説明

Fターム[5H027KK52]の内容

燃料電池(システム) (64,490) | 検出変量 (15,012) | 電気的変量 (4,732) | 電池出力、負荷指令 (3,915)

Fターム[5H027KK52]の下位に属するFターム

Fターム[5H027KK52]に分類される特許

41 - 60 / 1,273


【課題】システム全体として効率のよい燃料電池用の電力変換装置の提供。
【解決手段】燃料電池13に接続される昇圧回路15、およびDC/DCコンバータ17と、DC/DCコンバータ17の出力に接続される余剰電力用負荷19と、昇圧回路15の出力とDC/DCコンバータ17の出力とを直列接続した状態で、電気的に接続される系統連系用インバータ21と、系統連系用インバータ出力電流Iiを検出する電流検出器23と、制御回路25と、を備え、制御回路25は、燃料電池13の出力電力Pfcよりも、系統連系用インバータ出力電流Iiから求めた系統側負荷電力Pkの方が小さければ、出力電力Pfcと系統側負荷電力Pkとの電力差ΔPが、余剰電力用負荷19に供給されるように、かつ、系統連系用インバータ21への入力電圧Viが所定入力電圧Visとなるように、余剰電力用負荷19、DC/DCコンバータ17、昇圧回路15を制御する。 (もっと読む)


【課題】電解質膜の抵抗検出に起因する燃料電池の劣化を抑制し、システムの運転状態に基づいて、電解質膜の抵抗検出の開始を判定する燃料電池システムを提供する。
【解決手段】システムの運転状態を検出する運転状態と、燃料電池スタック1から取り出される電流と、燃料電池スタックにおける電圧との時系列的な推移に基づいて、電解質膜の抵抗検出を行っており、システムの運転状態に基づいて、電解質膜の抵抗検出の開始が判定される。 (もっと読む)


【課題】燃料電池システムのコンバータ制御において運転状態に応じて電力フィードバック制御モードと電圧フィードバック制御モードとを切り替える場合に、フィードバックの切替に起因する急激な応答性の低下を抑制する。
【解決手段】燃料電池2と負荷装置との間に設けられたコンバータ10と、コンバータ10の動作を制御する制御手段7と、を備える燃料電池システム1である。制御手段7は、燃料電池2の出力電力に基づいてコンバータ10の動作を制御する電力フィードバック制御モードと、燃料電池2の出力電圧に基づいてコンバータ10の動作を制御する電圧フィードバック制御モードと、を切り替えて実施し、切替前後のフィードバック変数に所定の閾値以上の差がある場合に、切替前のフィードバック変数から切替後のフィードバック変数へとフィードバック変数を漸次変化させる。 (もっと読む)


【課題】装置構成を小型化し、かつ低コストで外部電源と二次電池の間の電力授受を可能とする。
【解決手段】二次電池14からの直流電圧を昇圧して駆動回路20に供給する昇圧コンバータ回路の昇圧リアクトルに一次側インダクタ103を付加し、一次側インダクタ103に外部電源からPFC回路106、DC/AC変換回路108を介して交流電圧を供給する。交流電圧の位相を調整することで、出力コンデンサC2の端子間電圧を昇圧させ、出力コンデンサC2から二次電池14に直流電流を流して二次電池14を充電する。また、交流電圧の位相を変えることで、二次電池14から外部電源に発電する。 (もっと読む)


【課題】燃料電池からのDC電圧をAC電圧に変換する変換効率の向上を図った燃料電池システムおよびその制御方法を提供する。
【解決手段】燃料電池システムは,パワーコンディショナーへの入力電圧および入力電力と変換効率との関係を表す第1の関係情報,前記DC−DCコンバータへの入力電圧および入力電力と変換効率との関係を表す第2の関係情報,前記AC−DCコンバータへの入力電力と変換効率との関係を表す第3の関係情報に基づき,前記燃料電池のDC出力から外部に供給するAC出力へと変換する変換効率が高くなるように,パワーコンディショナー,前記AC−DCコンバータを経由する第1系統と,前記DC−DCコンバータを経由する第2系統との間で,前記燃料電池から前記補助機構への出力を切り替える。 (もっと読む)


【課題】構成に要する費用を削減すると共にサイズを小型化し、且つ電源システムの電力効率の向上を図ることができる電源システム及び燃料電池車両を提供する。
【解決手段】燃料電池スタック11と蓄電装置12の直列電源52に対して並列にDC/DCコンバータ13と負荷103とが接続される電源システム10において、DC/DCコンバータ13を非動作状態に制御するとともに、燃料電池スタック11と蓄電装置12との直列電源52から負荷103に電力を供給する制御を行うようにしたので、1個のDC/DCコンバータ13の採用により費用削減とサイズの小型化が達成でき、スイッチング損失をゼロに維持しつつ負荷に電力を供給することができることからシステム電力効率の高い電源システムを構築することができる。 (もっと読む)


