説明

Fターム[5F140BH14]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース、ドレイン領域及びSD近傍領域 (10,828) | 不純物分布 (3,598) | 断面分布の形状、配置 (3,436) | 追加領域(エクステンション領域を含む) (3,054)

Fターム[5F140BH14]の下位に属するFターム

Fターム[5F140BH14]に分類される特許

121 - 140 / 1,410


【課題】半導体装置の特性を向上させる。
【解決手段】本発明の半導体装置は、面方位が(110)のシリコン基板1と、pMIS領域1Bに形成されたpチャネル型電界効果トランジスタを有する。このpチャネル型電界効果トランジスタは、ゲート絶縁膜3を介して配置されたゲート電極GE2と、ゲート電極GE2の両側のシリコン基板1中に設けられた溝g2の内部に配置され、Siより格子定数が大きいSiGeよりなるソース・ドレイン領域と、を有する。上記溝g2は、ゲート電極GE2側に位置する側壁部において、第1の斜面と、第1の斜面と交差する第2の斜面と、を有する。このように、溝g2の形状をΣ形状とすることで、pチャネル型電界効果トランジスタのチャネル領域に加わる圧縮歪みを大きくすることができる。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】本発明の半導体装置は、面方位が(110)のシリコン基板1と、pMIS領域1Bに形成されたpチャネル型電界効果トランジスタを有する。このpチャネル型電界効果トランジスタは、ゲート絶縁膜3を介して配置されたゲート電極GE2と、ゲート電極の両側のシリコン基板1中に設けられた溝g2の内部に配置され、Siより格子定数が大きいSiGeよりなるソース・ドレイン領域と、を有する。上記溝g2は、ゲート電極側に位置する側壁部において、面方位が(100)の第1の斜面と、第1の斜面と交差する面方位が(100)の第2の斜面と、を有する。上記構成によれば、基板の表面(110)面と(100)面とのなす角は45°となり、比較的鋭角に第1斜面が形成されるため、効果的にpチャネル型のMISFETのチャネル領域に圧縮歪みを印加することができる。 (もっと読む)


【課題】フラッシュメモリセルと低電圧動作トランジスタや高電圧動作トランジスタを集積化し、異種トランジスタを混載する半導体装置の製造法を提供する。
【解決手段】半導体装置の製造方法は、(a)トンネル絶縁膜、Fゲート電極膜、電極間絶縁膜を堆積したFゲート電極構造を形成し(b)ゲート絶縁膜を形成し(c)導電膜、エッチストッパ膜を堆積し(d)エッチストッパ膜、導電膜をエッチングした積層ゲート電極構造を形成し(e)積層ゲート電極構造の側壁上に第1絶縁膜を形成し(f)積層ゲート電極側壁上に第1サイドウォールスペーサ層を形成し(g)エッチストッパ層を除去し(h)他の領域の導電層から、ゲート電極構造を形成し(i)積層ゲート電極構造、ゲート電極構造側壁上に第2サイドウォールスペーサを形成し(j)希弗酸水溶液で半導体基板表面を露出し(k)半導体基板表面にシリサイド層を形成する。 (もっと読む)


【課題】高性能・高信頼性の半導体装置を製造するための半導体装置の製造方法を提供する。
【解決手段】半導体基板上に保護膜を形成し、保護膜を介して不純物をイオン注入する。注入した不純物を活性化して不純物層を形成した後、保護膜を除去する。その後、不純物層の表面部の半導体基板を除去し、表面部を除去した半導体基板上に半導体層をエピタキシャル成長する。 (もっと読む)


【課題】金属半導体化合物電極の界面抵抗を低減する半導体装置の製造方法を提供する。
【解決手段】実施の形態によればn型半導体上に硫黄を含有する硫黄含有膜を堆積し、硫黄含有膜上に第1の金属を含有する第1の金属膜を堆積し、熱処理によりn型半導体と第1の金属膜を反応させて金属半導体化合物膜を形成するとともに、n型半導体と金属半導体化合物膜との界面に硫黄を導入することを特徴とする半導体装置の製造方法である。 (もっと読む)


