説明

Fターム[5F140BA05]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 基板材料 (9,253) | 4族 (5,747) | SiGe (619)

Fターム[5F140BA05]に分類される特許

101 - 120 / 619


【課題】 高性能の半導体構造およびかかる構造を製造する方法を提供する。
【解決手段】 半導体構造は、半導体基板12の上面14上に位置する、例えばFETのような少なくとも1つのゲート・スタック18を含む。構造は更に、少なくとも1つのゲート・スタックのチャネル40上にひずみを誘発する第1のエピタキシ半導体材料34を含む。第1のエピタキシ半導体材料は、少なくとも1つのゲート・スタックの対向側に存在する基板内の1対のくぼみ領域28の実質的に内部で少なくとも1つのゲート・スタックの設置場所に位置する。くぼみ領域の各々において第1のエピタキシ半導体材料の上面内に拡散拡張領域38が位置する。構造は更に、拡散拡張領域の上面上に位置する第2のエピタキシ半導体材料36を含む。第2のエピタキシ半導体材料は、第1のエピタキシ半導体材料よりも高いドーパント濃度を有する。 (もっと読む)


【課題】寄生抵抗の低下を図る。
【解決手段】半導体装置は、半導体基板10と、前記半導体基板上のソース/ドレイン領域に形成された第1半導体層11と、前記第1半導体層上に形成された第1部分12aと、前記ソース/ドレイン領域の間に位置するチャネル領域に形成された第2部分12bとを有する第2半導体層12と、前記第2半導体層の前記第1部分上に形成された第3半導体層13と、前記第2半導体層の前記第2部分の周囲に絶縁膜21を介して形成されたゲート電極22と、前記第1半導体層、前記第2半導体層の第1部分および前記第3半導体層内に形成されたコンタクトプラグ31と、を具備し、前記第2半導体層内における前記コンタクトプラグの径は、前記第1半導体層及び前記第3半導体層内における前記コンタクトプラグの径より小さい。 (もっと読む)


【課題】駆動電流の増大を図る。
【解決手段】半導体装置は、半導体基板10と、前記半導体基板上のソース/ドレイン領域に形成された第1半導体層11と、前記第1半導体層上に形成された第1部分12aと、前記ソース/ドレイン領域の間に位置するチャネル領域に線状に形成された第2部分12bと、を有する第2半導体層12と、前記第2半導体層の前記第2部分の周囲に絶縁膜17を介して形成されたゲート電極18と、を具備し、前記第2半導体層の前記第2部分の膜厚は、前記第2半導体層の前記第1部分の膜厚より小さい。 (もっと読む)


【課題】 高誘電率ゲート絶縁膜を用い、PMOS、NMOSそれぞれに適した仕事関数を有するCMOSFETを有する半導体装置及びその製造方法を提供する。
【解決手段】 半導体基板の主面に素子分離領域によって、絶縁分離されたP型及びN型領域を形成する工程と、前記第P型及びN型領域上にシリコン酸化膜或いはシリコン酸窒化膜からなる第一の絶縁膜を形成する工程と、前記P型領域上の前記第一の絶縁膜上にランタン酸化膜を形成する工程と、前記P型領域上の前記ランタン酸化膜及び前記N型領域上の前記第一の絶縁膜上にハフニウム或いはジルコニウムを含む第二の絶縁膜を形成する工程と、前記第二の絶縁膜上にTiとするとx/y<1を満たすチタンナイトライド膜を形成する工程とを備えることを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】高集積度化でき、電気射特性を維持しながら、低コスト化できる電界効果トランジスタの製造方法を実現する。
【解決手段】誘電性絶縁部層2’によって被覆されているバルクシリコンウエハ基板1’上に島状の各活性エリア10を互いに隣り合うようにそれぞれ設定する。バルクシリコンウエハ基板1’の表面上において、各活性エリア10を電界効果トランジスタの本体領域をフィン部3、5の形状で突出するように露出させて形成するために、誘電性絶縁部層2’を厚さ方向にエッチバックして絶縁体層2を形成する。上記本体領域に、チャネル領域部、上記チャネル領域部上のゲート誘電体8、ゲート誘電体8上のゲート電極4、および、ゲート電極4の自己整合マスクにより、チャネル領域部とは反対の伝導性型である不純物原子のドープによりソース領域部5およびドレイン領域部3を形成する。 (もっと読む)


【課題】ゲート構造としてメタル電極/High−k膜構造を用いた半導体装置において、仕事関数の制御とEOTの薄膜化とを両立させる。
【解決手段】半導体基板101におけるnチャネルMISトランジスタ形成領域の上に、ゲート絶縁膜として、第1の高誘電率絶縁層202、アルミニウム含有層203、ランタン含有層204及び第2の高誘電率絶縁層205を順次形成する。その後、ゲート電極形成を行う。 (もっと読む)