【課題】低負荷状態におけるエアポンプの出力音について搭乗者に違和感を与えることなく、蓄電装置の蓄電量を適切に保つことが可能な燃料電池車両を提供する。
【解決手段】FC車両10の制御装置24は、FC車両10が所定の低負荷状態である場合に、エアポンプ60の駆動量を一定としつつ、蓄電装置20の蓄電量が所定の範囲内に収まる又は目標値になるように調整装置66を制御して、エアオフガスの還流量を調整するアイドル発電制御を行う。 (もっと読む)


【課題】ハイブリット車の電気系統の構成を流用可能であり、高電圧のハーネスの本数の増加を抑えることができる電池搭載車両を提供する。
【解決手段】燃料電池搭載車両1は、燃料電池11と、畜電池17と、燃料電池11と畜電池17に電気的に接続され、車両1内の電力を制御する電力制御装置10と、畜電池17と電力制御装置10との間の電気流路に設けられ、畜電池17の電力を分岐する電力分岐装置16と、電力分岐装置16と電気的に接続され、電力分岐装置16によって分岐された電力が供給され、燃料電池11の発電のために作動する発電用補機類15と、を有している。電力分岐装置16と電力制御装置10は、ハーネスを介さず直接的に連結されている。 (もっと読む)


【課題】燃料電池モジュール内を安定して適正温度に維持しながら、エネルギー効率を高めることができる固体酸化物型燃料電池を提供する。
【解決手段】本発明は、固体酸化物型燃料電池(1)であって、燃料電池モジュール(2)と、燃料供給手段(38)と、発電用酸化剤ガス供給手段(45)と、残余燃料を燃焼させる燃焼部(18)と、蓄熱材(7)と、需要電力検出手段(126)と、温度検出手段(142)と、温度を積算することにより蓄熱量を推定する蓄熱量推定手段(110a)と、燃料による加熱効果と、発電用酸化剤ガスによる冷却効果を利用して、適正温度制御を実行する制御手段(110)と、を有し、制御手段は、燃料電池モジュールが適正温度範囲内にある場合に、適正温度範囲から概ね外れることなく燃料利用率が高くなるように、燃料、酸化剤ガス供給量を補正する燃料利用率調整手段(110b)を有することを特徴としている。 (もっと読む)


【課題】排気中に含まれる有害なガスを減じながら、熱的に安定して運転することができる固体酸化物型燃料電池を提供する。
【解決手段】本発明は、固体酸化物型燃料電池(1)であって、燃料電池モジュール(2)と、燃料供給手段(38)と、発電用酸化剤ガス供給手段(45)と、発電の残りの残余燃料を燃焼させる燃焼部(18)と、蓄熱材(7)と、需要電力検出手段(126)と、蓄熱量推定手段(110a)と、蓄熱量が大きい場合には燃料利用率を高くして、適正温度範囲に収束させる適正温度制御を実行する制御手段(110)と、排気ガス状態判定手段(110b)と、を有し、制御手段は、排気ガスが適正状態になるように、適正温度制御により設定された燃料供給量及び/又は発電用酸化剤ガス供給量を補正する排気ガス適正化制御を実行し、制御手段は、適正温度制御を、排気ガス適正化制御よりも優先的に実行することを特徴としている。 (もっと読む)


【課題】エネルギー効率を向上させながら、排気中に含まれる有害なガスを減じることができる固体酸化物型燃料電池を提供する。
【解決手段】固体酸化物型燃料電池1であって、燃料電池モジュール2と、燃料供給手段38と、発電用酸化剤ガス供給手段45と、発電に利用されずに残った残余燃料を燃焼させる燃焼部と、蓄熱材と、需要電力検出手段126と、蓄熱材の蓄熱量を推定する蓄熱量推定手段110aと、需要電力及び蓄熱量に基づいて残存熱量利用制御を実行する制御手段110と、燃焼部を通って排出される排気ガスの状態を検出又は推定する排気ガス状態判定手段110bと、を有し、制御手段は、排気ガス状態判定手段の判定結果に基づいて、残存熱量利用制御により設定された燃料供給量又は発電用酸化剤ガス供給量を補正する排気ガス適正化手段110cを有する。 (もっと読む)


【課題】従来に比べてより簡便に燃料電池の内部に滞留する液水を排出する。
【解決手段】燃料電池システム100Aであって、燃料電池10と、前記燃料電池の発電に用いられるガスを供給するガス供給部40,50と、蓄電池20と、負荷装置110に対する電力の供給源を燃料電池10から蓄電池20の少なくとも一方に切り替える切替器30と、前記燃料電池システムの動作を制御する制御部70とを、備え、前記制御部は、負荷装置に対する電力の供給源を前記燃料電池から前記蓄電池に切り替えて前記燃料電池の発電を停止する場合において、燃料電池の発電に用いられるガスのうちの少なくとも一つのガスの供給を継続させる。 (もっと読む)


【課題】燃料電池側の出力電流−出力電圧特性と負荷側の最大出力特性との整合を図ることにより、運転効率が高く、物理的なトラブルを生じさせない燃料電池システムを提供すること。
【解決手段】燃料電池の出力電圧−出力電力特性が、FCの最大出力特性f2と、負荷装置の最大出力特性f3が示すグラフとの交点(B点)で示されるシステム電圧(=VM)を燃料電池の出力電圧としてDC−DCコンバータに出力することによって、最適な出力電力(=PM)を得ることができる。 (もっと読む)


