説明

Fターム[5F110GG51]の内容

薄膜トランジスタ (412,022) | チャネル半導体層 (67,982) | 製法 (16,298) | 不純物の導入方法 (1,524)

Fターム[5F110GG51]の下位に属するFターム

イオン注入 (959)
拡散 (206)

Fターム[5F110GG51]に分類される特許

61 - 80 / 359


【課題】チャネルドープを含む製造工程を簡略化できる半導体装置の製造方法、半導体装置、電気光学装置および電子機器を提供すること。
【解決手段】本適用例の半導体装置の製造方法は、基板に半導体膜としての多結晶半導体膜14aを形成する工程と、多結晶半導体膜14a上に、少なくとも2つの異なる膜厚を有し、それぞれが孤立したレジストパターン16,17を形成するレジスト形成工程と、該レジストパターン16,17をマスクとして多結晶半導体膜14aに第一不純物の注入を行う第一不純物注入工程と、該レジストパターン16,17に沿って多結晶半導体膜14aをエッチングするエッチング工程と、該レジストパターン16,17を剥離する工程とを有し、第一不純物注入工程は、レジストパターン16,17の膜厚の差に基づいて、第一不純物の注入、非注入を制御することを特徴とする。 (もっと読む)


【課題】被剥離層に損傷を与えない剥離方法を提供し、小さな面積を有する被剥離層の剥離だけでなく、大きな面積を有する被剥離層を全面に渡って歩留まりよく剥離することを可能とすることを目的としている。また、様々な基材に被剥離層を貼りつけ、軽量された半導体装置およびその作製方法を提供することを課題とする。特に、フレキシブルなフィルムにTFTを代表とする様々な素子を貼りつけ、軽量された半導体装置およびその作製方法を提供する。
【解決手段】基板上に第1の材料層11を設け、前記第1の材料層11に接して第2の材料層12を設け、さらに積層成膜または500℃以上の熱処理やレーザー光の照射処理を行っても、剥離前の第1の材料層が引張応力を有し、且つ第2の材料層が圧縮応力であれば、物理的手段で容易に第2の材料層12の層内または界面において、きれいに分離することができる。 (もっと読む)


【課題】側壁スペーサを形成することなく、且つ、工程数を増やすことなく、自己整合的にLDD領域を少なくとも一つ備えたTFTを提供する。また、同一基板上に、工程数を増やすことなく、様々なTFT、例えば、チャネル形成領域の片側にLDD領域を有するTFTと、チャネル形成領域の両側にLDD領域を有するTFTとを形成する作製方法を提供する。
【解決手段】回折格子パターン或いは半透膜からなる光強度低減機能を有する補助パターンを設置したフォトマスクまたはレチクルをゲート電極形成用のフォトリソグラフィ工程に適用して膜厚の厚い領域と、該領域より膜厚の薄い領域を片側側部に有する非対称のレジストパターンを形成し、段差を有するゲート電極を形成し、ゲート電極の膜厚の薄い領域を通過させて前記半導体層に不純物元素を注入して、自己整合的にLDD領域を形成する。 (もっと読む)


【課題】半導体層に結晶性を有する酸化物半導体を用いた、移動度の高い酸化物半導体素子を提供する。
【解決手段】第1の酸化物半導体膜及び、第1の酸化物半導体膜に接して第1の酸化物半導体膜よりバンドギャップが大きい第2の酸化物半導体膜の積層構造を有する層を酸化物半導体層として用いた。これにより、チャネル領域は、第2の酸化物半導体膜と接する第1の酸化物半導体膜の界面近傍(つまり、バンドギャップが小さい酸化物半導体膜の界面近傍)に形成される。また、第1の酸化物半導体膜と第2の酸化物半導体膜の界面は、お互いの未結合手が結合し合っている。このため、第2の酸化物半導体膜と接する第1の酸化物半導体膜の界面近傍に形成されるチャネル領域では、未結合手による電子トラップなどに起因した移動度の低下を低減できる。 (もっと読む)


【課題】簡素でかつ占有面積の小さな駆動回路を提供すること。
【解決手段】本発明のシフトレジスタ回路は、複数のレジスタ回路を有している。各レジスタ回路は、クロックドインバータ回路およびインバータ回路を有している。クロックドインバータ回路の出力信号がインバータ回路の入力信号となるよう両者が直列に接続されている。さらに、レジスタ回路は、インバータ回路の出力信号が伝達される信号線を有している。該信号線には接続されている素子が多く寄生容量が大きいため高負荷である。本発明のシフトレジスタ回路は、信号線の寄生容量が大きいために高負荷であることを用いている。 (もっと読む)