【課題】 非対称的なソース及びドレイン領域を有する構造を提供する。
【解決手段】 本発明の方法は、少なくとも1つの半導体チャネル領域を有する基板と、半導体チャネル領域を覆うように基板の上面に設けられたゲート誘電体層と、ゲート誘電体層上のゲート導電体とを有する構造を形成する。非対称的な側壁スペーサがゲート導電体の側壁に配置され、そして非対称的なソース及びドレイン領域が半導体チャネル領域に隣接して基板内に配置される。ソース及びドレイン領域の一方は、他方よりもゲート導電体の中心に近づけられる。ソース及びドレイン領域は、半導体チャネル領域に物理的な応力を与える材料で構成される。 (もっと読む)


【課題】接合リークを抑制しながら、キャリアの移動度向上とチャネル中でのキャリア速度の増加を実現することができるトランジスタを提供する。
【解決手段】半導体基板10のチャネル形成領域にチャネル方向に第1の幅を有するSiGe層15が埋め込まれ、チャネル形成領域上にゲート絶縁膜28が形成され、ゲート絶縁膜上に、第1の幅より大きい第2の幅を有してSiGe層の形成領域からはみ出す領域を有するゲート電極29が形成され、チャネル形成領域を挟む半導体基板においてエクステンション領域12を有するソースドレイン領域13が形成されて、電界効果トランジスタが構成されており、エクステンション領域と半導体基板の接合面から伸びる空乏層がSiGe層に達しないようにエクステンション領域とSiGe層が離間されている。 (もっと読む)


【課題】SiGeストレッサの形成方法と集積回路のトランジスタ構造を提供する。
【解決手段】SiGeストレッサを形成する方法であって、前記方法は、ソース領域とドレイン領域間にチャネルを有する半導体基板上のソース領域とドレイン領域の少なくとも1つに第1SiGe層を堆積するステップ、及び前記第1SiGe層の上部を酸化層に変換し、前記第1SiGe層の底部を第2SiGe層に変換するステップを含み、前記第2SiGe層は、前記第1SiGe層より高いGe濃度を有する方法。 (もっと読む)


【課題】 半導体トランジスタの垂直フィン構造及びその製造方法を提供する。
【解決手段】 半導体トランジスタの垂直フィン構造であって、半導体基板、この半導体基板の上部のフィン層、及びこのフィン層を覆うキャッピング層を含み、半導体基板は、IV族半導体材料を含み、フィン層は、IV族半導体材料を含み、キャッピング層は、III−V族半導体化合物を含み、フィン層は、半導体トランジスタのチャネルとなり、キャッピング層は、フィン層に歪みを加え、チャネルを通過する移動度を向上させる垂直フィン構造。 (もっと読む)


【課題】デバイス特性の制御性に優れた半導体装置および半導体装置の製造方法を提供する。
【解決手段】本実施の形態の半導体装置は、シリコン基板101上にMOSトランジスタを備える半導体装置であって、MOSトランジスタは、シリコン基板101上にゲート絶縁膜203を介して設けられたゲート電極(メタル電極206)と、ゲート電極(メタル電極206)の両脇の前記シリコン基板の表面近傍に設けられソース領域106およびドレイン領域109と、ソース領域106およびドレイン領域109に接するように、ゲート電極直下のシリコン基板101中に設けられた、チャネル領域(ゲルマニウム・カーボン単結晶膜202)と、を備え、チャネル領域が、シリコンと異なる異種半導体(ゲルマニウム)を含むものである。 (もっと読む)


【課題】ゲート・オール・アラウンドトランジスタの複数のチャネルそれぞれに流れる電流を均一にし、ゲート・オール・アラウンドトランジスタの信頼性を向上させる。
【解決手段】半導体基板と、半導体基板上に一定の間隔をおいて形成された第1の半導体層上に第2の半導体層を形成した積層構造が複数積み重なったソース・ドレイン領域と、第2の半導体層の同一レイヤ間をそれぞれ接続するようにワイア状に形成された複数のチャネル領域と、前記複数のチャネル領域をそれぞれ包み込むようにゲート絶縁膜を介して形成されたゲート電極とを具備し、チャネル領域のチャネル幅は、半導体基板から離れるほど狭く形成され、第2の半導体層及びチャネル領域の膜厚は、半導体基板から離れるほど広く形成される。 (もっと読む)


【課題】ゲート電極7作製後にチャネル部12を作製する縦型MISFETの製造方法において、ゲート絶縁膜10に損傷を与えたり移動度を劣化させたりすることなく、孔底面に形成された絶縁膜や、自然酸化膜を除去する。
【解決手段】単結晶半導体基板1または単結晶半導体層に形成された不純物領域8の上に、第一絶縁層4、5と、ゲート電極層7と、第二絶縁層5、4と、をこの順に積層した積層体を形成し、前記積層体に不純物領域8が露出する孔を形成し、少なくとも前記孔の側壁に露出しているゲート電極層7、および、前記孔の底面に露出している不純物領域8の上に絶縁膜10を形成し、ゲート電極層7の露出部分の上に形成された絶縁膜10の上に半導体膜を重ねて形成し、不純物領域8の上に形成された絶縁膜を除去し、孔の底面に露出している不純物領域8に接し、孔底面から孔の開口部までつながる半導体部を形成する半導体装置の製造方法を提供する。 (もっと読む)


