説明

Fターム[5F140BD07]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート絶縁膜 (8,730) | 材料 (6,782) | SiN (784)

Fターム[5F140BD07]に分類される特許

101 - 120 / 784


【課題】絶縁ゲート型P−HEMT構造において、良好なトランジスタ性能を実現する。
【解決手段】ベース基板、第1結晶層、第2結晶層および絶縁層をこの順に有し、第1結晶層と第2結晶層との間、または、ベース基板と第1結晶層との間に位置する第3結晶層をさらに有し、第2結晶層が、第1結晶層を構成する結晶に格子整合または擬格子整合し、かつ第1結晶層を構成する結晶よりも禁制帯幅が大きい結晶からなり、第3結晶層が、第1結晶層を構成する結晶に格子整合または擬格子整合し、かつ第1結晶層を構成する結晶よりも禁制帯幅が大きい結晶からなり、第3結晶層は、ドナーまたはアクセプタとなる第1原子を含み、第3結晶層がドナーとなる第1原子を含む場合、第2結晶層が、アクセプタとなる第2原子を含み、第3結晶層がアクセプタとなる第1原子を含む場合、第2結晶層が、ドナーとなる第2原子を含む半導体基板。 (もっと読む)


【課題】ポリイミド膜上に設けた電極パッドに導体バンプなしにAlワイヤを確実に接合でき、ポリイミド膜からの電極パッドの剥離や電極パッドとAlワイヤとの接合不良を防止できるパワーデバイスを提供する。
【解決手段】絶縁基板1上に設けられた半導体素子(2,3,6)と、絶縁基板1上に形成され、半導体素子(2,3,6)を覆う軟質ポリイミド膜11と、軟質ポリイミド膜11上に形成された電極パッド9と、電極パッド9にワイヤボンディングにより一端が接合されたAlワイヤ12とを備える。 (もっと読む)


【課題】MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させ、かつ、チップサイズの増加を抑制した、窒化物系半導体装置を提供することができる、窒化物系半導体装置を提供することを目的とする。
【解決手段】ショットキー電極30が、ソース電極24とドレイン電極26とが対向する領域の、ソース電極24とドレイン電極26とが対向する方向と略直交する方向にゲート電極28と並んで形成されている。ショットキー電極30は、AlGaN層20とショットキー接合されており、ソース電極24に電気的に接続されている。 (もっと読む)


【課題】高品質な半導体装置及びその製造方法を提供する。
【解決手段】半導体装置は、基板と、基板上に形成される半導体領域、半導体領域内に形成され、互いに分離されているソース領域及びドレイン領域、半導体領域内に形成され、ソース領域及びドレイン領域を分離するチャネル領域、チャネル領域上に形成され、1×1019atoms/cmよりも大きいピーク濃度で、Si、O、またはNとは異なる少なくとも一つの要素を有する界面酸化層、及び界面酸化層上に形成され、実質的に界面酸化層に隣接する深さでhigh―k/界面酸化層接合面を有するhigh―k絶縁層を有するMOS(metal-oxide-semiconductor)トランジスタを備え、少なくとも一つの要素のピーク濃度の少なくとも一つの深さは、実質的にhigh―k/界面酸化層接合面よりも下に位置する。 (もっと読む)


【課題】半導体積層体に含まれるチャネル層下の化合物半導体層を不純物ドーピングでp型化することなく、その半導体積層体を含むHFETのリーク電流の低減や耐電圧の向上などを可能とする。
【解決手段】半導体積層体は、基板(11)上において順次堆積された第1、第2および第3の化合物半導体層(13、14、15)を少なくとも含み、その第1化合物半導体層(13)の少なくとも部分的層(16)は非晶質に改質されており、第2化合物半導体層(14)は第1化合物半導体層(13)に比べて小さなバンドギャップを有して光吸収層として作用し得る。 (もっと読む)


【課題】オフ時のリーク電流を低減し、パワースイッチング素子に適用可能なノーマリーオフ型の半導体装置を提供する。
【解決手段】基板101と、基板101の上に形成されたアンドープGaN層103と、アンドープGaN層103の上に形成されたアンドープAlGaN層104と、アンドープGaN層103又はアンドープAlGaN層104の上に形成されたソース電極107及びドレイン電極108と、アンドープAlGaN層104の上に形成され、ソース電極107とドレイン電極108との間に配置されたp型GaN層105と、p型GaN層105の上に形成されたゲート電極106とを備え、アンドープGaN層103は、チャネルを含む活性領域113と、チャネルを含まない不活性領域112とを有し、p型GaN層105は、ソース電極107を囲むように配置されている。 (もっと読む)


