説明

Fターム[5H027BA14]の内容

燃料電池(システム) (64,490) | 燃料(負極活物質)の製造、供給 (14,178) | 貯蔵手段、バッファタンクの利用 (4,179) | 金属水素化物、水素吸蔵合金の利用 (629)

Fターム[5H027BA14]に分類される特許

81 - 100 / 629


【課題】 可能な限り高いエネルギー密度を有しながらも、高いプロセス安全性を有する電池を提供する
【解決手段】 本発明に係る電池は、第1電極(6)と第2電極(10)とを有し、その間に固体電解質(8)が配置されており、前記第1電極にプロセスガス供給部を有する電池であって、前記第2電極の表面に、前記第2電極に対して開放され周囲に対して遮断された貯蔵部が配置されており、前記貯蔵部は、ガス透過性の酸化可能な物質(16)と、電池の作動温度において気体状の酸化還元対とを含んでいる。 (もっと読む)


【課題】水蒸気を液体でない水素発生物質と反応させることによって、水素ガスを生成し、生成された水素ガスを燃料電池に送り、発電するシステムを提供する。
【解決手段】水蒸気で少なくとも部分的に充填されたチャンバを含む水蒸気発生器12からの水蒸気をポーラス・プラグ24で調整し、水蒸気と反応して水素ガスを発生する非液体の水素発生物質を充填した水素ガス発生器14に送り、水素ガス発生器14で生成した水素を燃料電池16に供給する。燃料電池16から水蒸気発生器12に、残留水蒸気及び残留水素ガスを誘導して返す。 (もっと読む)


【課題】水素発生反応の安定性及び再現性が高い水素発生装置を提供する。
【解決手段】固体の水素発生剤11と反応液とを反応させて水素を発生させる水素発生装置において、反応液との反応により膨張する水素発生剤11と、その水素発生剤11を収容し、水素発生剤11の膨張に伴って膨張可能な発生剤収容部1と、発生剤収容部1の外側に設けられ、発生剤収容部1との間の空間に反応液を収容可能な反応液収容容器2と、反応液収容容器2の反応液を発生剤収容部1へ供給可能な吸水体3と、発生剤収容部1にて発生した水素を反応液収容容器2の外部へ供給するための水素供給パイプ4とを備え、発生剤収容部1は、反応液収容容器2の内壁によって膨張が阻害されない状態に配置されている。 (もっと読む)


【課題】水素吸蔵合金の特性を利用したエネルギー貯蔵・反応列利用複合システムにおいて、反応熱を高効率で利用する。
【解決手段】水素供給源11からの水素を水素吸蔵合金タンクA、B、C、D内に蓄え、水素負荷12に対して蓄えた水素を供給可能な水素吸蔵合金タンクシステムであって、対となる水素吸蔵合金タンクA、Cと水素吸蔵合金タンクB、Dにおいて、一方の水素吸蔵合金タンクの水素吸蔵過程終了後と他方の水素吸蔵合金タンクの水素吸蔵過程開始前、または一方の水素吸蔵合金タンクの水素放出過程終了後と他方の水素吸蔵合金タンクの水素放出過程開始前との間に、対となるタンク相互間で熱交換が行なわれる。各水素吸蔵合金タンクA、B、C、Dにおける水素放出時の冷熱は、熱交換器2を介して、冷熱利用系3に供給される。 (もっと読む)


【課題】燃料電池の伝熱・放熱制御を簡便な構成で行う。
【解決手段】燃料電池モジュール10は、筐体20と、筐体20に収容された膜電極接合体12、放熱部材50、形状記憶部材52および水素吸蔵合金タンク60を備える。放熱部材50により膜電極接合体12と水素吸蔵合金タンク60とが熱的に接続されている。放熱部材50は、所定温度以上でガス透過性が高くなる形状記憶部材52で被覆されている。 (もっと読む)


