説明

Fターム[5F110HK17]の内容

薄膜トランジスタ (412,022) | ソース、ドレイン−低抵抗層 (42,553) | 材料 (26,322) | 材料の特性が規定 (425)

Fターム[5F110HK17]に分類される特許

141 - 160 / 425


【課題】 本発明は、エレクトロルミネセンスデバイスでの使用のための高抵抗バッファー層や、マイクロエレクトロニクス用途向けの改善された特性を有する有機電子デバイスを提供することを課題とする。
【解決手段】 本発明は、導電性ポリマーと、そこに分散した複数のナノ粒子とを含む抵抗バッファー層を含むことを特徴とする有機電子デバイスであって、
前記ナノ粒子が、有機ポリアクリル酸、カーボンナノチューブ、およびコロイド形成スルホン酸ナノ粒子ならびに、これらの混合物からなる群から選択されることを特徴とする有機電子デバイスである。 (もっと読む)


【課題】プロセスウィンドウが広く、特性安定性が高い電界効果型トランジスタを提供する。
【解決手段】ゲート電圧を印加するためのゲート電極と;電流を取り出すためのソース電極及びドレイン電極と;前記ソース電極及びドレイン電極に隣接して設けられ、n型酸化物半導体からなる活性層と;前記ゲート電極と前記活性層との間に設けられたゲート絶縁層と;を備える電界効果型トランジスタであって、前記酸化物半導体が、3価、4価、5価および6価の少なくとも1つのカチオンを導入することによりn型ドーピングされた結晶組成化合物であることを特徴とする電界効果型トランジスタを提供することにより上記課題を解決する。 (もっと読む)


【課題】ソース・ドレイン電極に、剥離やストレスマイグレーションによるボイドが発生するのを抑制する。
【解決手段】複数の薄膜トランジスタが配列された基板を有する表示装置であって、薄膜トランジスタは、半導体層6と、半導体層6上に形成されるコンタクト層7と、コンタクト層7上に形成されるソース電極10及びドレイン電極9とを有し、ソース電極10およびドレイン電極9は、コンタクト層7の上側に形成される第1の導電層9a,10aと、第1の導電層9a,10aの上側に形成される第2の導電層9b,10bとを有し、第2導電層9b,10bは、第1添加元素と、銅とを含有する銅合金層であり、前記第1添加元素は、ジルコニウム、チタン、銀、インジウム、金、錫、クロム、ケイ素から選ばれた少なくとも1種類の元素である、ことを特徴とする表示装置。 (もっと読む)


【課題】撥水性の高い基板上に膜厚のバラツキなく成膜される有機半導体膜の製造方法及びそのような有機トランジスタを提供することを目的とする。
【解決手段】基板上に有機半導体材料を含む溶液を供給し、乾燥させることにより薄膜を形成させる有機半導体膜の形成方法において、基板の水接触角が50°以上であり、溶液に粒径10nm以上30nm以下の絶縁性微粒子を0.1wt%以上1.0wt%以下含有することを特徴とする有機半導体膜の製造方法及び有機トランジスタ。 (もっと読む)


【課題】チャネルに応力が印加されるMOSトランジスタの特性のばらつきを防ぐことができる半導体装置の製造方法を提供すること。
【解決手段】半導体基板10の上にゲート絶縁膜を形成する工程と、ゲート絶縁膜の上にゲート電極14cを形成する工程と、ゲート電極14cの側面にサイドウォール15a、15bを形成する工程と、サイドウォール15a、15bを形成した後に、有機アルカリ溶液又はTMAHをエッチング液として用いて、ゲート電極14cの横の半導体基板10に穴10a、10bを形成する工程と、穴10a、10bにソース/ドレイン材料層18a、18bを形成する工程とを有する。 (もっと読む)


【課題】良好な特性を維持しつつ、微細化を達成した、酸化物半導体を用いた半導体装置を提供することを目的の一とする。
【解決手段】酸化物半導体層と、酸化物半導体層と接するソース電極及びドレイン電極と、酸化物半導体層と重なるゲート電極と、酸化物半導体層とゲート電極との間に設けられたゲート絶縁層と、酸化物半導体層に接して設けられた絶縁層と、を有し、酸化物半導体層は、該酸化物半導体層の端面において、ソース電極またはドレイン電極と接し、且つ該酸化物半導体層の上面において、絶縁層を介して、ソース電極またはドレイン電極と重なる半導体装置である。 (もっと読む)


【課題】導体半導体接合を用いて、優れた特性を示す、あるいは、作製の簡単な、あるいは、より集積度の高い電界効果トランジスタを提供する。
【解決手段】半導体層の電子親和力よりも仕事関数の小さな導体との接合においては、導体より半導体層にキャリアが注入された領域が生じる。そのような領域を電界効果トランジスタ(FET)のオフセット領域、あるいは、インバータ等の半導体回路の抵抗として用いる。また、ひとつの半導体層中にこれらを設けることにより集積化した半導体装置を作製できる。 (もっと読む)


