説明

Fターム[5F058BF02]の内容

絶縁膜の形成 (41,121) | 無機絶縁膜の形成法 (10,542) | 気相堆積 (7,977) | 化学気相堆積 (2,639)

Fターム[5F058BF02]の下位に属するFターム

Fターム[5F058BF02]に分類される特許

101 - 120 / 519


【課題】微細化されても、pチャネルトランジスタのチャネル領域には圧縮歪を、nチャネルトランジスタのチャネル領域には引っ張り歪をそれぞれ効果的に印加できる新しい歪技術を提供する。
【解決手段】pチャネルトランジスタ105のゲート電極は、引っ張り内部応力を持つpチャネルメタル電極110を有する。nチャネルトランジスタ106のゲート電極は、圧縮内部応力を持つnチャネルメタル電極116を有する。 (もっと読む)


【課題】ベーパライザーなしでソースガスを供給できるとともに、成膜レートを安定させ、良質なカーボン膜を形成して、アニール炉内清浄化の妨げとなる炉内低温部でのタール成分の発生を抑制し、炭化珪素半導体装置の品質の安定と歩留まりの向上を実現する炭化珪素半導体装置の製造方法を提供する。
【解決手段】ソースガスとして一酸化炭素を使用し、化学気相成長法によって炭化珪素ウエハWFの全表面にカーボン保護膜6を形成する。具体的には、成膜装置内を真空ポンプにより真空排気し、残存する酸素を極力除去した後、ArやHeなどの不活性ガスを流しながら、減圧下で成膜装置内の温度を500℃から1000℃の範囲に加熱する。この温度に達したら、不活性ガスの流入を停止し、成膜装置内にソースガスとして一酸化炭素を流入させることで、炭化珪素ウエハWFの全表面にカーボン保護膜6を形成する。 (もっと読む)


【課題】酸化剤である水を噴射弁により直接噴射する際の不具合を解消した成膜方法及びその成膜装置を提供する。
【解決手段】基板Wを内部に保持し、ポンプ71により減圧されている成膜室2内に、有機金属化合物を含む液体原料を噴射弁41により直接噴射して減圧沸騰現象により前記液体原料を気化させて、基板表面に有機金属化合物を吸着させる吸着工程と、成膜室2内に、酸化剤である水と水よりも気化潜熱の小さい有機溶媒との混合溶液を噴射弁51により直接噴射して減圧沸騰現象により前記混合溶液を気化させて、基板表面上に吸着した有機金属化合物を酸化する酸化工程と、を具備する。 (もっと読む)


チタン含有薄膜形成のための組成物と方法が提供される。この組成物は(メチルシクロペンタジエニル)Ti(NMe、(エチルシクロペンタジエニル)Ti(NMe、(イソプロピルシクロペンタジエニル)Ti(NMe、(メチルシクロペンタジエニル)Ti(NEt、(メチルシクロペンタジエニル)Ti(NMeEt)、(エチルシクロペンタジエニル)Ti(NMeEt)、および(メチルシクロペンタジエニル)Ti(OMe)からなる群から選択される少なくとも1種の前駆体と、前記少なくとも1種の前駆体以外の少なくとも1種の液化補因子とを含み、前記液化補因子は少なくとも1種の前駆体と協働するのに十分な量存在し、少なくとも1種の前駆体と組み合わされて液体組成物を形成する。 (もっと読む)


【課題】カバレッジ性能、及び、表面ラフネスの良好なアモルファスカーボン膜の形成方法および形成装置を提供する。
【解決手段】制御部100は、昇温用ヒータ16を制御して、複数枚の半導体ウエハWが収容された反応管2内を800℃〜950℃に加熱する。次に、制御部100は、MFC制御部を制御して、加熱された反応管2内にパージガス供給管18から窒素ガスを供給することにより、反応管2内をパージして半導体ウエハWからの水を除去する。そして、制御部100は、昇温用ヒータ16を制御して、反応管2内を所定の温度に加熱し、MFC制御部を制御して、加熱された反応管2内に処理ガス導入管17からエチレンを供給することにより、半導体ウエハWにアモルファスカーボン膜を形成する。 (もっと読む)


