説明

Fターム[5F157DB16]の内容

半導体の洗浄、乾燥 (54,359) | 最適処理を目的とするもの (4,470) | 洗浄効果の向上 (574) | 酸化膜形成(酸化膜ごと除去するため) (23)

Fターム[5F157DB16]に分類される特許

1 - 20 / 23


【課題】炭化珪素単結晶基板を用いた半導体装置の製造方法において、炭化珪素表面の金属汚染を十分除去することにより、製造された炭化珪素半導体素子の初期特性を改善する。また、金属汚染を低減し、半導体装置の長期信頼性を向上する方法を提供する。
【解決手段】炭化珪素単結晶基板を用いた半導体装置の製造方法において、炭化珪素表面を酸化するステップと、該ステップにより炭化珪素表面に形成された二酸化シリコンを主成分とする膜を除去するステップとからなる炭化珪素表面の金属汚染除去工程を適用する。 (もっと読む)


【課題】半導体ウエハ表面および近傍の不純物を除去して高清浄化する半導体ウエハの洗浄方法を得ること。
【解決手段】実施の形態にかかる半導体ウエハの洗浄方法は、酸化膜を形成する第1の薬液を用いて半導体ウエハを洗浄する第1洗浄工程(S101)と、前記第1洗浄工程の後に、フッ酸(HF)を含む溶液で前記半導体ウエハを洗浄する第2洗浄工程(S103)と、前記第2洗浄工程の後に、フッ酸(HF)と酸化剤を含む溶液で前記半導体ウエハを洗浄する第3洗浄工程(S105)と、前記第3洗浄工程の後に、酸化膜を形成する第2の薬液を用いて前記半導体ウエハを洗浄する第4洗浄工程(S107)と、前記第4洗浄工程の後に、フッ酸(HF)を含む溶液で前記半導体ウエハを洗浄する第5洗浄工程(S109)とを有する。 (もっと読む)


【課題】リードタイムを短くし、処理性能において従来よりも信頼性のあるレジスト除去方法を提供する。
【解決手段】被処理物の処理表面に付着したレジスト膜を除去する方法であって、被処理物の処理表面に付着したレジスト膜に対し、大気圧から100Paの間で誘導結合プラズマ法によって生成された活性水素原子を供給することによるドライ処理と、大気圧から100Paの間で誘導結合プラズマ法によって生成された活性酸素原子を供給することによるドライ処理及び/又は薬液によるウェット処理とを行う。 (もっと読む)


【課題】SiC半導体に対する洗浄効果を発現できるSiC半導体の洗浄方法を提供する。
【解決手段】SiC半導体の洗浄方法は、SiC半導体の表面に酸化膜を形成する工程と、酸化膜を除去する工程とを備え、酸化膜を形成する工程では、30ppm以上の濃度を有するオゾン水を用いて酸化膜を形成する。形成する工程は、SiC半導体の表面およびオゾン水の少なくとも一方を加熱する工程を含むことが好ましい。 (もっと読む)


【課題】SiC半導体に対する洗浄効果を発現できるSiC半導体の洗浄方法およびSiC半導体の洗浄装置を提供する。
【解決手段】SiC半導体の洗浄方法は、SiC半導体の表面に酸化膜を形成する工程(ステップS2)と、酸化膜を除去する工程(ステップS3)とを備え、
酸化膜を形成する工程では、酸素プラズマを用いる。酸化膜を除去する工程(ステップS3)では、フッ化水素を用いてもよい。 (もっと読む)


【課題】表面特性が良好になるようにSiC半導体を洗浄するSiC半導体の洗浄方法およびSiC半導体の洗浄装置を提供する。
【解決手段】SiC半導体の洗浄方法は、SiC半導体の表面に酸化膜を形成する工程(ステップS2)と、酸化膜を除去する工程(ステップS3)とを備え、酸化膜を除去する工程(ステップS3)では、ハロゲンプラズマまたは水素プラズマによって、酸化膜を除去する。酸化膜を除去する工程(ステップS3)では、ハロゲンプラズマとしてフッ素プラズマを用いることが好ましい。 (もっと読む)