【課題】ゲートリセスの深さの制御を安定的に行なえるようにして、ノーマリオフ動作のデバイスを安定的に作製できるようにする。
【解決手段】半導体装置を、基板1の上方に設けられたGaN電子走行層2と、GaN電子走行層2上に設けられた第1AlGaN電子供給層3と、第1AlGaN電子供給層3上に設けられたAlN電子供給層4と、AlN電子供給層4上に設けられた第2AlGaN電子供給層5と、第2AlGaN電子供給層5及びAlN電子供給層4に設けられたゲートリセス9と、ゲートリセス9に設けられたゲート電極12とを備えるものとする。 (もっと読む)


【課題】ゲート誘電体の上に複数のシリサイド金属ゲートが作製される相補型金属酸化物半導体集積化プロセスを提供する。
【解決手段】形成されるシリサイド金属ゲート相の変化を生じさせるポリSiゲートスタック高さの変化という欠点のないCMOSシリサイド金属ゲート集積化手法が提供される。集積化手法は、プロセスの複雑さ最小限に保ち、それによって、CMOSトランジスタの製造コストを増加させない。 (もっと読む)


【課題】半導体素子を提供すること。
【解決手段】半導体素子であって、基板と、該基板内に形成された井戸領域と、該基板の表面の上方に形成されたゲート構造と、該ゲート構造に隣接して基板内に形成されたソース領域と、該ソース領域の反対側に該ゲート構造に隣接して該基板内に形成されたドレイン領域と、該ソース領域を通して形成されたトレンチと、該トレンチを通して形成されたプラグと、該トレンチを通して該プラグの上方に形成されたソースタイと、該ソース領域、該ドレイン領域、および該ゲート構造の上方に形成された相互接続構造とを備える、半導体素子。 (もっと読む)


【課題】ゲート電極の端部でのバイアス電界集中が緩和され、且つ動作時のオン抵抗の増大が抑制された化合物半導体装置を提供する。
【解決手段】キャリア供給層22、及びキャリア供給層22との界面近傍において二次元キャリアガス層23が形成されるキャリア走行層21を有する化合物半導体層20と、化合物半導体層20の主面200上に配置されたソース電極3及びドレイン電極4と、ソース電極3とドレイン電極4間で主面200上に配置されたゲート電極5と、ゲート電極5とドレイン電極4間で主面200上方に配置されたフィールドプレート6と、フィールドプレート直下の二次元キャリアガス層が形成される領域内に配置された、上方にフィールドプレート若しくはゲート電極が配置されていない二次元キャリアガス層が形成される領域よりも導電率が低い低導電性領域210とを備える。 (もっと読む)


【課題】炭化珪素MOSFETにおいて、炭化珪素層とゲート絶縁膜との界面に発生する界面準位を十分に低減できず、キャリアの移動度が低下する場合があった。
【解決手段】この発明に係る炭化珪素半導体装置は、炭化珪素層を有し炭化珪素層上にゲート絶縁膜を形成した基板を炉の中に導入する基板導入工程と、基板を導入した炉を加熱して一酸化窒素と窒素とを導入する加熱工程とを備え、加熱工程は、窒素を反応させてゲート絶縁膜と炭化珪素層との界面を窒化する。 (もっと読む)


【課題】窒化処理によって低下した閾値電圧を、向上させることができる炭化珪素半導体装置の製造方法を提供する。
【解決手段】ベース領域7およびソース領域8を含む炭化珪素ドリフト層6上に二酸化珪素を主成分とするゲート絶縁膜11が形成された炭化珪素基板2を窒化処理する窒化処理工程と、窒化処理工程後、炭化珪素基板2を、一酸化二窒素を含む雰囲気中で600℃以上1000℃以下の温度で熱処理する熱処理工程と、を備える。 (もっと読む)


【課題】例えば、チタン酸ストロンチウムを活性層とした電界効果トランジスタのゲート絶縁体としても使用することのできる、新規な絶縁体を提供することを目的とする。
【解決手段】絶縁性を示す材質中に直径5〜100nmである空孔を複数有し、全体の体積に対する前記空孔の占める体積の割合である空孔率が20体積%以上であり、前記空孔には水分が含まれ、前記空孔の体積に対する前記水分の占める体積の割合である水分占有率が23〜100体積%である多孔性絶縁体を使用する。 (もっと読む)


