説明

Fターム[5F140BH14]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース、ドレイン領域及びSD近傍領域 (10,828) | 不純物分布 (3,598) | 断面分布の形状、配置 (3,436) | 追加領域(エクステンション領域を含む) (3,054)

Fターム[5F140BH14]の下位に属するFターム

Fターム[5F140BH14]に分類される特許

161 - 180 / 1,410


【課題】高耐電圧により大電流化が可能で、オン抵抗が低く高速動作が可能で、高集積化と省エネルギーが可能で、素子間分離の容易な、電気熱変換素子駆動用の半導体装置を提供する。
【解決手段】電気熱変換素子とそれに通電するためのスイッチング素子とがp型半導体基体1に集積化されている。スイッチング素子は、半導体基体1の表面に設けられたn型ウェル領域2と、それに隣接して設けられチャネル領域を提供するp型ベース領域6と、その表面側に設けられたn型ソース領域7と、n型ウェル領域2の表面側に設けられたn型ドレイン領域8,9と、チャネル領域上にゲート絶縁膜を介して設けられたゲート電極4とを有する絶縁ゲート型電界効果トランジスタである。ベース領域6は、ドレイン領域8,9を横方向に分離するように設けられた、ウェル領域2より不純物濃度の高い半導体からなる。 (もっと読む)


【課題】シリコン基板裏面をソース電極として使用するLDMOSFETにおいて、出力効率向上のため、基板抵抗を下げようとして高濃度ボロンドープ基板を用いると、ソースドレイン間のリーク不良が、多発することが、本願発明者等によって明らかにされた。更に、この不良解析の結果、ソース不純物ドープ領域からP型エピタキシ層を貫通してP型基板に至るP型ポリシリコンプラグに起因する不所望な応力が、このリーク不良の原因であることが明らかにされた。
【解決手段】本願発明は、LDMOSFETを含む半導体装置であって、LDMOSFETのソース不純物ドープ領域の近傍の上面から下方に向けてエピタキシ層内をシリコン基板の近傍まで延び、前記エピタキシ層内にその下端があるシリコンを主要な成分とする導電プラグを有する。 (もっと読む)


【課題】工程を増加することなく、エクステンション領域をゲート端から遠ざけ、実効ゲート長の拡大を図ると同時に、狭ピッチ化に対応する。
【解決手段】裾引き状のオフセットサイドウォール6aをマスクにエクステンション注入を行い、エクステンション領域7を形成し、オフセットサイドウォール6a上にソース・ドレイン注入用のサイドウォール9を形成し、ソース・ドレイン領域10を形成する。 (もっと読む)


【課題】半導体装置の性能を向上させる。
【解決手段】半導体基板1の主面にゲート絶縁膜用のHf含有膜4、Al含有膜5及びマスク層6を形成してから、nチャネル型MISFET形成予定領域であるnMIS形成領域1Aのマスク層6とAl含有膜5を選択的に除去する。それから、nMIS形成領域1AのHf含有膜4上とpチャネル型MISFET形成予定領域であるpMIS形成領域1Bのマスク層6上に希土類含有膜7を形成し、熱処理を行って、nMIS形成領域1AのHf含有膜4を希土類含有膜7と反応させ、pMIS形成領域1BのHf含有膜4をAl含有膜5と反応させる。その後、未反応の希土類含有膜7とマスク層6を除去してから、メタルゲート電極を形成する。マスク層6は、窒化チタン又は窒化タンタルからなる窒化金属膜6aと、その上のチタン又はタンタルからなる金属膜6bとの積層構造を有する。 (もっと読む)


【課題】ゲート長の加工ばらつきに起因する特性劣化を確実に抑制できる半導体装置の製造方法を提供する。
【解決手段】ゲート長及びオフセットサイドウォール長のそれぞれの設計値からのズレ量と、トランジスタの特性を設計値に設定するためのソース/ドレイン・エクステンション領域のドーズ量との相関関係を予め求めておく。ゲート長及びオフセットサイドウォール長を実測した後、ゲート長及びオフセットサイドウォール長のそれぞれの実測値の設計値からのズレ量、並びに前記相関関係に基づいて、ソース/ドレイン・エクステンション領域のドーズ量を、トランジスタの特性の設計値からのズレ量が所定の範囲内に収まるように調整する。 (もっと読む)


【課題】微細化が進んだ場合であっても、適切なしきい値電圧を有するpチャネルMOSFETを含む半導体装置を製造する。
【解決手段】本発明に係る半導体装置の製造方法は、半導体基板101上に、SiO2またはSiONを含む第1ゲート絶縁層104を形成する第1ゲート絶縁層形成ステップと、第1ゲート絶縁層104上に、金属酸化物を含む第2ゲート絶縁層105を形成する第2ゲート絶縁層形成ステップと、第2ゲート絶縁層105上に、金属を含む第1電極106aを形成する第1電極形成ステップと、形成された積層構造に、複数回のミリセカンドアニール処理を行うことで、第2ゲート絶縁層105および第1電極106aの少なくとも一方に含まれる4族、5族または13族の元素を、第1ゲート絶縁層104と第2ゲート絶縁層105との界面に拡散させるアニールステップとを含む。 (もっと読む)