【課題】SiC半導体に対する洗浄効果を発現できるSiC半導体の洗浄方法を提供する。特性を向上できるSiC半導体およびSiC半導体装置を提供する。
【解決手段】SiC半導体の洗浄方法は、SiC半導体の表面に酸化膜を形成する工程(ステップS2)と、酸化膜を除去する工程(ステップS3)とを備え、形成する工程(ステップS2)では、700℃以上の温度で、かつO元素を含むドライ雰囲気で酸化膜を形成する。SiC半導体は、表面を有するSiC半導体において、表面の金属面密度は、1×1012cm-2以下である。SiC半導体装置は、SiC半導体と、SiC半導体の表面上に形成された酸化膜とを備える。 (もっと読む)


【課題】処理液を用いた基板処理を良好に行うことができるとともに、処理時間をより短縮することができる基板処理装置および基板処理方法を提供する。
【解決手段】基板処理装置1は、基板Wに対して処理液による処理を施す処理チャンバ10と、基板収容器17を保持する収容器保持部4と、収容器保持部4と処理チャンバ10との間で基板Wを搬送するインデクサロボット6、シャトル搬送機構7および主搬送ロボット9を備えている。シャトル搬送機構7が備えられたシャトル搬送空間14の上部には、172nmの波長を中心とする紫外線を照射するランプハウスが設けられている。シャトル搬送機構7によって基板Wを搬送するのと同時に、搬送中の基板Wに紫外線を照射することによって、基板Wに付着している有機物を分解・除去したり、基板W表面に酸化膜を形成する処理を行う。 (もっと読む)


【課題】被処理材に到達する荷電粒子を十分に抑制したうえで、ラジカルのみを効率的に供給できるリモート式のプラズマ処理装置とプラズマ処理方法を提供する。
【解決手段】前記放電部の圧力が大気圧近傍に維持され、前記処理室の圧力が前記放電部の圧力より低く維持され、前記一対の電極のうち第一電極は、前記仕切り板に重ね合わせて気密接続されるとともに前記複数の貫通孔にそれぞれ連なる細孔が設けられ、前記一対の電極のうち第二電極は、前記第一電極と所定の空隙を介して対向配置され、前記第一電極の前記空隙側の表面且つ前記第二電極の前記空隙側の表面および前記細孔の内面が誘電体で覆われている。 (もっと読む)


【課題】パターンの倒壊を防止しつつ基板を洗浄・乾燥させる半導体基板の表面処理装置および方法を提供する。
【解決手段】半導体基板Wに形成された凸形状パターンの表面に撥水性保護膜を形成するために、基板表面に撥水化剤106を供給する。撥水化剤を供給する前に、酸化力の強い薬液103を供給するか、又はUV光を照射して、凸形状パターン表面を強制的に酸化させる。これにより、凸形状パターン表面に撥水性保護膜が形成され易くなり、乾燥処理時の凸形状パターンの倒壊を防止することができる。 (もっと読む)


【課題】パターンの倒壊を防止つつ基板を洗浄・乾燥させる半導体基板の表面処理装置および方法を提供する。
【解決手段】半導体基板Wに形成された凸形状パターンの表面に撥水性保護膜を形成するために、基板表面に希釈した撥水化剤を供給する。撥水剤と希釈剤との混合から基板表面に供給される迄の時間が長くなるほど撥水能力は低下するので、撥水化剤と希釈剤を混合する混合バルブ61は、希釈撥水化剤を吐出するノズル64の直前に設けられ、撥水化剤の撥水化能力の低下を防止する。 (もっと読む)


【課題】仕上げ研磨の後行うシリコンウェハの洗浄方法を提供する。
【解決手段】シリコンウェハ18の粗研磨を経て行われる仕上げ研磨の後、前記シリコンウェハの表面に酸化膜22を形成し、前記酸化膜22の除去により前記表面上の不純物を除去するシリコンウェハ18の洗浄方法であって、前記酸化膜22の除去は、前記仕上げ研磨時に前記シリコンウェハ18の研磨面に形成される加工変質層22が酸化膜除去工程により除去されるまで行う。 (もっと読む)


【課題】パターンの倒壊を防止しつつ基板を洗浄・乾燥させる半導体基板の表面処理装置を提供する。
【解決手段】薬液を用いて半導体基板を洗浄し、純水を用いて前記薬液を除去し、前記半導体基板表面に撥水性保護膜を形成し、純水を用いて前記半導体基板をリンスし、前記半導体基板を乾燥させる。 (もっと読む)