【課題】 窒化物上へゲルマニウム・スペーサを選択的に堆積するための構造及び方法を提供すること。
【解決手段】 半導体製造プロセス中でゲルマニウム構造体を選択的に形成する方法は、化学的酸化物除去(COR)プロセスにおいて自然酸化物を除去し、次いで、加熱された窒化物及び酸化物表面を加熱されたゲルマニウム含有ガスに曝して、ゲルマニウムを選択的に窒化物表面上にだけ形成し、酸化物表面上には形成しない。 (もっと読む)


【課題】平坦なNiPtシリサイド層を形成する。
【解決手段】CVD法を用いて、シリコン層26(ゲート),29(ソース・ドレイン)上にPt層を形成する。次いで、CVD法を用いて、Pt層上にNi層を、Pt層より厚く形成する。次いで、シリコン層26,29、Pt層、及びNi層を熱処理することにより、NiPtシリサイド33を形成する。Pt層の平均膜厚が0.5nm以上2nm以下であるのが好ましい。またシリコン層は、例えばMISFETのソース・ドレインである。 (もっと読む)


【課題】超高速アニールプロセスにおける加熱応力によるウェハ破壊の頻度を抑圧することが可能な半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法であって、補助加熱されている半導体基板の補助加熱されている裏面とは反対側の表面に0.1m秒以上100m秒以下のパルス幅を有するフラッシュランプ光を照射し、その照射エネルギーによって熱処理する工程を、前記半導体基板の補助加熱されている裏面の面積をW、該面と接触するサセプタと該面との接触面積をCとすると、気圧値Pが
0.01−0.005(C/W)≦P≦0.4−0.2(C/W)(kgf/cm
の関係を満たす減圧状態下で実行する。 (もっと読む)


【課題】ゲート電極上のキャップ膜が厚く、隣接するトランジスタ間の空間のアスペクト比が大きいトランジスタに、適切な濃度プロファイルを有するハロー領域を形成することのできる半導体装置の製造方法を提供する。
【解決手段】一実施の形態による半導体装置の製造方法は、基板上に第1および第2のゲート電極を形成する工程と、前記第1および第2のゲート電極下に第1および第2のハロー領域をそれぞれ形成する工程と、前記第1および第2の絶縁膜に底面および側面をそれぞれ覆われた第1および第2のキャップ膜を形成する工程と、を含む。前記第1のハロー領域は、第1の不純物を、前記第2の絶縁膜を貫通させて前記基板に打ち込むことにより形成される。前記第2のハロー領域は、第2の不純物を、前記第1の絶縁膜を貫通させて前記基板に打ち込むことにより形成される。 (もっと読む)


【課題】 チャネル領域に応力を印加するよう作用する階段状のソース/ドレイン・エピタキシャル領域を、製造プロセスを有意に複雑あるいは冗長とすることなく形成する。
【解決手段】 ゲート電極をマスクとしてドーパントを注入し、半導体基板内にドーパント注入領域を形成する(S2)。サイドウォールの形成(S3)後、ゲート電極及びサイドウォールをマスクとして半導体基板内に第1のリセスを形成する(S4)。このとき、第1のリセスの内壁の一部からドーパント注入領域が露出される。その後、上記ドーパント注入領域を選択エッチングにより除去し、第1のリセスに連通し且つ第1のリセスより浅い第2のリセスを形成する(S5)。それにより、階段状のリセスが形成される。そして、第1のリセス及び第2のリセス内に、チャネル領域へのストレッサとして作用する半導体材料を成長させてソース/ドレイン領域を形成する(S6)。 (もっと読む)