【課題】高品質な特性を有する電界効果トランジスタ及びその方法を提供する。
【解決手段】素子分離領域106間のソース/ドレイン領域114、及びポケット領域116を含んでいる半導体基板102と、素子分離領域間の半導体基板の上面のトレンチ110内にあって、(100)面を有する底面及び上面と、2つ以上の平面を有する側面とを有するシリコンゲルマニウム層112と、ゲート絶縁層120、ゲート電極122、及びサイドスペーサ128を含むシリコンゲルマニウム層上のゲート構造と、ゲート構造によって覆われていないシリコンゲルマニウム層及び半導体基板の上部分上のメタルシリサイド124とを備え、シリコンゲルマニウム層は、チャネル長方向において、ゲート構造の下で側面を有していない。 (もっと読む)


不揮発性メモリセルにアクセスするための半導体装置が提供される。いくつかの実施形態においては、半導体装置は、ソース、ドレインおよびウェルを含む半導体層の縦型スタックを有する。半導体装置へのドレイン−ソースバイアス電圧の印加は、ウェルにわたってパンチスルー機構を生成し、ソースとドレインとの間の電流の流れを発生させる。
(もっと読む)


【課題】トランジスタ特性を向上させる。
【解決手段】STI109と、STI109によって互いに分離されたp型ウェル102及びn型ウェル103と、p型ウェル102及びn型ウェル103上に形成されたSiGe膜108とを有するSi基板101を用意する工程と、n型ウェル103上に位置するSiGe膜108をSiO膜116で被覆する工程と、SiO膜116をマスクとして酸化処理を行うことによりp型ウェル102上に形成されたSiGe膜108を酸化し、SiGe膜117を形成する工程((c))と、SiGe膜117を除去する工程((d))と、を行い、半導体装置を製造する。 (もっと読む)


【課題】pMOSトランジスタにcSiGeとeSiGeを適用し、且つゲート絶縁膜におけるダメージ発生を防止でき、素子特性の向上及びしきい値制御性の向上をはかる。
【解決手段】pMOSトランジスタのチャネル部及びソース・ドレイン領域にSiGeを用いた半導体装置において、Si基板202上の一部に形成され、pMOSトランジスタのチャネルとなる第1のSiGe層205と、第1のSiGe層205上にゲート絶縁膜206を介して形成されたゲート電極208と、pMOSトランジスタのソース・ドレイン領域に埋め込み形成され、且つチャネル側の端部が基板表面よりも深い位置でチャネル側に突出するように形成された第2のSiGe層214と、第1のSiGe層205と第2のSiGe層214とを分離するように、基板の表面部でSiGe層205,214間に挿入されたSi層222とを備えた。 (もっと読む)


【課題】トレンチ構造の歪み導入要素によりに歪み導入されたチャネルを持つMOSトランジスタのリーク電流を改善する。
【解決手段】MOSトランジスタ106のチャネル領域108に、第1トレンチ構造55a、第2トレンチ構造55bによる歪み導入要素だけでなく、別の歪み導入要素として、MOSトランジスタ106表面上にコンフォーマルに設けられた窒化シリコンキャップ層130を設ける。別の態様では、チャネル領域108内の歪みは、ガス種、例えば水素、酸素、ヘリウムまたは別の希ガスをゲート110またはチャネル領域108の下の領域内に注入することによって導入される。 (もっと読む)


【課題】簡易な手順で、高誘電率ゲート絶縁膜とメタルゲート電極とのゲートスタック構造を有する相補型トランジスタの閾値を調整する。
【解決手段】相補型トランジスタの第1導電型のトランジスタ(162)の閾値電圧を変化させる第1の調整用金属を第1導電型のトランジスタ(162)および第2導電型のトランジスタ(160)に同時に添加し、第2導電型のトランジスタ(160)のメタルゲート電極(110a)上から第1の調整用金属の拡散を抑制する拡散抑制元素を添加する。 (もっと読む)


【課題】CMOS集積過程での高温処理の後であっても一定の閾値電圧を維持する高kゲート誘電体の提供。
【解決手段】高kゲート誘電体30と、下部金属層40、捕捉金属層50、および上部金属層60を含む金属ゲート構造とのスタックを提供する。該捕捉金属層は、次の2つの基準、1)Si+2/yM→2x/yM+SiOの反応によるギブス自由エネルギの変化が正である金属(M)であること、2)酸化物形成に対する酸素原子あたりのギブス自由エネルギが、下部金属層の金属および上部金属層の金属より大きな負である金属であること、を満たす。これらの基準を満たす捕捉金属層は、酸素原子がゲート電極を通って高kゲート誘電体に向け拡散するときに該酸素原子を捕捉する。さらに、該捕捉金属層は、高kゲート誘電体の下の酸化ケイ素界面層の厚さを遠隔から低減する。この結果、ゲート誘電体全体の等価酸化膜厚(EOT)の変動が抑制される。 (もっと読む)


101 - 120 / 619