電気的浸透性ソース層を含む半導体デバイス及びこれの製造方法に対する様々な実施例が与えられる。一実施例では、半導体デバイスは、ゲート層、誘電体層、メモリ層、ソース層、半導体チャネル層、及びドレイン層を含む。ソース層は電気的浸透性及びパーフォレーションを有する。半導体チャネル層はソース層及びメモリ層と接触する。ソース層及び半導体チャネル層は、ゲート電圧チューナブル電荷注入バリアを形成する。
(もっと読む)


【課題】 微結晶Si薄膜トランジスタの光リーク電流を抑制し、液晶ディスプレイ等の光照射下で使用する場合に、クロストークやコントラストの低下等の表示特性の劣化を低減する。
【解決手段】 基板上に設けられたゲート電極と、ゲート電極を被覆するように設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられ、微結晶Si層と非晶質Si層とを含むチャネル層と、チャネル層上の一方に設けられたソース電極と、チャネル層上の他方に設けられたドレイン電極とを備えた薄膜トランジスタに関する。そして、この実施形態において、ソース電極およびドレイン電極の夫々は、第1の層と、前記第1の層よりも下側に設けられた第2の層とを含み、前記第2の層は第1の層よりも反射率が低い導電膜の層で構成される。 (もっと読む)


【課題】本発明は、高価な専用の装置に依存せず、有機半導体が大気に晒されないよう
な、低コストの有機TFTの作製方法を提供することを課題とする。また、材料の熱分解が
問題とならないように低温での有機TFTの作製方法を提供することを課題とする。
【解決手段】上記課題を鑑み、本発明は保護膜として機能するフィルム状の保護体を有
機半導体膜上に設けることを特徴とする。フィルム状の保護体は、フィルム状の支持体を
接着剤等で固定して形成することができる。 (もっと読む)


【課題】工程中に酸化物半導体パターンの劣化が発生することを防止することができる薄膜トランジスタ基板およびそれの製造方法を提供する。
【解決手段】薄膜トランジスタ基板は、絶縁基板10、前記絶縁基板10上に形成されたゲート電極24およびゲート絶縁膜30、前記ゲート絶縁膜30上に配置された酸化物半導体パターン42、前記酸化物半導体パターン42上に形成されたエッチング防止パターン52、前記エッチング防止パターン52上に形成されたソース電極65およびドレーン電極66を含み、前記エッチング防止パターン52のすべての側面は前記酸化物半導体パターン42の側面の内側に位置する。 (もっと読む)


【課題】接着層の厚さを増加させることなく、銅の下部層との接着性が向上し、銅が下部層に拡散することを防止することができる薄膜形成方法、表示板用金属配線、及びこれを含む薄膜トランジスタ表示板とその製造方法を提供する。
【解決手段】本発明の薄膜形成方法は、基板上にスパッタリング方法により薄膜を形成する方法であって、薄膜は、電力密度が1.5〜3W/cm、非活性気体の圧力が0.2〜0.3Paで形成する。薄膜は、非晶質構造を有することができ、チタニウム、タンタル、又はモリブデンのうちのいずれか一つで形成することができる。 (もっと読む)


【課題】性能向上を図ることが可能な薄膜トランジスタを提供する。
【解決手段】ソース電極4およびドレイン電極5は、互いに離間されていると共にそれぞれ有機半導体層3の上に重なっている。有機半導体層3は、下部有機半導体層3Aの上に上部有機半導体層3Bが形成された積層構造を有している。下部有機半導体層3Aは、ソース電極4と重なる領域R1からドレイン電極5と重なる領域R2まで延在している。上部有機半導体層3Bは、領域R1,R2に互いに離間されるように配置されており、下部有機半導体層3Aよりも高い溶解性および導電性を有している。 (もっと読む)


【課題】電気特性が良好な薄膜トランジスタを、生産性高く作製する方法を提供する。
【解決手段】ゲート電極を覆うゲート絶縁層と、ゲート絶縁層に接する半導体層と、半導体層の一部に接し、ソース領域及びドレイン領域を形成する不純物半導体層と、不純物半導体層に接する配線とを有し、半導体層において、ゲート絶縁層側に形成される凹凸状の微結晶半導体領域と、当該微結晶半導体領域に接する分離された非晶質半導体領域とを有し、微結晶半導体領域は、非晶質半導体領域に覆われていない第1の微結晶半導体領域と、分離された非晶質半導体領域と接する第2の微結晶半導体領域とで形成され、第1の微結晶半導体領域の厚さd1は第2の微結晶半導体領域の厚さd2より薄く、且つ第1の微結晶半導体領域の厚さd1が30nm以上である。 (もっと読む)