【課題】300℃より低い水素放出温度において水素放出を可能とし得るLiBHを含む水素貯蔵材料およびその使用方法を提供する。
【解決手段】LiBHと微細孔を有するSiOからなる多孔質材とを含む水素貯蔵材料、及び前記水素貯蔵材料から、Li1212を生成成させて水素を放出させる水素貯蔵材料の使用方法。 (もっと読む)


本発明は、可逆的な水素吸蔵/放出反応を用いて、水素を貯蔵し取り出すためのタンクに関するものである。上記タンクは断熱されたチャンバーから成り、当該断熱されたチャンバーは、ハイドライド形態で水素を貯蔵するための複数の要素(2)を含み、各要素は、ガス状水素との交換のための少なくとも1つの面と、少なくとも1つの熱交換面とを有し、当該断熱されたチャンバーは、さらに、可逆的な水素吸蔵/放出反応に伴う熱を保持し、放出するための複数の熱貯蔵要素(3)を含むことを特徴とする。
(もっと読む)


【課題】従来のガス源収容体に比べ、固体物質及び水の接触によって発生するガスの発生量をより正確に制御することを可能にするガス源収容体及び発電装置を提供する。
【解決手段】特定の液体物質に接触することによって溶出し、ガスを発生させる固体物質と、該固体物質を保持する保持部材とをガス源収容体に備え、前記固体物質を下方側から前記液体物質に浸漬させるように構成し、また前記保持部材を、前記固体物質の下部が前記液体物質に溶出した場合、溶出した分、前記固体物質が自重により下方側へ移動できるように、該固体物質を保持するように構成する。また、前記ガス源収容体を発電装置に備え、前記固体物質及び液体物質の接触によって発生した水素にて発電を行うように構成する。 (もっと読む)


【課題】水素貯蔵量の最大量を増すのに望ましい第1水素吸蔵合金と第2水素吸蔵合金との組み合わせを提供する。
【解決手段】第1水素吸蔵合金14に関する平衡圧力直線H1は、条件〈1〉,〈3〉を満たし、第2水素吸蔵合金15に関する平衡圧力直線H2は、条件〈2〉,〈3〉を満たす水素吸蔵合金である。
〈1〉平衡圧力直線H1は、座標点A,E間の第1直線L1と交差し、且つ座標点C,F間の第2直線L2と交差する。
〈2〉平衡圧力直線H2は、座標点A,E間の第1直線L1と交差し、且つ座標点B,C間の第4直線L4と交差する。
〈3〉平衡圧力直線H1は、領域S内で平衡圧力直線H2よりも低圧側にある。 (もっと読む)


【課題】炭化水素含有燃料の供給量や、複数の水素吸蔵合金容器内に入れられた水素吸蔵合金の吸蔵・放出の切り替え時間を適切に制御することができ、固体高分子型燃料電池の負荷が急激に変動した場合でも、改質器の出力を急増させる必要なく負荷変動に対応するができる燃料電池システムおよびその燃料電池システムの運転方法を提供することを課題とする。
【解決手段】運転制御装置6により演算された水素吸蔵量と使用水素量に応じて、炭化水素含有燃料aの供給量および/または前記水素分離回収装置4の水素吸蔵合金の水素の吸蔵・放出の切り替え時間を制御する。 (もっと読む)


【課題】燃料電池システムの停止後の再運転開始時の固体高分子型燃料電池による発電を、水素リッチガス生成工程で改質器が起動するのを待つことなく、即座に開始することができる燃料電池システムの運転方法を提供することを課題とする。
【解決手段】燃料電池システムの運転停止時に、水素吸蔵合金に水素を吸蔵させた状態とすると共に、燃料電池システムの運転開始時に、水素吸蔵合金に吸蔵させた水素を水素吸蔵合金から高純度水素Dとして放出させることにより高純度水素Dを固体高分子型燃料電池5に導入して発電を開始する。 (もっと読む)


