説明

Fターム[5F140BH49]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース、ドレイン領域及びSD近傍領域 (10,828) | 不純物濃度が規定されているもの (547)

Fターム[5F140BH49]に分類される特許

81 - 100 / 547


【課題】高耐電圧により大電流化が可能で、オン抵抗が低く高速動作が可能で、高集積化と省エネルギーが可能で、素子間分離の容易な、電気熱変換素子駆動用の半導体装置を提供する。
【解決手段】電気熱変換素子とそれに通電するためのスイッチング素子とがp型半導体基体1に集積化されている。スイッチング素子は、半導体基体1の表面に設けられたn型ウェル領域2と、それに隣接して設けられチャネル領域を提供するp型ベース領域6と、その表面側に設けられたn型ソース領域7と、n型ウェル領域2の表面側に設けられたn型ドレイン領域8,9と、チャネル領域上にゲート絶縁膜を介して設けられたゲート電極4とを有する絶縁ゲート型電界効果トランジスタである。ベース領域6は、ドレイン領域8,9を横方向に分離するように設けられた、ウェル領域2より不純物濃度の高い半導体からなる。 (もっと読む)


【課題】導電膜を有する半導体装置は、導電膜の内部応力の影響を受ける。内部応力について検討する。
【解決手段】絶縁表面上に設けられたnチャネル型TFTを有する半導体装置は、半導体膜が引っ張り応力を受けるように、導電膜、例えばゲート電極に不純物元素が導入され、絶縁表面上に設けられたpチャネル型TFTを有する半導体装置は、半導体膜が圧縮応力を受けるように、導電膜、例えばゲート電極に不純物が導入されている。 (もっと読む)


【課題】トランジスタが設計より低い閾値電圧で動作し始めるという寄生トランジスタ動作を抑制する。
【解決手段】半導体装置100は、ゲート幅方向に断続的に深さが変化する複数のトレンチ162、各複数のトレンチ162の側壁および底面に形成されたゲート絶縁膜120、ゲート絶縁膜120上に形成されたゲート電極122、基板102表面のゲート長方向の一方の側に形成されたソース領域112およびゲート長方向の他方の側に形成されたドレイン領域113を有するトランジスタを含む。ここで、トレンチ162の側壁の基板102の表面から底面に向かう途中の位置から底面までの下部分におけるゲート絶縁膜120の膜厚が、当該側壁の途中の位置から表面までの上部分におけるゲート絶縁膜120の膜厚よりも厚く、かつ底面におけるゲート絶縁膜120の膜厚以上である。 (もっと読む)


【課題】導電膜を有する半導体装置は、導電膜の内部応力の影響を受ける。内部応力について検討する。
【解決手段】単結晶シリコン基板に形成されたnチャネル型MOSFETを有する半導体装置において、チャネル形成領域が引っ張り応力を受けるように、導電膜には不純物が導入され、単結晶シリコン基板に形成されたpチャネル型MOSFETを有する半導体装置において、チャネル形成領域が圧縮応力を受けるように、導電膜には不純物が導入されている。 (もっと読む)


【課題】微細化が進んだ場合であっても、適切なしきい値電圧を有するpチャネルMOSFETを含む半導体装置を製造する。
【解決手段】本発明に係る半導体装置の製造方法は、半導体基板101上に、SiO2またはSiONを含む第1ゲート絶縁層104を形成する第1ゲート絶縁層形成ステップと、第1ゲート絶縁層104上に、金属酸化物を含む第2ゲート絶縁層105を形成する第2ゲート絶縁層形成ステップと、第2ゲート絶縁層105上に、金属を含む第1電極106aを形成する第1電極形成ステップと、形成された積層構造に、複数回のミリセカンドアニール処理を行うことで、第2ゲート絶縁層105および第1電極106aの少なくとも一方に含まれる4族、5族または13族の元素を、第1ゲート絶縁層104と第2ゲート絶縁層105との界面に拡散させるアニールステップとを含む。 (もっと読む)


【課題】 LDMOS型トランジスタなどの半導体装置が動作中に生ずる経時的な特性変動を抑制すると共に、高耐圧かつ低オン抵抗が実現される半導体装置およびその製造方法を提供する。
【解決手段】 N型半導体層102に、深さが1μmより小さいP型の第1ドレインオフセット領域103と、深さが第1ドレインオフセット領域103より小さく、不純物濃度が第1ドレインオフセット領域103より大きいP型の第2ドレインオフセット領域105と、第1ドレインオフセット領域103より深いN型のボディ領域106と、N型のソース領域107およびドレイン領域104とを設ける。またLOCOS酸化膜からなる絶縁膜110と、ゲート絶縁膜108を介して形成されたゲート電極109とをN型半導体層102上に備える構造とする。 (もっと読む)