【課題】フィン高さの改良を図れるフィンの形成方法を提供すること。
【解決手段】実施形態のフィン形成の方法は、まず、半導体基板上に多層構造を形成する。前記半導体構造は、前記半導体基板上の第1の層、前記第1の層上の第2の層および前記第2の層上の第3の層を具備する。次に、前記半導体基板および前記半導体構造の複数の部分からなる複数のフィンを形成するために、前記半導体基板の複数の上部および前記半導体構造の複数の部分を除去する。次に、前記第2の層および前記第3の層の酸化速度を前記第1の層よりも酸化速度よりも小さくしながら、前記第1の層を選択的に酸化する。次に、前記選択的な酸化の後に前記複数のフィン間の空隙を絶縁材料で充填する。そして、フィンを露出させるために少なくとも前記絶縁材料の一部をリセスし、前記フィンの少なくとも一つの側面または前記フィンの上面をチャネル領域にする。 (もっと読む)


【課題】記憶保持期間において、電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供すること。
【解決手段】トランジスタと、容量素子と、を有し、トランジスタは、第1の酸化物半導体層と、第1の酸化物半導体層と接するソース電極およびドレイン電極と、第1の酸化物半導体層と重なるゲート電極と、第1の酸化物半導体層とゲート電極との間に設けられたゲート絶縁層と、を有し、容量素子は、ソース電極またはドレイン電極と、ソース電極またはドレイン電極と接する第2の酸化物半導体層と、第2の酸化物半導体層と接する容量素子電極と、を有する半導体装置である。 (もっと読む)


【課題】複雑な作製工程を必要とせず、消費電力を抑えることができる信号処理回路。特に、短時間の電源停止により消費電力を抑えることができる信号処理回路。
【解決手段】制御装置と、演算装置と、緩衝記憶装置とを有し、緩衝記憶装置は、主記憶装置から、或いは演算装置から送られてきたデータを、制御装置からの命令に従って記憶し、緩衝記憶装置は複数のメモリセルを有し、メモリセルは、チャネル形成領域に酸化物半導体を含むトランジスタと、トランジスタを介してデータの値に従った量の電荷が供給される記憶素子とを有する信号処理回路。 (もっと読む)


【課題】新規なp型酸化物半導体を活性層に用いた電界効果型トランジスタなどの提供。
【解決手段】ゲート電圧を印加するためのゲート電極と、電流を取り出すためのソース電極及びドレイン電極と、前記ソース電極及び前記ドレイン電極との間に形成されたp型酸化物半導体からなる活性層と、前記ゲート電極と前記活性層との間に形成されたゲート絶縁層とを有し、前記p型酸化物半導体が、一般式ABO(Aは、Sr及びBaの少なくともいずれかを含む。Bは少なくともBiを含む。)で表され、かつ擬ペロブスカイト構造である電界効果型トランジスタである。 (もっと読む)


【課題】大面積基板など、熱収縮による影響の大きい基板に形成された半導体素子であっても、その影響を受けずに動作するような半導体素子の提供すること。また、そのような半導体素子を搭載し、薄膜半導体回路及び薄膜半導体装置を提供すること。さらに、多少のマスクずれが生じたとしても、その影響を受けずに動作するような半導体素子を提供する。
【解決手段】ドレイン領域114、117側の半導体層の低濃度不純物領域と重なるように形成した複数のゲート電極102を有し、それぞれのゲート電極102が形成するチャネル領域122、123に流れる電流の向きが一方向と一方向と反対の方向となるようにそれぞれのゲート電極102に対応するソース領域115、116とドレイン領域114、117を形成し、一方向に電流が流れるチャネル領域122と一方向と反対の方向に電流が流れるチャネル領域123の数が等しい薄膜トランジスタ。 (もっと読む)


【課題】グラフェン膜と金属電極との接触面積(基板上の占有面積)を抑制しつつ、それらの間の接触抵抗を低減してグラフェン膜と金属電極とが良好に電気的接合された回路装置を提供する。
【解決手段】本発明に係る回路装置は、単層または複数層からなるグラフェン膜を利用した回路装置であって、前記回路は、前記グラフェン膜と該グラフェン膜に直接接合する第1の金属電極と該グラフェン膜に直接接合する第2金属電極とを有し、前記第1の金属電極と接合している領域の前記グラフェン膜の90%以上と前記第2の金属電極と接合している領域の前記グラフェン膜の90%以上とが、高濃度のp型または高濃度のn型にドープされていることを特徴とする。 (もっと読む)


【課題】本発明は、アクティブマトリクス型表示装置の製造コストを低減するこ
とを課題とし、安価な表示装置を提供することを課題とする。また、本発明の表
示装置を表示部に用いた安価な電子装置を提供することを目的とする。
【解決手段】 アクティブマトリクス型表示装置の製造コストを低減するために
画素部に用いるTFTを全て一導電型TFT(ここではpチャネル型TFTもし
くはnチャネル型TFTのいずれか一方を指す)とし、さらに駆動回路もすべて
画素部と同じ導電型のTFTで形成することを特徴とする。これにより製造工程
を大幅に削減し製造コストを低減することが可能となる。 (もっと読む)


