説明

Fターム[5F110EE08]の内容

薄膜トランジスタ (412,022) | ゲート (57,237) | 材料 (32,562) | 半導体 (4,917)

Fターム[5F110EE08]の下位に属するFターム

Fターム[5F110EE08]に分類される特許

61 - 80 / 1,684


【課題】400℃以下で作製可能であり、30cm/Vs以上の高い電界効果移動度と、ノーマリーオフとなる低いオフ電流を両立する薄膜トランジスタを提供する。
【解決手段】ゲート電極16と、ゲート電極と接するゲート絶縁膜15と、In(x)Zn(1−x)O(y)(0.4≦x≦0.5,y>0)で表される第1の領域A1及びIn(a)Ga(b)Zn(c)O(d)(b/(a+b)>0.250,c>0,d>0)で表され、ゲート電極に対して第1の領域よりも遠くに位置する第2の領域A2を含み、ゲート絶縁膜を介してゲート電極に対向配置されている酸化物半導体層12と、互いに離間して配置されており、酸化物半導体層を介して導通可能なソース電極13及びドレイン電極14と、を有する薄膜トランジスタ1。 (もっと読む)


【課題】塗工や印刷あるいは蒸着等の簡便なプロセスで、二次元的に結晶成長することにより連続膜が成膜できる、特性の優れた有機半導体材料を提供すること。
【解決手段】下記一般式(I)で示される構造を有することを特徴とする有機半導体材料。


(上記一般式(I)中、R1乃至R6はそれぞれ独立して、水素原子、ハロゲン原子、置換されていても良いアルキル基等である。) (もっと読む)


【課題】トランジスタ、ダイオード等の半導体用途に好適な材料を提供する。また、マザーガラスのような大きな基板を用いて、信頼性の高い半導体装置の大量生産を行うことのできる半導体装置を提供する。また、酸化物半導体膜と該酸化物半導体膜と接するゲート絶縁膜との界面の電子状態が良好なトランジスタを有する半導体装置を提供する。また、酸化物半導体膜をチャネルに用いたトランジスタに安定した電気的特性を付与し、信頼性の高い半導体装置を作製する。
【解決手段】c軸配向し、かつ表面または界面の方向から見て三角形状または六角形状の原子配列を有し、c軸を中心に回転した結晶を含む酸化物材料を用いた半導体装置。 (もっと読む)


【課題】配線等のパターンを、材料の利用効率を向上させ、かつ、作製工程を簡略化して得られた表示装置である。また配線等のパターンを所望の形状で制御性よく形成された導電膜を有する表示装置である。
【解決手段】トランジスタ上の第1の導電膜と、第2の導電膜とは、複数の屈曲点を有するコの字状に設けられる。本形状であっても、第1の導電膜と、第2の導電膜とはパターンを所望の形状で制御性よく形成される。なお、第1の導電膜と第2の導電膜は、共通電極層と、画素電極層となることができる。 (もっと読む)


【課題】改良されたプレーナデバイスを提供する。
【解決手段】電子デバイスは、移動電荷キャリアを支持する基板と、該基板面上に形成されてその両側に第1および第2の基板領域を定義し、該第1および第2の基板領域は該絶縁体によって定義される細長いチャネルによって接続され、該チャネルは該第1の領域から該第2の領域への基板内の電荷キャリア流路を提供し、該第1および該第2の基板領域間の伝導度は、この2つの領域間の電位差に依存する。該基板は有機材料とすることができる。移動電荷キャリアは、0.01cm/Vs〜100cm/Vsの範囲の移動度を有することができ、該電子デバイスはRFデバイスであってもよい。 (もっと読む)


【課題】酸化物半導体を用いたトランジスタは、非晶質シリコンを用いたトランジスタと比較して信頼性が劣る場合があった。そこで、信頼性が高い酸化物半導体を用いたトランジスタを有する半導体装置を提供する。
【解決手段】酸化物半導体膜に含まれる水素、窒素および炭素などの不純物は酸化物半導体膜の半導体特性を低下させる要因となる。例えば、酸化物半導体膜に含まれる水素および窒素は、酸化物半導体膜を用いたトランジスタのしきい値電圧をマイナス方向へシフトさせてしまう要因となる。また、酸化物半導体膜に含まれる窒素、炭素および希ガスは、酸化物半導体膜中に結晶領域が生成されることを阻害する。そこで、酸化物半導体膜の不純物濃度を低減することで、高い信頼性を有するトランジスタを作製する。 (もっと読む)


【課題】有機トランジスタの活性層の構成材料として用いる高分子化合物を提供する。
【解決手段】式


〔式中、Eは、−O−、−S−又は−Se−を表す。〕で表される構造単位と、式(1)で表される構造単位とは異なる式


〔式中、Arは、2価の芳香族基、−CR=CR−で表される基又は−C≡C−で表される基を表す。〕で表される構造単位とを含む高分子化合物。 (もっと読む)