【課題】集積回路のコア部のロジックトランジスタ(MOSFET、MISFET)は、世代が進むごとに動作電圧をスケーリングすることで微細化が可能である。しかし、高耐圧部のトランジスタ(MOSFET、MISFET)は比較的高い電源電圧で動作するために縮小化が困難であり、同様に電源セル内の静電気放電(ESD)保護回路は、静電気(外来サージ)から半導体集積回路内の素子を保護するために耐圧が高いことが必須であり、電荷を逃がすために大面積である必要がある。従って、集積回路の微細化のためには、微細化が可能なトランジスタ構造が必須である。
【解決手段】本願発明は、ソース側にのみハロー領域を有するソースドレイン非対称構造の一対のMISFETから構成されたCMISインバータをESD保護回路部に有する半導体集積回路装置である。 (もっと読む)


【課題】半導体基板上に形成されたFETのソース側のエクステンション領域の抵抗値を低減し、半導体装置の動作速度を向上することができる技術を提供する。
【解決手段】ゲート電極4dの側壁に、ゲート電極4dのゲート長方向の幅が異なる第1サイドウォール6wおよび第2サイドウォール6nをそれぞれ形成する。これにより、第1サイドウォール6wおよび第2サイドウォール6nの形状によって第1サイドウォール6wおよび第2サイドウォール6nの下部に自己整合的に形成されるエクステンション領域37、38の半導体基板SBの上面の幅をそれぞれ異なる長さで形成する。 (もっと読む)


【課題】生産性に優れた半導体装置およびその製造方法を提供する。
【解決手段】半導体装置100は、シリコン基板101と、同一のシリコン基板101上に設けられたN型トランジスタ200およびP型トランジスタ202と、を備え、N型トランジスタ200およびP型トランジスタ202は、Hfを含む高誘電率ゲート絶縁膜108と、高誘電率ゲート絶縁膜108上に設けられたTiN膜110と、を有しており、N型トランジスタ200は、シリコン基板101と高誘電率ゲート絶縁膜108との間に、La添加SiO2膜109aを有しており、P型トランジスタ202は、高誘電率ゲート絶縁膜108とTiN膜110の間に、N型トランジスタ200と同じ仕事関数調整用元素を含有するLa添加SiO膜109bを有する。 (もっと読む)


【課題】メタルゲートを用いたCMISまたはCMOS構造の集積回路デバイスにおいて、Nチャネル領域およびPチャネル領域におけるゲート絶縁膜、メタルゲート層等のつくり分けに関しては、種々の方法が提案されているが、プロセスが複雑になる等の問題があった。
【解決手段】本願発明は、CMOS集積回路デバイスの製造方法において、Nチャネル領域およびPチャネル領域において、ゲート電極膜形成前の高誘電率ゲート絶縁膜の電気的特性を調整するためのチタン系窒化物膜を下方のチタンを比較的多く含む膜と、上方の窒素を比較的多く含む膜を含む構成とするものである。 (もっと読む)


【課題】CMISデバイスにおいて、pチャネル型電界効果トランジスタの動作特性を劣化させることなく、ひずみシリコン技術を用いたnチャネル型電界トランジスタの動作特性を向上させる。
【解決手段】所望する濃度プロファイルおよび抵抗を有するnMISのソース/ドレイン(n型拡張領域8およびn型拡散領域13)およびpMISのソース/ドレイン(p型拡張領域7およびp型拡散領域11)を形成した後、所望するひずみ量を有するSi:C層16をn型拡散領域13に形成することにより、nMISのソース/ドレインにおいて最適な寄生抵抗と最適なSi:C層16のひずみ量とを得る。また、Si:C層16を形成する際の熱処理を1m秒以下の短時間で行うことにより、すでに形成されているp型拡張領域7およびp型拡散領域11のp型不純物の濃度プロファイルの変化を抑える。 (もっと読む)