【課題】酸化物半導体層と該酸化物半導体層と接する絶縁膜との界面状態が良好なトランジスタ及びその作製方法を提供する。
【解決手段】酸化物半導体層と該酸化物半導体層と接する絶縁膜(ゲート絶縁層)との界面状態を良好とするために、酸化物半導体層の界面近傍に窒素を添加する。具体的には酸化物半導体層に窒素の濃度勾配を作り、窒素を多く含む領域をゲート絶縁層との界面に設ける。この窒素の添加によって、酸化物半導体層の界面近傍に結晶性の高い領域を形成でき、安定した界面状態を得ることができる。 (もっと読む)


【課題】被剥離層に損傷を与えない剥離方法を提供し、小さな面積を有する被剥離層の剥離だけでなく、大きな面積を有する被剥離層を全面に渡って剥離することを可能とする。
【解決手段】基板上に金属層を形成する工程と、前記金属層上に酸化物層を形成する工程と、前記酸化物層上に絶縁層を形成する工程と、前記絶縁層上に薄膜トランジスタを形成する工程と、前記薄膜トランジスタ上に発光素子を形成する工程と、人間の手又は前記薄膜トランジスタを引き剥がす装置を用いることにより、前記酸化物層の層内または界面において前記基板から前記薄膜トランジスタを剥離する工程とを有する。 (もっと読む)


【課題】キャリア密度の制御された酸窒化物半導体を用いた半導体装置を提供する。
【解決手段】酸化物半導体層中に、制御された窒素を導入することによって、目的とするキャリア密度及びオン特性を有する酸窒化物半導体をチャネルに用いたトランジスタを作製することができる。さらに、該酸窒化物半導体を用いることによって、酸窒化物半導体層と、ソース電極及びドレイン電極との間に、低抵抗層などを設けなくても、良好なコンタクト特性を示すことができる。 (もっと読む)


【課題】従来では、LDD構造を備えたTFTやGOLD構造を備えたTFTを形成しようとすると、その製造工程が複雑なものとなり工程数が増加してしまう問題があった。
【解決手段】第2のドーピング工程によって低濃度不純物領域24、25を形成した後、第4のエッチング工程を行うことによって、第3の電極18cに重なる低濃度不純物領域の幅と、第3の電極に重ならない低濃度不純物領域の幅とを自由に調節できる。こうして、第3の電極18cと重なっている領域は、電界集中の緩和が達成されてホットキャリアによる防止ができるとともに、第3の電極18cと重なっていない領域は、オフ電流値を抑えることができる。 (もっと読む)


【課題】本願発明で開示する発明は、従来と比較して、さらに結晶成長に要する熱処理時間を短縮してプロセス簡略化を図る。
【解決手段】
一つの活性層204を挟んで二つの触媒元素導入領域201、202を配置して結晶化を行い、触媒元素導入領域201からの結晶成長と、触媒元素導入領域202からの結晶成長とがぶつかる境界部205をソース領域またはドレイン領域となる領域204bに形成する。 (もっと読む)


【課題】さらなる低温プロセス(350℃以下、好ましくは300℃以下)を実現し、安価な半導体装置を提供する。
【解決手段】本発明は、結晶構造を有する半導体層103を形成した後、イオンドーピング法を用いて結晶質を有する半導体層103の一部にp型不純物元素及び水素元素を同時に添加して不純物領域107(非晶質構造を有する領域)を形成した後、100〜300℃の加熱処理を行うことにより、低抵抗、且つ非晶質な不純物領域108を形成し、非晶質な領域のままでTFTのソース領域またはドレイン領域とする。 (もっと読む)


【課題】画素電極上に金属膜を形成して積層構造とする際に、1つのレジストマスクを用
いて、画素電極及び金属膜を形成することを課題とする。
【解決手段】画素電極となる導電膜と金属膜を積層させる。金属膜上に半透部を有する露
光マスクを用いて、膜厚の厚い領域と該領域よりも膜厚が薄い領域とを有するレジストパ
ターンを形成する。レジストパターンを用いて画素電極と、画素電極上の一部に接する金
属膜を形成する。以上により、1つのレジストマスクを用いて、画素電極及び金属膜を形
成することが可能となる。 (もっと読む)


【課題】長い期間においてデータの保持が可能な記憶装置を提供する。
【解決手段】記憶素子と、上記記憶素子における電荷の供給、保持、放出を制御するためのスイッチング素子として機能するトランジスタとを有する。上記トランジスタは、通常のゲート電極の他に、閾値電圧を制御するための第2のゲート電極が備えられており、また、活性層に酸化物半導体を含むためにオフ電流が極めて低い。上記記憶装置では、絶縁膜に囲まれたフローティングゲートに高電圧で電荷を注入するのではなく、オフ電流の極めて低いトランジスタを介して記憶素子の電荷量を制御することで、データの記憶を行う。 (もっと読む)


61 - 80 / 359