【課題】有機半導体として実用上十分に高移動度で、且つ安定した半導体特性を発現することができる有機半導体用混合物、並びに、有機電子デバイスの作製方法及び有機電子デバイスを提供する。
【解決手段】有機半導体材料と下記一般式(I)で表されるカルボン酸又はそのエステルを含む有機半導体用混合物、並びに、基板上に有機半導体用塗布液を塗布し乾燥させて有機半導体層を形成する有機電子デバイスの作製方法において、有機半導体用塗布液が、有機半導体材料と前記カルボン酸又はそのエステルと溶媒とを含む有機半導体用混合物である有機電子デバイスの作製方法、及び、基板上に有機半導体と前記カルボン酸又はそのエステルを含有する有機半導体層を有する有機電子デバイス。


〔式(I)中、R及びRはそれぞれ独立して、水素原子又は置換基を有していてもよい炭素数1〜50の脂肪族炭化水素基を示す。但し、RとRの各炭素数の和は5以上である。〕 (もっと読む)


【課題】薄膜トランジスタのオン電流を大きくする。
【解決手段】薄膜トランジスタのバックチャネル部に凸部を設ける。該凸部は、ソースまたはドレインからチャネル形成領域まで引いたバックチャネル部の接線を避けて設けられる。該凸部により電荷のトラップ箇所とオン電流の経路を遠ざけることができ、オン電流を大きくすることができる。バックチャネル部の側面の形状は曲面であってもよいし、断面において直線で表される形状であってもよい。更には、一括してエッチングを行うことでこのような形状を形成する方法を提供する。 (もっと読む)


【課題】電気特性が良好で生産性の高い薄膜トランジスタを提供する。
【解決手段】ゲート電極を覆うゲート絶縁層と、ゲート絶縁層に接する半導体層と、半導体層の一部に接し、ソース領域及びドレイン領域を形成する不純物半導体層と、不純物半導体層に接する配線とを有し、半導体層において、ゲート絶縁層側に形成される凹凸状の微結晶半導体領域と、当該微結晶半導体領域に接する非晶質半導体領域とを有し、半導体層及び配線の間に障壁領域を有する薄膜トランジスタである。 (もっと読む)


【課題】基板の大面積化を可能とするとともに、特性の改善された酸化物半導体層を形成し、所望の高い電界効果移動度を有するトランジスタを製造可能とし、大型の表示装置や高性能の半導体装置等の実用化を図ることを課題の一つとする。
【解決手段】絶縁表面を有する基板上にゲート電極層を形成し、ゲート電極層上にゲート絶縁層を形成し、ゲート絶縁層上に酸化物半導体層を形成し、酸化物半導体層上にソース電極層及びドレイン電極層を形成し、酸化物半導体層、ソース電極層、及びドレイン電極層上に酸素を含む絶縁層を形成し、酸素を含む絶縁層上に水素を含む絶縁層を形成した後、熱処理を行うことにより、水素を含む絶縁層中の水素を少なくとも酸化物半導体層に供給することを特徴とする半導体装置の作製方法である。 (もっと読む)


【課題】シリコン半導体の物性は解明されていることが多いが、酸化物半導体の物性は不明な点が多い。特に、不純物が酸化物半導体に及ぼす影響について未だ明らかにされていない。以上に鑑み、酸化物半導体層を用いた半導体装置の電気特性に影響を与える不純物を防止又は排除した構成を以下に開示する。
【解決手段】ゲート電極と、チャネル形成領域を有する酸化物半導体層と、前記ゲート電極と前記酸化物半導体層との間に挟まれたゲート絶縁層と、を有し、前記チャネル形成領域に含まれる窒素濃度は、1×1020atoms/cm以下である半導体装置である。 (もっと読む)


【課題】酸化物半導体を用いたpチャネル型トランジスタを提供することを目的の一とする。また、酸化物半導体を用いたnチャネル型トランジスタとpチャネル型トランジスタとのCMOS(相補型金属酸化物半導体)構造を提供することを目的の一とする。
【解決手段】ゲート電極層と、ゲート絶縁層と、酸化物半導体層と、前記酸化物半導体層と接するソース電極層及びドレイン電極層とを含み、前記酸化物半導体層に用いる酸化物半導体の電子親和力をχ(eV)、バンドギャップをE(eV)とすると、前記ソース電極層及び前記ドレイン電極層に用いる導電体の仕事関数φは、φ>χ+E/2を満たし、かつ、χ+E−φで表される正孔に対する障壁φBPは0.25eV未満である、酸化物半導体を用いたpチャネル型トランジスタを提供する。 (もっと読む)


141 - 160 / 425