【課題】ワイドギャップ半導体基板の位置検出を、可視光を用いて高精度に行う。
【解決手段】一実施形態によれば、ナローギャップ半導体基板(例えばSi基板2)の主面の所定の位置に彫り込み型のアライメントマーク4が形成されたナローギャップ半導体基板のその主面上にワイドギャップ半導体層(例えばGaN層19)をエピタキシャル成長したことにより、基板位置決め用のアライメントマークが予め埋め込まれているワイドギャップ半導体基板を提供する。 (もっと読む)


【課題】使用可能な処理技術と材料の数、ならびに処理技術の順序における変更可能性を高めることである。
【解決手段】本発明は、とりわけガスセンサ用の化学的感受性電界効果トランジスタである電界効果トランジスタの製造方法に関する。使用可能な処理技術と材料の数、ならびに処理技術の順序における変更可能性を高めるために、本方法の枠内で、ゲート絶縁保護層(3)が形成され、このゲート絶縁保護層は、ゲート絶縁層(2)をさらなるプロセス化の際に環境の影響から保護し、ゲート電極層形成前に部分的にまたは完全に除去される。さらに本発明は、この種の電界効果トランジスタおよびその使用法に関する。 (もっと読む)


【課題】GaN系半導体層のグレインサイズを大型化することが可能な半導体装置を提供すること。
【解決手段】本発明は、(111)面から0.1度以下のオフ角度で傾斜した面を主面とするSi基板10と、Si基板10の主面に接して設けられ、(002)面のX線回折におけるロッキングカーブの半値幅が2000sec以下であるAlN層12と、AlN層12上に設けられたGaN系半導体層20と、を備える半導体装置100である。 (もっと読む)


【課題】高度な集積化を実現した、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】チャネル形成領域を含む半導体層と、チャネル形成領域と電気的に接続するソース電極およびドレイン電極と、チャネル形成領域と重畳するゲート電極と、チャネル形成領域とゲート電極との間のゲート絶縁層と、を含み、チャネル形成領域を含む半導体層の側面の一部と、ソース電極またはドレイン電極の側面の一部と、は、平面方向から見て概略一致している半導体装置である。 (もっと読む)


【課題】MOSトランジスタのチャネル領域に、基板上に形成した応力膜からより効率的に応力を印加する半導体装置の構造及びその製造方法を提供する。
【解決手段】MOSトランジスタは、n型またはp型のソース・ドレイン領域21e〜hと、素子分離領域21Iからチャネル領域に向かって延在し、ソース・ドレイン領域21e〜hを覆って形成された、引張応力、圧縮応力のいずれかである応力膜27A、27Bを備える。応力膜27A,27Bは、ゲート電極23A,23Bの側壁面に沿って、ただし側壁面からは隙間32A〜Dを介して形成される。ソース・ドレイン領域21e〜hがn型である場合、応力膜の応力は引張応力であり、ソース・ドレイン領域21e〜hがp型である場合、応力膜の応力は圧縮応力である。 (もっと読む)


【課題】電界効果トランジスタにおいて、フィールドプレート終端での高電界の集中を緩和し、もって高耐圧半導体装置として利用可能とする。
【解決手段】本電界効果トランジスタ30は、GaN系エピタキシャル基板32の電子走行層上に、ゲート電極38を挟んで配置されたソース電極34及びドレイン電極36を備え、ゲート電極38及びソース電極34はドレイン電極36を囲み、ソース電極34の上部に、ゲート電極38の上方を通過してドレイン電極36側に庇状に突き出したフィールドプレート170が形成され、GaN系エピタキシャル基板32の表面層とフィールドプレート170との間に、誘電体膜46が形成され、誘電体膜46は、フィールドプレート170の直下領域においてフィールドプレート終端面と面一状態となるように切れ込み、その下端からドレイン電極36に接続するようにドレイン電極36に向かって延びている。 (もっと読む)


【課題】縦型のトランジスタにおいてゲートからシリサイドの位置を精度よく制御できるようにする。
【解決手段】柱状半導体14の中央部には、その周囲を囲むように、ゲート絶縁膜9が形成され、さらに、ゲート絶縁膜9の周囲を囲むように、ゲート層6が形成されている。この柱状半導体14の中央部、ゲート絶縁膜9、ゲート層6により、MIS構造が形成されている。ゲート層6の上下には、第1絶縁膜4が形成されている。第1絶縁膜4は、柱状半導体14にも接している。柱状半導体14の側面には、シリサイド18及びn型拡散層(不純物領域)19が形成されている。シリサイド18は、第1絶縁膜4によってセルフ・アラインされた位置に形成されている。 (もっと読む)


101 - 120 / 784