【課題】水酸化マグネシウム粉末から水素化マグネシウム粉末へのリサイクルを可能にする酸化マグネシウム還元方法及び反応装置を提供する。
【解決手段】不活性ガスの熱プラズマを生成するプラズマ反応炉に酸化マグネシウム粉末と、メタン及び/又は水素とを供給し、酸化マグネシウム粉末をマグネシウムにプラズマ還元し、プラズマ還元された気体のマグネシウムを凝縮させることによって、マグネシウム粉末又は水素化マグネシウム粉末の混合物或いは水素化マグネシウム粉末を生成する。反応装置に、プラズマ反応炉と、プラズマ反応炉の上部に設けられた筒状のトーチ電極と、トーチ電極を囲繞するトーチノズルと、プラズマ反応炉の下部に設けられた下部電極と、トーチ電極及び下部電極に電力を供給する電源と、トーチ電極を通じてメタンを供給する第1供給路と、トーチノズルを通じて酸化マグネシウムを供給する第2供給路とを備える。 (もっと読む)


本発明は、基本的にリチウム及びマグネシウムの水素化物により構成された水素貯蔵材料であって、該水素貯蔵材料が、一般式:LiMgを有し、(i)xが、0.17〜0.93の範囲であり、(ii)yが、0.07〜0.83の範囲であり、及び(iii)nが、(x+2y)以下であり、ただし、(a)x=y;(b)x=2yまたは(c)2x=yである場合に、nが、(x+2y)ではない、水素貯蔵材料を提供する。また、該水素貯蔵材料の製造方法、及び水素を可逆的にまたは不可逆的に貯蔵するためのその使用が提供される。 (もっと読む)


パワー源及び水素化物反応器が提供される。ここで、パワー・システムは、(i)ハイドリノを形成する原子水素の触媒作用のための反応セルと、(ii)触媒又は触媒の源; 原子水素又は原子水素の源; 触媒又は触媒の源及び原子水素又は原子水素の源を形成する反応物; 原子水素の触媒作用を開始させる1つ以上の反応物;及び触媒作用を可能にする支持体、から選択される少なくとも2つの成分を含む化学燃料混合物と、(iii)反応生成物から熱的に燃料を再生するために交換反応を逆転すための熱システムと、(iv)パワー生産反応からの熱を受け取るヒートシンクと、そして、(v)パワー変換システムと、を備える。ある実施例において、触媒作用反応は、触媒の金属ともう1つの金属の間で水素化物−ハロゲン化物交換反応のような1つ以上の他の化学反応によって活性化され、開始され、伝播した。これらの反応は、逆交換において金属蒸気の除去により、熱的に可逆である。ハイドリノ反応は維持されて、熱的に連結した束にアレンジされたマルチ−セルを用いて、バッチ・モードで再生されるが、サイクルのパワー−生産フェーズのセルが再生フェーズのセルを熱する。この断続的セル・パワー設計において、セル数が大きくなると、或いは、セル・サイクルが定常パワーを達成するように制御されると、熱的パワーは統計学的に一定になる。もう1つのパワー・システム実施例において、ハイドリノ反応は維持されて、各々のセルで、連続的に再生されるが、ここで、熱的に可逆なサイクルのパワー生成フェーズからの熱が、生成物からからの最初の反応物の再生のためにエネルギーを供給する。各々のセルで同時に両方のモードを反応物が受けるので、各々のセルからの熱的パワー出力は一定である。ランキン、ブレイトン、スターリング、又は蒸気機関サイクルのようなサイクルを利用している熱機関によって熱的パワーが電気パワーに変換される。もう1つの実施例において、直接の電気パワーがハイドリノを形成するための水素の反応によって開放されるエネルギーでもって展開されるところ、交換反応は半電池反応で、ユニークな燃料電池の基礎として、構成される。
(もっと読む)