【課題】リフトオフ法を用いずに、簡易な手法で化合物半導体装置のゲート電極、ソース電極、及びドレイン電極を各種パターンに欠陥を生ぜしめることなく形成する。
【解決手段】AlGaN/GaN・HEMTを製造する際に、化合物半導体層上に保護絶縁膜8を形成し、保護絶縁膜8に開口を形成し、開口を埋め込む導電材料を保護絶縁膜8上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてゲート電極15(又はソース電極45及びドレイン46)を形成し、その後、保護絶縁膜8上に保護絶縁膜16を形成し、保護絶縁膜8,16に開口を形成し、開口を埋め込む導電材料を保護絶縁膜16上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてソース電極22及びドレイン23(又はゲート電極53)を形成する。 (もっと読む)


【課題】スイッチング速度を向上でき、動作不良品を低減できる、横型の電界効果トランジスタを提供する。
【解決手段】ゲート配線43は、基部44と、基部44から突出する複数の指状部45と、隣接する指状部45の先端部46を接続する接続部47と、を有する。ゲート配線43の指状部45は、ソース配線23の指状部25とドレイン配線33の指状部35と、の間に配置されている。ゲート配線43の基部44は、ソース配線23の基部24とドレイン配線33の指状部35との間に配置され、かつ、ソース配線23の指状部25との間に絶縁膜を介在させて指状部25と交差している。 (もっと読む)


【課題】寄生サイリスタの動作による破壊が生じない半導体装置及びその製造方法を提供する。
【解決手段】少なくともドレイン側p+層及びn+層のうちの、ボディ領域の導電型と同一型の層の下方において当該層と対向して半導体層の内部に形成された調整層を含む半導体装置。少なくともドレイン側p+層及びn+層のうちの、ボディ領域の導電型と同一型の層の下方において当該層と対向して半導体層の内部に調整層を形成する調整層形成ステップを含む半導体装置製造方法。 (もっと読む)


【課題】 高い閾値電圧と、低いオン抵抗とを両立可能であり、かつ、パラレル伝導を抑制できる電界効果トランジスタを提供する。
【解決手段】
基板601上に、III族窒化物のバッファ層602、チャネル層603、障壁層605、およびキャップ層606が、前記順序で積層され、
各半導体層の上面は、(0001)結晶軸に垂直なIII族原子面であり、
バッファ層602は、格子緩和され、
障壁層605は、引っ張り歪みを有し、
チャネル層603およびキャップ層606が圧縮歪みを有するか、または、チャネル層603が格子緩和され、キャップ層606が引っ張り歪みを有し、
障壁層605上の一部の領域に、キャップ層606、ゲート絶縁膜607、およびゲート電極608が、前記順序で積層され、他の領域に、ソース電極609とドレイン電極610が形成されていることを特徴とする電界効果トランジスタ。 (もっと読む)


【課題】耐圧とオン抵抗とのトレードオフ関係を改善する。
【解決手段】ゲート絶縁膜及びLOCOS領域の下、及びドレイン領域を囲むようにドレイン領域に接してオフセット領域を設け、オフセット領域を、第1オフセット領域と、第1オフセット領域の上にドレイン領域を囲み且つLOCOS酸化膜の下に形成される第2オフセット領域と、前記オフセット領域のソース領域側の端部からLOCOSのソース領域側の端部までの間のみに形成される第3オフセット領域とで形成し、第2オフセット領域の不純物濃度を、第1オフセット領域及び第3オフセット領域よりも高くする。高濃度の第2オフセット領域を設けることによりオン抵抗の低減を図り且つ高濃度の第2オフセット領域を低濃度のオフセット領域で挟むことにより、第2オフセット領域の深さ方向の空乏化を促進し電界の緩和を図り耐圧の向上を図る。 (もっと読む)



【課題】素子面積を増加させることなく、高耐圧の半導体装置を実現させる。
【解決手段】第1導電型のソース領域13が設けられた第2導電型のベース領域12と、ベース領域に隣接する第1導電型のドリフト領域と、ドリフト領域15の表面から内部にかけて設けられた絶縁体層と、ドリフト領域の表面に設けられた、第1導電型のドレイン領域14と、ベース領域の表面に設けられたゲート酸化膜と、ゲート酸化膜上に設けられたゲート電極20と、ソース領域に接続された第1の主電極と、ドレイン領域に接続された第2の主電極と、を備え、ソース領域とドレイン領域とは、半導体層の表面に対して垂直な方向からみて少なくともライン状に略平行に延在しており、絶縁体層とベース領域とにより挟まれた部分の前記ドリフト領域の長さは、略平行に延在している方向に対して略垂直な方向の長さよりも、略平行に延在している方向の長さのほうが短い。 (もっと読む)


【課題】界面準位を低減しつつ、電荷トラップに起因するヒステリシスを抑制できる半導体装置の構造およびその製造方法を提供する。
【解決手段】半導体装置200は、GaNを含む半導体層101を表面の少なくとも一部に有する基板(半導体基板100)と、半導体層101と接するように半導体基板100上に設けられており、窒素を含まず、Alを含む酸化金属層からなる第1のゲート絶縁層(Al膜114)と、Al膜114上に設けられており、SiおよびOを含む第2のゲート絶縁層(SiO膜116)と、SiO膜116上に設けられたゲート電極118と、を備え、ゲート電極118の下面は、SiO膜116に接しており、Al膜114の膜厚は、SiO膜116の膜厚より薄い。 (もっと読む)


