属ゲート電極pG1とpMIS用高誘電率ゲート絶縁膜pI1とを形成する。特に、第1熱処理では高誘電体膜hk1中の余剰酸素を除去し、第2熱処理では高誘電体膜hk1中にpMIS用キャップ膜Cp1中の第1金属を拡散させる。第1熱処理は、第2熱処理よりも低い温度で施す。 (もっと読む)


【課題】均一なエッチング、延いては均一な反応管内のクリーニングを行なう。
【解決手段】基板を反応管に搬入する第1の工程と、反応管内に複数の反応ガスを供給して基板を処理する第2の工程と、処理された基板を反応管外へ搬出する第3の工程と、反応管内をベース圧力に設定する第4の工程と、反応管内の排気を実質的に止めた状態で、第1の流量でクリーニングガスを供給して反応管内の圧力を徐々に上昇させる第5の工程と、第1の流量より少ない第2の流量でクリーニングガスを供給して、反応管内にクリーニングガスを充満させて封じ込める第6の工程と、クリーニングガスの供給を止めた状態で、反応管内を排気する第7の工程とを有し、第1の工程から第3の工程を2サイクル以上繰り返して基板を処理した後、第4の工程から第7の工程を2サイクル以上繰り返して反応管内に付着した反応生成物を除去する。 (もっと読む)


81 - 100 / 519