【課題】 側壁部及び上部の平面部を持つ立体凹凸部分を形成した三次元デバイスとしての半導体装置において側壁部及び上部の平面部へ均一に高濃度の不純物を低エネルギードーピングできる方法を提供する。
【解決手段】 シリコン基板1の表面上に加工によりシリコンFin部11を形成した後、該シリコンFin部の側壁及び上部の平面部へドナーもしくはアクセプターとなる不純物原子を含む不純物薄膜を、堆積膜として上部の平面部には厚く、側壁には薄く堆積する工程と、前記シリコンFin部における前記堆積膜の斜め上方から斜め方向のイオン注入と反対側の斜め上方から斜め方向のイオン注入を行なうとともに、該イオン注入によって、前記不純物原子を堆積膜内部からシリコン基板の前記シリコンFin部の側壁内部及び上部の平面部内にリコイルして導入させる工程と、を含む。 (もっと読む)


【課題】リークパスを確実に防止することができる、半導体装置及び半導体装置の製造方法を提供する。
【解決手段】半導体装置は、ゲート絶縁膜を介して半導体基板上に設けられたゲート電極と、前記ゲート電極の側部に設けられた側壁絶縁膜と、前記半導体基板内における前記ゲート絶縁膜を挟むような位置に形成され、前記側壁絶縁膜により覆われた被覆領域と前記側壁絶縁膜により覆われていない露出領域とを有する、ソース又はドレイン領域と、前記ゲート電極及び前記側壁絶縁膜を覆うように形成された、エッチングストッパ膜と、前記半導体基板上に、前記エッチングストッパ膜を埋め込むように設けられた、層間絶縁膜と、前記層間絶縁膜を貫通するように設けられ、前記露出領域に接続される、第1セルコンタクトプラグとを具備する。前記エッチングストッパ膜は、前記被覆領域と前記露出領域との境界部分が完全に覆われるように、前記露出領域の一部を覆っている。 (もっと読む)


【課題】トランジスタの耐圧を向上し得る半導体装置及びその製造方法を提供する。
【解決手段】半導体基板10上にゲート絶縁膜16を介して形成されたゲート電極18cと、ゲート電極の一方の側の半導体基板に形成された第1導電型のドレイン領域54aと、ゲート電極の他方の側の半導体基板に形成された第1導電型のソース領域54bと、ドレイン領域からゲート電極の直下に達する第1導電型の第1の不純物領域56と、ソース領域と第1の不純物領域との間に形成された、第1導電型と反対の第2導電型の第2の不純物領域58とを有し、ゲート電極は、第1導電型の第1の部分48aと、第1の部分の一方の側に位置する第2導電型の第2の部分48bとを含み、ゲート電極の第2の部分内に、下端がゲート絶縁膜に接する絶縁層24が埋め込まれている。 (もっと読む)


【課題】 拡散防止膜の形成方法及び半導体装置の製造方法に関し、閾値調整元素の拡散等による閾値電圧の変動の防止と製造工程の簡素化を両立する。
【解決手段】 Siを含有しない高誘電率酸化膜に窒素を導入したのち第1加熱処理を行う工程と、前記窒素を導入したSiを含有しない高誘電率酸化膜の上にSi含有半導体層を堆積させる工程と、第2加熱処理によって前記Si含有半導体層中のSiを前記窒素を導入したSiを含有しない高誘電率酸化膜中に拡散する工程とを設ける。 (もっと読む)


【課題】MOSトランジスタのソース及びドレイン電極に生じる寄生容量を低減する。高速動作が可能な半導体装置を提供する。
【解決手段】半導体装置は、MOSトランジスタを備える。MOSトランジスタは、1対の第1、第2及び第3の不純物拡散領域を有する。第2の不純物拡散領域は、第1の不純物拡散領域を挟むように半導体基板内に設けられた第1導電型の不純物拡散領域であり、第1の不純物拡散領域よりも第1導電型の不純物濃度が高くなる。第3の不純物拡散領域は、1対の第1の不純物拡散領域に接すると共に第2の不純物拡散領域に接しないように、半導体基板内に設けられた第2導電型の不純物拡散領域である。 (もっと読む)


121 - 140 / 1,410