【課題】コンタクトホール形成時の重ね合わせずれに起因したリークの増大やコンタクト抵抗の上昇が抑制された半導体装置とその製造方法を提供する。
【解決手段】半導体装置は、半導体基板100と、半導体基板100上にゲート絶縁膜101を介して形成されたゲート電極102と、ゲート電極102の側壁上に形成されたサイドウォールスペーサ150と、半導体基板100のうち、ゲート電極102及びサイドウォールスペーサ150を間に挟んで両側に形成されたソースドレイン領域106と、ゲート電極102、サイドウォールスペーサ150、及び半導体基板100の上面を覆う応力絶縁膜110とを備えている。サイドウォールスペーサ150は、少なくとも中央部のゲート長方向膜厚よりも上部のゲート長方向膜厚の方が大きくなっている。 (もっと読む)


【課題】キャップ材料を使用した半導体装置のウェハ面内における閾値電圧Vtのバラツキを抑制することを目的とする。
【解決手段】まず、半導体基板1001の上に、高誘電率ゲート絶縁膜1006及び第1のキャップ膜1008を順に形成する。次に、熱処理を行って、第1のキャップ膜1008中の第1の金属を高誘電体膜1006に拡散させる。その後、高誘電体膜1006に拡散せずに高誘電体膜1006の上に残存した第1のキャップ膜1008を除去して、第1の金属が拡散した高誘電率ゲート絶縁膜1006Aの上に金属電極1010を形成する。 (もっと読む)


【課題】信頼性の向上に寄与し得る半導体装置の製造方法を提供する。
【解決手段】半導体基板10にトランジスタ36を形成する工程と、半導体基板上に、トランジスタを覆う第1のシリコン窒化膜38を形成する工程と、第1のシリコン窒化膜にNHFラジカルを供給する工程と、NHFラジカルを供給する工程の後、第1のシリコン窒化膜に対して熱処理を行う工程と、熱処理を行う工程の後、第1のシリコン窒化膜上に第2のシリコン窒化膜を形成する工程とを有している。 (もっと読む)


【課題】良好な電気的特性を有する半導体装置及びその製造方法を提供する。
【解決手段】半導体基板10上に形成されたゲート絶縁膜20と、ゲート絶縁膜上に形成されたキャップ膜22と、キャップ膜上に形成されたシリコン酸化膜23と、シリコン酸化膜上に形成された金属ゲート電極24と、金属ゲート電極の両側の半導体基板内に形成されたソース/ドレイン拡散層48とを有している。 (もっと読む)


【課題】電界効果トランジスタにおけるゲート電極の汚染を防止し、かつゲート電極上に形成されるマスク膜の膜厚を薄くする。
【解決手段】基板10上にゲート絶縁膜100を形成する。次いでゲート絶縁膜100上にゲート電極膜120を形成する。ゲート電極膜120の一部上にマスク膜230を形成する。マスク膜230をマスクとしたエッチングによりゲート電極膜120を選択的に除去する。そして、マスク膜230とゲート電極膜120の側面に接するようゲート側壁膜130を形成する。マスク膜230は少なくとも第1膜200、第2膜210、及び第3膜220をこの順に積層した積層膜により構成される。第2膜210は、ゲート側壁膜130に対して第3膜220よりも高いエッチング選択比を有する。第3膜220は、ゲート電極膜120に対して第2膜210よりも高いエッチング選択比を有する。 (もっと読む)


【課題】電界効果型トランジスタの閾値電圧を精度よく制御することができ、かつその範囲を広くする。
【解決手段】この半導体装置は、ゲート絶縁膜120及びゲート電極130を有する電界効果型トランジスタ101を備える。ゲート絶縁膜120は、界面層110と高誘電率膜112とを積層した構成を有している。高誘電率膜112は、酸化シリコンより誘電率が高い金属酸化物からなる。そしてゲート絶縁膜120は、高誘電率膜112と界面層110の界面近傍に、窒素を含有する窒素含有層を有している。窒素含有層は高誘電率膜112から界面層110に渡って形成されている。窒素含有層において、窒素の濃度は高誘電率膜112と界面層110の界面が最も高い。 (もっと読む)


【課題】トランジスタ素子内の電界を十分に緩和する。
【解決手段】表面に凸部12Aを有する半導体基板12と、凸部12Aの側壁部を構成し、凸部12Aの麓から頂上に向かって傾斜する傾斜部12Cと、凸部12Aの頂上にゲート絶縁膜14を介して形成されたゲート電極16と、凸部12Aの頂上で、ゲート電極16及び前記ゲート絶縁膜14の両側壁に形成されたサイドウォール18と、低濃度領域20A,22A及び高濃度領域20B,22Bをそれぞれ含むソース20及びドレイン22と、を有する。 (もっと読む)