【課題】半導体装置の製造において、シリコン窒化膜の含有水素量を低減してメモリ動作の長期信頼性が確保された製造方法を提供する。
【解決手段】半導体装置の製造方法は、表面にシリコン窒化膜103が形成されたシリコン基板101aを収容した処理室内の圧力を大気圧よりも低くした状態で処理室内に酸素含有ガスと水素含有ガスとを供給して、シリコン窒化膜103の一部を酸化する工程と、シリコン窒化膜103の酸化した部分104を除去する工程と、を有する。 (もっと読む)


【課題】比較的低い温度のもとで、良質で、かつ、薄いシリコン酸化膜等を均一に形成することができる半導体装置の製造方法を提供する。
【解決手段】ステップ1では、半導体基板がモノシラン(SiH4)に暴露される。次に、ステップ2では、残存するモノシラン(SiH4)が排気される。そして、ステップ3では、半導体基板が亜酸化窒素プラズマに晒される。ステップ1〜3を1サイクルとして、必要とされる膜厚が得られるまでこのサイクルを繰り返すことで、所望のシリコン酸化膜が形成される。 (もっと読む)


【課題】爆発の危険性が高いSiHを用いずとも、安全、比較的低温度で、しかも低廉なコストでSi系膜を提供できる技術を提供することである。
【解決手段】Si系膜を形成する為の膜形成材料であって、
前記膜形成材料がt−CSiXを有する。 (もっと読む)


【課題】
CMOSトランジスタの一方のキャップ誘電体膜に対するアニール条件を、CMOSトランジスタの他方のキャップ誘電体膜に対するアニール条件とは独立に設定する。
【解決手段】
シリコン基板に、n型ウェルおよびp型ウェルを形成し、シリコン基板上方にHfO等の第1の高誘電率絶縁膜、AlO等の第1のキャップ誘電体膜を積層し、p型ウェル上方から、少なくとも第1のキャップ誘電体膜を除去し、第1の温度で第1のアニールを行なって、第1のキャップ誘電体膜の構成元素Al等をn型ウェル上方の第1の高誘電率絶縁膜中へ拡散させ、p型ウェルおよびn型ウェル上方にHfO等の第2の高誘電率絶縁膜、LaO等の第2のキャップ誘電体膜を積層し、n型ウェル上方の第2のキャップ誘電体膜を除去し、第1の温度より低い第2の温度で、第2のアニールを行なって、第2のキャップ誘電体膜の構成元素La等をp型ウェル上方の第2の高誘電率絶縁膜中へ拡散させる。 (もっと読む)


【課題】PチャネルMOSFETの閾値電圧の上昇を防ぎつつ、NチャネルMOSFETの閾値電圧の制御を確実に行う。
【解決手段】半導体装置1は、半導体基板10にゲート絶縁膜を形成し、NチャネルMOSFET形成領域に形成されたゲート絶縁膜に開口部を有し、かつゲート絶縁膜を覆うマスクを形成し、NチャネルMOSFET形成領域に位置するゲート絶縁膜上、およびPチャネルMOSFET形成領域に形成されたマスク上に第1の金属層を形成し、NチャネルMOSFET形成領域に形成されたゲート絶縁膜中に第1の金属層を形成する金属を熱処理により拡散させること、により製造される。 (もっと読む)


原子層堆積、化学気相堆積および有機金属化学気相堆積のような成膜プロセスにおいて出発原料として用いるための溶液型の先駆物質。この溶液型の先駆物質は、蒸発する間に分解と凝固を起こす傾向があるために気相堆積法のためには不適切であった固体先駆物質の使用を可能にする。 (もっと読む)


【課題】同一基板上に複数のゲート絶縁膜を有する半導体装置において、例えばコア部におけるHPトランジスタの高速性の確保と、例えばI/Oトランジスタ及びLPトランジスタのゲート耐圧の向上やゲートリーク電流の低減とを両立する。
【解決手段】半導体装置は、半導体基板11上に形成された複数のゲート絶縁膜を備えており、複数のゲート絶縁膜のうち、HPトランジスタ形成領域1Cにおける膜厚が最も薄いゲート絶縁膜は、シリコン酸化膜20よりなり、I/Oトランジスタ形成領域1A及びLPトランジスタ形成領域1Bにおける残りのゲート絶縁膜は、シリコン酸窒化膜16、17よりなる。 (もっと読む)


【課題】ビシクロ[2.2.1]ヘプタ−2,5−ジエンを安定化する方法を提供する。
【解決手段】安定化剤として、キノン類、およびニトロオキサイド類を添加した安定化されたビシクロ[2.2.1]ヘプタ−2,5−ジエン組成物、およびこれの使用。 (もっと読む)