【課題】シェアードコンタクトを備えた半導体装置において、コンタクトホールの開口不良やコンタクト抵抗の増大を防止しつつ、接合リーク電流の発生に起因する歩留まりの低下を防止する。
【解決手段】半導体基板100におけるゲート電極103の両側にソース/ドレイン領域106が形成されている。シェアードコンタクトは、ソース/ドレイン領域106とは接続し且つゲート電極103とは接続しない下層コンタクト113と、下層コンタクト113及びゲート電極103の双方に接続する上層コンタクト118とを有する。 (もっと読む)


【課題】耐圧性の維持と低オン抵抗化との両立が可能なLDMOSトランジスタを提供する。
【解決手段】半導体装置は、第1導電型のドリフト拡散領域10と、第2導電型のボディ拡散領域2と、第1導電型のソース拡散領域6と、ドリフト拡散領域10の上部に形成されたトレンチ内に埋め込まれ、ボディ拡散領域2とは離間した位置に形成された絶縁膜14と、ドリフト拡散領域10の上部に形成され、絶縁膜14から見てソース拡散領域6と逆の方向に隣接する第1導電型のドレイン拡散領域7と、ボディ拡散領域2上からドリフト拡散領域10上を越えて絶縁膜14上にまで形成されたゲート電極5とを備えている。また、ドリフト拡散領域10は、基板内部領域11と、基板内部領域11よりも高濃度の第1導電型不純物を含む表面領域12とを有している。 (もっと読む)


【課題】効率的に形成されかつボイドが僅かであるかまたは実質的に存在しないFCC構造を提供する。
【解決手段】基板内で上表面からある深さまで垂直に伸長し、かつ第1の側壁、第1の底部、及びトレンチの当該第1の底部近傍の当該第1の側壁に形成されているパターン215を有する第1のトレンチ210を基板内に形成するステップと、第1のトレンチの第1の側壁及び第1の底部上に酸化層235を形成するステップと、を含むLFCCデバイスの製造方法であって、酸化層は、第1のトレンチ内に配されかつ酸化層によって第1のトレンチから分離されている第2のトレンチをもたらす。第2のトレンチは、パターンを呈さず実質的に垂直な第2の側壁及び実質的に平坦な第2の底部を有する。当該パターンは、第1のトレンチの底部と第1の側壁との間の酸化レートの差を補償する。当該LFCC構造は、当該パターンを有する第1のトレンチを含む。 (もっと読む)


【課題】プロセスの自由度を高めつつ、活性層とオーミックコンタクトをとるオーミック電極を形成できる半導体トランジスタの製造方法を提供する。
【解決手段】GaN系の半導体からなる活性層上に、オーミック電極を形成する半導体トランジスタの製造方法であって、活性層3上に、タンタル窒化物からなる第1の層11と、第1の層11上に積層されたAlからなる第2の層12とを形成する工程と、第1及び第2の層11,12を、520℃以上、600℃以下の温度で熱処理することにより、活性層3とオーミックコンタクトをとるオーミック電極9s,9dを形成する工程とを備える。 (もっと読む)


【課題】電流コラプスが抑制された窒化物半導体を用いた電界効果トランジスタを容易に実現できるようにする。
【解決手段】電界効果トランジスタは、基板100の上に形成され、第1の窒化物半導体層122及び第2の窒化物半導体層123を有する半導体層積層体102を備えている。半導体層積層体102の上には、互いに間隔をおいてソース電極131及びドレイン電極132が形成されている。ソース電極131とドレイン電極132との間には、ソース電極131及びドレイン電極132と間隔をおいてゲート電極133が形成されている。ドレイン電極132の近傍には正孔注入部141が形成されている。正孔注入部141は、p型の第3の窒化物半導体層142及び第3の窒化物半導体層142の上に形成された正孔注入電極143を有している。ドレイン電極132と正孔注入電極142とは、電位が実質的に等しい。 (もっと読む)


【課題】チャネルに応力が印加されるMOSトランジスタの特性のばらつきを防ぐことができる半導体装置の製造方法を提供すること。
【解決手段】半導体基板10の上にゲート絶縁膜を形成する工程と、ゲート絶縁膜の上にゲート電極14cを形成する工程と、ゲート電極14cの側面にサイドウォール15a、15bを形成する工程と、サイドウォール15a、15bを形成した後に、有機アルカリ溶液又はTMAHをエッチング液として用いて、ゲート電極14cの横の半導体基板10に穴10a、10bを形成する工程と、穴10a、10bにソース/ドレイン材料層18a、18bを形成する工程とを有する。 (もっと読む)


81 - 100 / 547