【課題】finFETにおける高集積化可能な、高濃度ソースドレインの形成方法の提供。
【解決手段】ソース領域、ドレイン領域およびソース領域とドレイン領域の間のチャネル領域を有するフィンを形成する。チャネル領域にダイレクトコンタクトする絶縁層と、絶縁層にダイレクトコンタクトする伝導性のゲート物質とを有するゲートスタックを形成する。チャネル領域を残したまま、ソース領域およびドレイン領域をエッチング除去する。ソース領域およびドレイン領域に隣接したチャネル領域の両側にソースエピタキシー領域およびドレインエピタキシー領域を形成する。ソースエピタキシー領域およびドレインエピタキシー領域は、エピタキシャル半導体を成長させながら、その場ドープされる。 (もっと読む)


【課題】優れた電気特性、大気安定性を有した薄膜トランジスタ及びそれを用いた電子デバイスをウェットプロセスにて作製するための、π電子共役系化合物前駆体、及びトランジスタ構造を提供する。
【解決手段】少なくとも下記一般式(I)で示される工程により得られる有機膜を用いたトップゲート型薄膜トランジスタ。




(もっと読む)


【課題】特定構造のπ電子共役化合物前駆体を含む薄膜中の該前駆体のπ電子共役化合物への変換が、基板の耐熱温度に制限されることなく、且つ大気下で進行する、有機膜の製造方法。
【解決手段】π電子共役化合物前駆体A−(B)mを含む薄膜中の該前駆体A−(B)mが、活性エネルギー線の照射により、π電子共役系化合物A−(C)mと脱離性化合物X−Yに変換される。A−(B)m→A−(C)m+X−Y




(Aはπ電子共役系置換基、Bは溶媒可溶性置換基、mは自然数である。) (もっと読む)


【課題】酸化物半導体をチャネル形成領域に用いたトランジスタの電気特性のしきい値電圧をプラスにすることができ、所謂ノーマリーオフのスイッチング素子を実現するトランジスタ構造およびその作製方法を提供することを課題とする。
【解決手段】第1の酸化物半導体層上に、電子親和力が第1の酸化物半導体層の電子親和力よりも大きく、またはエネルギーギャップが第1の酸化物半導体層のエネルギーギャップよりも小さい第2の酸化物半導体層を形成し、さらに第2の酸化物半導体層を包むように第2の酸化物半導体層の側面及び上面を覆う第3の酸化物半導体層を形成する。 (もっと読む)


【課題】良好な特性を有する複数の有機トランジスタを備えた有機半導体素子の製造方法を提供する。
【解決手段】有機半導体素子10は、基板11と、基板11上に設けられ、各々が有機半導体材料を含む有機半導体領域4を有する複数の有機トランジスタ20と、を備えている。このうち有機半導体領域4は、少なくとも基板11を含む支持部材17によって支持されている。そして、有機半導体素子10の製造方法は、支持部材17を準備する工程と、支持部材17上に有機半導体材料を含む連続的な有機半導体層30を設ける工程と、有機半導体層30をパターニングして複数の有機半導体領域4を形成するパターニング工程と、を備えている。ここで、パターニング工程は、凹部42および凸部41を有する凹凸版40を準備する工程と、凹凸版40の凸部41を支持部材17上の有機半導体層30に当接させることにより有機半導体層30をパターニングする当接工程と、を有している。 (もっと読む)


【課題】配線間の寄生容量を十分に低減できる構成を備えた半導体装置を提供することを
課題の一とする。
【解決手段】金属薄膜の一部または全部を酸化させた第1の層と酸化物半導体層の積層を
用いるボトムゲート構造の薄膜トランジスタにおいて、ゲート電極層と重なる酸化物半導
体層の一部上に接するチャネル保護層となる酸化物絶縁層を形成し、その絶縁層の形成時
に酸化物半導体層の積層の周縁部(側面を含む)を覆う酸化物絶縁層を形成する。 (もっと読む)


【課題】用途に合わせて要求される電気的特性を備えた酸化物半導体層を用いたトランジスタ、及び該トランジスタを有する半導体装置を提供する。
【解決手段】酸化物絶縁膜上に、半導体層、ソース電極層又はドレイン電極層、ゲート絶縁膜、及びゲート電極層が順に積層されたトランジスタにおいて、該半導体層としてバンドギャップの異なる少なくとも2層の酸化物半導体層を含む酸化物半導体積層を用いる。酸化物半導体積層には、酸素又は/及びドーパントを導入してもよい。 (もっと読む)