【課題】ゲート絶縁膜として高誘電体膜を使用すると、半導体装置の微細化を図ることができるが、半導体装置の性能低下を招来する場合があった。
【解決手段】半導体装置では、半導体基板101の上面上に、界面酸化層102、ゲート絶縁膜104及びゲート電極107が順に設けられている。ゲート絶縁膜104は、第1の高誘電体膜103と第2の高誘電体膜105とを有している。第1の高誘電体膜103は、界面酸化層102の上に設けられ、窒素を含有している。第2の高誘電体膜105は、第1の高誘電体膜103の上に設けられ、窒素を含有している。第1の高誘電体膜103における窒素濃度は、第2の高誘電体膜105における窒素濃度よりも低い。 (もっと読む)


自己制御型の等角法でZrO又は他のZr化合物の膜を成長させるためのALDプロセスにおいて用いるための酸素を含まない溶液ベースのジルコニウム前駆体を開示する。(t−BuCp)ZrMeの酸素を含まない溶液ベースのALD前駆体が、ZrO又は他のZr化合物の膜を堆積させるために特に有用である。 (もっと読む)


【課題】新規な成膜装置および成膜方法を提供する。
【解決手段】本実施形態に係る成膜装置は、原料ガスの噴出口が設けられたガス導入管と、前記原料ガス中の原料を堆積させる基板が配置される基板配置場所と、前記噴出口と前記基板配置場所との間に設置された、前記原料ガス中に含まれる不純物の少なくとも一部を堆積させる堆積部材とを、処理室内に備えている。本実施形態に係る成膜方法は、処理室内に原料ガスを導入し、前記原料ガス中に含まれる不純物の少なくとも一部を基板に到達する前に堆積部材に堆積させ、前記基板上に前記原料ガス中の原料を堆積させる。 (もっと読む)


【課題】量産性に優れた実用的なプロセスを用いて、炭化珪素基板と二酸化珪素膜との間の界面準位を大幅に低減することができ、デバイスとしての信頼性と電気特性が優れた炭化珪素半導体装置を提供する。
【解決手段】二酸化珪素膜51の形成後、CVD法により、二酸化珪素膜51上に酸窒化珪素膜61を形成する。その後、酸窒化珪素膜61が堆積された炭化珪素基体10を窒化処理反応炉に導入し、窒素酸化物ガス雰囲気中で窒化処理を行う。 (もっと読む)


【課題】真空容器内にて互いに反応する少なくとも2種類の反応ガスを順番に回転テーブル上の基板の表面に供給しかつこの供給サイクルを実行することにより反応生成物の層を積層して薄膜を形成するにあたり、基板の表面に形成された凹部内に薄膜を良好に埋め込むこと。
【解決手段】ウェハWを載置した回転テーブル2を鉛直軸回りに回転させることによって、ウェハWの表面に第1の反応ガスを供給してこの反応ガスを吸着させ、次いでこの第1の反応ガスと反応して流動性を持つ中間生成物を生成する補助ガス及びこの中間生成物と反応して反応生成物を生成する第2のガスをこの順番でウェハWの表面に供給し、その後ウェハWを加熱ランプ210により加熱して反応生成物を緻密化する。 (もっと読む)


【課題】 Cuとの密着性を良好とすることが可能な酸化マンガン膜の形成方法を提供すること。
【解決手段】 酸化物102上にマンガンを含むガスを供給し、酸化物102上に酸化マンガン膜103を形成する酸化マンガン膜103の形成方法であって、酸化マンガン膜103を形成する際の成膜温度を、100℃以上400℃未満とする。 (もっと読む)


【課題】埋め込まれた金属の酸化、及びパターン欠損の発生を抑制しつつ、低誘電率絶縁膜自体の電気的特性を十分に回復できる低誘電率絶縁膜のダメージ回復方法を提供すること。
【解決手段】低誘電率絶縁膜を加工処理した後、低誘電率絶縁膜の表面に加工処理によって生じたダメージ性官能基を、疎水性官能基に置換し(ST.2)、低誘電率絶縁膜の表面に置換処理によって生じたデンス層の下に存在するダメージ成分を、紫外線加熱処理を用いて回復させる(ST.3)。 (もっと読む)


101 - 120 / 519