本発明は、ニッケルまたはその合金の少なくとも一つの表面層を含む基板上に触媒活性を持つ表面層を作成する方法を提供する。より詳しくは、この方法は、前記基板の表面を酸化して、酸化ニッケルのアンカー層を得、コロイド状シリカを前記アンカー層に塗布し、得られた基板の表面を加熱して、シリカと酸化ニッケルとの間の作用を促進し、ついで、前記表面を、その酸化物およびそのシリケートの双方をニッケル金属に還元する還元雰囲気での処理によって活性化する、操作を含むことを特徴とする。本発明の方法により作成された薄いナノ構造層は、直接金属/ガス接触により、迅速に高い水素吸着値(約0.7のH/Ni値)を示す。 (もっと読む)


【課題】水素発生材料収容容器が未使用か使用済みかを容易に判別可能な水素発生装置及びこれを用いた燃料電池システムを提供する。
【解決手段】本発明の水素発生装置は、水との発熱反応により水素を発生する水素発生材料2を収容する水素発生材料収容容器1と、水素発生材料収容容器1の内部に水を供給する水供給部3と、水素発生材料収容容器1の外部表面に設けられ、温度変化を検知して非可逆的な状態変化を生じる非可逆材料を用いて水素発生材料収容容器1の表面温度の上昇を検出する温度検出部5とを備える。温度検出部5には、水素発生材料2と水との発熱反応により生じる温度変化を検知したとき、非可逆的に変色する非可逆性材料が塗布されている。 (もっと読む)


【課題】水素の発生および酸素の発生が相互に関連し、簡便な方法で行え、小型化を可能とし得る水素酸素発生装置およびこれを用いた燃料電池システムを提供する。
【解決手段】水素酸素発生装置5は、超酸化カリウムで構成される酸素発生用材料15に水を反応させて水酸化カリウムおよび酸素を発生させる酸素発生容器9と、両性金属19に、酸素発生容器9で生成された水酸化カリウムの水溶液17を反応させて水素を発生させる水素発生容器11と、が備えられている。 (もっと読む)


【課題】200℃以下の温度においても水素を取り出すことが可能な新規な水素化物複合体、及び、このような水素化物複合体から水素を放出することにより得られる水素貯蔵材料を提供すること。
【解決手段】金属ボロハイドライドM(BH4)n(Mは第1の金属元素、nはMの酸化数)と、水素化アルミ金属化合物M'(AlH4)n'(M'は第2の金属元素、n'はM'の酸化数)との混合物を混合粉砕することにより得られる水素化物複合体、及び、この水素化物複合体に含まれる水素の全部又は一部を放出させることにより得られる水素貯蔵材料。 (もっと読む)


【課題】長期に亘る使用においても高効率で気液分離が可能な気液分離装置並びにこれを用いた水素製造装置及び燃料電池システムを提供する。
【解決手段】本発明の気液分離装置は、気体と液体の二相間の密度差に基づいた慣性力の差によって、水素を含む気体と、液体とを含む気液混合流体を液体と気体に分離して排出する分岐管712と、気液混合流体から分離された液体を回収する液体回収容器601とを備え、分岐管712は、気液混合流体を導入する導入流路と、気体を排出する排気流路と、液体を排出する排液流路とを有し、排気流路は、気液混合流体の導入方向に対して鋭角かつ逆方向に設けて導入流路に連結されている。 (もっと読む)


【課題】低温で水素発生を進行させると同時に、空気中でも安定に存在可能な材料を備えた水素発生装置及び燃料電池システムを提供する。
【解決手段】燃料電池システム1は、水素発生装置2と燃料電池3を備え、水素発生装置2は、Mgを主成分として含み、Mg(OH)で表面が被覆された水素発生材料22を貯蔵した第1の容器(水素発生材料充填容器)21と、第1の容器21と配管23によって接続され、第1の容器21内に水を供給する第2の容器(水タンク)24とを備える。第1の容器21を加熱、又は第2の容器24中の水を80℃以上に図示しない加熱装置により加熱して水素発生材料22と接触させることにより、第1の容器21内において、水素発生材料22と水とが反応して水素が発生する。 (もっと読む)


81 - 100 / 629