【課題】所望の実効仕事関数(例えば、高い実効仕事関数)を実現し、かつ、EOTが変化しない、またはEOTの変化を低減した金属窒化膜、金属窒化膜を用いた半導体装置、および半導体装置の製造方法を提供すること。
【解決手段】本発明の一実施形態に係る金属窒化膜は、TiとAlとNを含有し、該金属窒化膜のTiとAlとNのモル比率(N/(Ti+Al+N))が0.53以上であり、かつ、上記金属窒化物層のTiとAlとNのモル比率(Ti/(Ti+Al+N))が0.32以下であり、かつ上記金属窒化物層のTiとAlとNのモル比率(Al/(Ti+Al+N))が0.15以下である。 (もっと読む)


【課題】耐圧とオン抵抗とのトレードオフ関係を改善する。
【解決手段】ゲート絶縁膜及びLOCOS領域の下、及びドレイン領域を囲むようにドレイン領域に接してオフセット領域を設け、オフセット領域を、第1オフセット領域と、第1オフセット領域の上にドレイン領域を囲み且つLOCOS酸化膜の下に形成される第2オフセット領域と、前記オフセット領域のソース領域側の端部からLOCOSのソース領域側の端部までの間のみに形成される第3オフセット領域とで形成し、第2オフセット領域の不純物濃度を、第1オフセット領域及び第3オフセット領域よりも高くする。高濃度の第2オフセット領域を設けることによりオン抵抗の低減を図り且つ高濃度の第2オフセット領域を低濃度のオフセット領域で挟むことにより、第2オフセット領域の深さ方向の空乏化を促進し電界の緩和を図り耐圧の向上を図る。 (もっと読む)


【課題】 本発明の課題は、イオン注入分布のシミュレーションに関し、ポケット領域へのイオン注入による不純物濃度分布を解析的に求めることを目的とする。
【解決手段】 上記課題は、コンピュータがイオン注入分布を発生するイオン注入分布発生方法であって、該コンピュータが、半導体集積回路の素子構造においてイオン注入される側面に対して飛程の射影Rを示すRラインに関連させた分布を発生させる工程と、イオン注入条件に対応する2次元図に前記Rラインを引く工程と、前記Rライン毎に2次元の不純物濃度分布を発生させる工程とを実行するイオン注入分布発生方法により達成される。 (もっと読む)


【課題】不純物拡散領域の抵抗値のばらつきを抑制しうる半導体装置の製造方法を提供する。
【解決手段】半導体層にドーパント不純物を添加し、0.1秒〜10秒の活性化熱処理を行う。次いで、半導体層にイオン注入を行い、半導体層のドーパント不純物が添加された領域をアモルファス化する。次いで、0.1ミリ秒〜100ミリ秒の活性化熱処理を行い、アモルファス化した半導体層を再結晶化することにより、半導体層にドーパント不純物の拡散領域を形成する。 (もっと読む)


【課題】歩留まりに優れた半導体装置を提供する。
【解決手段】半導体装置の製造方法は、基板(シリコン基板7)上にゲート絶縁膜5とゲート電極膜(ポリシリコン膜3)とをこの順に形成し、ポリシリコン膜3上にハードマスク(第2のハードマスク2)を形成する工程と、第2のハードマスク2を用いて、ポリシリコン膜3を選択的にエッチングして、ゲート電極20を形成する工程と、ゲート絶縁膜5の側壁、ゲート電極20の側壁、第2のハードマスク2の側壁および上面上、ならびにシリコン基板7上に、第1の絶縁膜(第1のスペーサ用絶縁膜)を形成する工程と、異方性ドライエッチングを行うことにより、シリコン基板7上、ならびに第2のハードマスク2の上面上および側壁上の第1のスペーサ用絶縁膜を除去しつつ、ゲート絶縁膜5およびゲート電極20の側壁上に第1の絶縁膜(第1のスペーサ)を残す工程と、第2のハードマスク2を除去する工程と、ゲート電極20および第1のスペーサをマスクとしてシリコン基板7にイオン注入を行う工程と、を含む (もっと読む)


【課題】ストレスライナー膜によるチャネル領域の効果的な歪みによりキャリア移動度が向上した半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100は、素子分離パターンを有する溝12を有する半導体基板2と、溝2の側面上に形成された側壁10と、半導体基板2の溝12に囲まれた領域に形成された、半導体基板2中にチャネル領域8を有するMOSFET3と、MOSFET3上および溝12内の側壁10上に連続して形成された、チャネル領域8に歪みを発生させるストレスライナー膜11とを有する。 (もっと読む)


【課題】FIN状の半導体部により構成されるFIN型トランジスタを有する半導体装置において、FIN状の半導体部の上面の不純物濃度と側面の不純物濃度との差を小さくすることにより、FIN型トランジスタの特性ばらつきを抑えて、信頼性を向上させる。
【解決手段】
FIN状の半導体部10の上面に2〜5nm程度の厚さのパッド絶縁膜3を形成し、FIN状の半導体部10の一方の側面に、第1注入角度θ1を有する斜め方向からクラスタイオンを注入した後、FIN状の半導体部10の他方の側面に、第1注入角度θ1と対称の第2注入角度θ2を有する斜め方向からクラスタイオンを注入する。その後、FIN状の半導体部10に注入されたクラスタイオンを活性化して、ソース領域およびドレイン領域の一部を構成する拡散領域を形成する。 (もっと読む)


161 - 180 / 1,410