【課題】非晶質酸化物薄膜の膜質を向上する。
【解決手段】有機成分とInとを含有する第1酸化物前駆体膜4に対して有機成分の熱分解温度未満で有機成分の結合状態を選択的に変化させ、フーリエ変換型赤外分光で測定したときに得られる赤外線吸収スペクトルにおいて、赤外線の波数1380cm−1以上1520cm−1以下の範囲を赤外線の波数1380cm−1以上1450cm−1以下の範囲と赤外線の波数1450cm−1超1520cm−1以下の範囲とに分割したときに、赤外線の波数1380cm−1以上1450cm-1以下の範囲に位置するピークが、赤外線の波数1350cm−1以上1750cm−1以下の範囲における赤外線吸収スペクトルの中で最大値を示す第2酸化物前駆体膜6を得る前処理工程と、第2酸化物前駆体膜中に残存する有機成分を除去して、第2酸化物前駆体膜6を非晶質酸化物薄膜8へ変化させる後処理工程とを有する。 (もっと読む)


【課題】酸化物半導体層の保護膜側界面のキャリア密度がゲート絶縁層側のキャリア密度より小さく、および酸化物半導体層の膜厚が最適化された薄膜トランジスタおよびその製造方法を提供する。
【解決手段】酸化物半導体層上に保護膜として酸化物絶縁体を形成する際に、酸化性ガスが含まれる雰囲気で成膜し、酸化物半導体の界面付近のキャリア密度を絶縁層側のキャリア密度より小さくする。また、酸化物半導体膜の設計膜厚を30nm±15nmにすることにより、電界効果移動度μ、On/Off比、S値を最適化する。 (もっと読む)


【課題】非晶質半導体膜の結晶化工程において、非晶質半導体膜上に金属元素を導入して加熱処理を行なった、レーザアニールを行って得られた多結晶半導体膜を基に作製された薄膜トランジスタの電気的特性は非常に高いものとなるが、ばらつきが顕著になる場合がある。
【解決手段】非晶質半導体膜上に金属元素を導入して加熱処理を行なって連続的な結晶化領域の中に非晶質領域が点在する第1の多結晶半導体膜103bを得る。このとき、非晶質領域を所定の範囲に収めておく。そして、結晶化領域より非晶質領域にエネルギーを加えることができる波長域にあるレーザビームを第1の多結晶半導体膜103bに照射すると、結晶化領域を崩すことなく非晶質領域を結晶化させることができる。以上の結晶化工程を経て得られた第2の多結晶半導体膜を基にTFTを作製すると、その電気的特性は高く、しかもばらつきの少ないものが得られる。 (もっと読む)


【課題】酸化物薄膜の結晶配置の方向を制御し、良質な酸化物薄膜を提供する。
【解決手段】薄膜トランジスタのチャネル層となる酸化物層と絶縁層からなる積層構造であって、前記酸化物層を構成する材料は、実質的に酸化インジウムのビックスバイト構造からなり、前記酸化物層のキャリア濃度が1018/cm以下、平均結晶粒径が1μm以上であり、前記酸化物層の結晶が、前記絶縁層の表面に柱状に配置していることを特徴とする積層構造。 (もっと読む)


【課題】グラフェンを活性領域に使った電子装置において、グラフェンにバンドギャップをもたせ、オンオフを可能とする。
【解決手段】電子装置は、基板と、前記基板上にゲート絶縁膜を介して形成されたグラフェンシートと、前記グラフェンシートの一端に形成されたソース電極と、前記グラフェンシートの他端に形成されたドレイン電極と、前記グラフェンシートに前記ソース領域とドレイン領域との間でゲート電圧を印加するゲート電極と、前記グラフェンシートに前記ソース電極とドレイン電極の間において、前記ソース電極からドレイン電極へのキャリアの流れを横切って形成された、複数の開口部よりなる開口部列と、を備え、前記各々の開口部は少なくとも一つのジグザグ端により画成されており、前記少なくとも一つのジグザグ端は、前記ソース電極とドレイン電極を結んだ方向に対し、いずれも30°の角度をなす。 (もっと読む)


【課題】緻密で高耐圧な絶縁膜を提供することを目的とする。
【解決手段】基板上に半導体膜を有し、半導体膜上に第1の絶縁膜を有し、第1の絶縁膜上に導電膜を有し、導電膜上に第2の絶縁膜を有し、第1の絶縁膜は、第2の絶縁膜よりも緻密であり、第1の絶縁膜は、珪素と、酸素と、窒素とを有する。第1の絶縁膜は、希ガスを有し、その膜厚は、1nm以上100nm以下である。このような第1の絶縁膜はゲート絶縁膜として機能させる。 (もっと読む)


61 - 80 / 1,684