【課題】半導体ウェハの表面を研磨した際に表面に作用する応力により形成された凸状の欠陥を適切に除去可能な半導体ウェハの洗浄方法を提供する。
【解決手段】シリコンウェハ表面11をオゾンにより酸化して欠陥12以外の部分にシリコン酸化膜10Aを形成する。その後フッ酸3を噴霧し、酸化膜10Aを溶解除去する。さらにこの後、洗浄ガス4をシリコンウェハ1の表面に噴射し、欠陥12を溶解除去する。 (もっと読む)


【課題】半導体ウェハの表面を研磨した際に表面に作用する応力により形成された凸状の欠陥を適切に除去可能な半導体ウェハの洗浄方法を提供すること。
【解決手段】シリコンウェハ表面11をスラリー研磨すると、一部がシリコンウェハ内に存在し残りの部分がシリコンウェハ表面11から凸状に盛り上がった形状の欠陥が形成されるが、これをオゾンガス2により酸化してシリコン酸化膜10Aおよび酸化欠陥12Aを形成し、この後、洗浄ガス3をシリコンウェハ表面11に噴射してエッチングし、酸化された欠陥箇所と酸化膜を溶解除去する。 (もっと読む)


【課題】 (111)表面のシリコン(Si)基板に、原子レベルで超平坦な表面を実現する。
【解決手段】 シリコン基板(111)表面を、予め、フッ化アンモニウム(NHF)溶液で表面処理した後、濃度68%,沸点120.7℃の共沸硝酸溶液内に浸漬して、前記シリコン基板表面に二酸化シリコン(SiO)主体の被膜を形成し、ついで、濃度40重量%のフッ化アンモニウム(NHF)溶液で上記二酸化シリコン(SiO)主体の被膜をエッチング除去する。AFM像では、バイレイヤー ステップが観測され、表面粗さの指標(RMSラフネス値)が0.07nmと判定され、原子レベルでの超平坦な表面が形成できた。 (もっと読む)


【課題】シリコンウエハや熱処理炉内のシリコン系部材における汚染金属の濃度を十分に低減できる洗浄方法及びそれを用いたシリコンウエハの製造方法を提供する。
【解決手段】シリコンウエハ61やシリコンダミーウエハ65、熱処理炉6の内部に配置されるシリコンウエハボート62等のシリコン系部材の洗浄方法であって、シリコンウエハ61及びシリコン系部材を、1000℃以上の酸化性雰囲気下で熱処理する酸化熱処理工程中に、シリコンウエハ及びシリコン系部材に対して塩化水素ガスを接触させる洗浄工程を行う。これにより、鉄等の汚染金属濃度を充分に低減できる。 (もっと読む)


【課題】本発明は、表面の有機物と金属不純物の両方を除去して清浄化できる方法と、清浄化した酸化物基板に酸化物薄膜を形成する方法の提供を目的とする。
【解決手段】本発明は、真空雰囲気中に置いた酸化物基板5を加熱することなしに、その表面に原子状水素および原子状重水素のうち少なくとも一方を接触させて該酸化物基板5の表面から金属不純物を除去する第1の清浄化工程と、前記酸化物基板5の表面に酸素プラズマを接触させて該酸化物基板5の表面から有機系不純物を除去する第2の清浄化工程を具備することを特徴とする。 (もっと読む)


【課題】 この発明はナノバブルにプラスの電荷を帯電させることで、そのナノバブルに酸化作用を持たせるようにした処理液の製造装置を提供することにある。
【解決手段】 基板を処理する処理液を製造する処理液の製造装置であって、
液体と気体を混合してナノバブルを含む処理液を製造するナノバブル発生器18と、ナノバブル発生器で発生するナノバブルにプラスの電荷を帯電させるイオナイザ22及び酸性流体を供給する給液タンク23を具備する。 (もっと読む)


【課題】CVD−SiC成形体の加工面の傷や加工時に生じる不純物などを効果的に除去する洗浄方法を提供すること。
【解決手段】CVD法により作製したSiC成形体を所望の形状に加工した後、酸洗浄し、次いで、(1)該CVD−SiC成形体を陽極として2.0V以上の正電位を印加して表面に二酸化ケイ素の膜を形成する電解研磨処理、(2)引き続き、フッ化水素酸系の酸により二酸化ケイ素膜の溶解除去処理、を施した後、純水で洗浄し、乾燥することを特徴とするCVD−SiC成形体の洗浄方法。 (もっと読む)


1 - 20 / 23