【課題】 一酸化炭素変成器ヒータの投入量を最適化することにより、システム信頼性と省エネ性能を高次元で両立することができる燃料電池発電システムを提供する。
【解決手段】 本実施の形態は、制御装置22が、燃料電池21の累積発電時間に基づいて、一酸化炭素変成器12のヒータ12bの設定温度を算出し、この算出された設定温度となるようにヒータ投入量を算出し、この算出されたヒータ投入量に基づいて、一酸化炭素変成器ヒータを制御する。 (もっと読む)


【課題】通常のジェットポンプを用い、低出力区間でも充分な水素再循環流量が確保できる燃料電池システム用水素燃料供給調節装置と制御方法を提供する。
【解決手段】燃料電池スタック30の入口側に設置され、燃料電池スタックに水素を供給して再循環流動を形成するジェットポンプ16と、水素供給ラインに連結され、ジェットポンプのノズル入口に連通されてジェットポンプへの水素供給を制御する比例制御ソレノイドバルブ40と、燃料電池システムの出力により比例制御ソレノイドバルブの駆動を制御するバルブ制御機22と、を含み、バルブ制御機は、所定の基準出力よりも現在状態の出力が低い低出力区間ではパルス流量制御方式により比例制御ソレノイドバルブの駆動を制御し、所定の基準出力よりも現在状態の出力が高い高出力区間では比例制御方式により比例制御ソレノイドバルブの駆動を制御する。 (もっと読む)


【課題】発電効率及び充電効率の低下を抑えることができる2次電池型燃料電池システムを提供する。
【解決手段】水との酸化反応により水素を発生し、水素との還元反応により再生可能な水素発生装置1と、水素発生装置1から供給される水素を燃料にして発電を行う発電機能及び水素発生装置1に供給する水素を生成するための水の電気分解を行う電気分解機能を有する燃料電池装置2と、水素発生装置1と燃料電池装置2との間で水素及び水蒸気を含むガスを循環させるためのガス流路5A及び5Bと、ガス流路5A及び5Bに温度勾配をつける第1〜第4ヒーターH1〜H4とを備える2次電池型燃料電池システム。 (もっと読む)


【課題】燃料電池の発電開始時期を適切に変更することができる燃料電池システムおよび燃料電池システムの制御方法を提供する。
【解決手段】燃料電池システム100は、発電開始指示を受けて発電を開始する燃料電池10と、燃料電池10の発電電力によって充電される二次電池21と、二次電池21の充電残量がしきい値以下になった場合に燃料電池に発電開始を指示する指示部60と、燃料電池10および二次電池21を搭載する車両200の走行条件を検出する走行条件検出部40と、走行条件検出部40の検出結果に応じてしきい値を更新する更新部と、を備える。 (もっと読む)


【課題】 一次エネルギーの消費量又は光熱費等を抑制した運転が可能なコジェネレーションシステムを提供する。
【解決手段】 コジェネレーションシステム1は、給電熱装置100が生成する電力及び熱と、商用電力系統50から入力される電力と、を供給する。このコジェネレーションシステム1では、需要予測演算部85が電力需要量及び熱需要量を予測する。そして、予測消費エネルギー演算部86が、給電熱装置100の運転方法毎に、電力需要量及び熱需要量に応じて電力及び熱を供給するために給電熱装置100で消費される燃料に関する第1の予測消費量及び系統電力を生成するために必要とされる燃料に関する第2の予測消費量を演算する。そして、最適運転選択部87が第1の予測消費量及び第2の予測消費量に基づいて運転方法を選択し、制御部13が選択された運転方法に従って給電熱装置100の運転を制御する。 (もっと読む)


【課題】パワーコンディショナに汎用性を持たせつつ、燃料電池の劣化を防止し得る発電システムを提供する。
【解決手段】燃料電池装置2を備えた発電システム1において、パワーコンディショナ4には昇圧用のコンバータを設けずに、燃料電池装置2に昇圧用のコンバータ6を設ける。そして、燃料電池装置2に、系統Aから供給される交流電力を直流電力に変換してコンバータの出力部に電力を印加するAC/DCコンバータ7を設け、コンバータ6の出力電圧が所定電圧以下であるときには、AC/DCコンバータ7を動作させてコンバータ6の出力部の電圧を目標電圧まで昇圧させてから、AC/DCコンバータ7の出力を低下させつつコンバータ6の出力を上昇させる。 (もっと読む)


【課題】特別な装置を用いることなく、燃料輸送手段、さらには、電流センサの故障の有無を精度良く判定することができ、燃料電池の損傷を抑制できる燃料電池システムを提供すること。
【解決手段】燃料電池システム2が、液体燃料が供給される燃料電池3とその発電電流を測定する電流センサ38と燃料電池3に液体燃料を輸送する第1燃料輸送ポンプ34と第1燃料輸送ポンプ34の消費電力を測定する電力センサ39と電流センサ38および第1燃料輸送ポンプ34の故障の有無を判定するコントロールユニット29とを備え、コントロールユニット29は、燃料電池3の発電電流が0のときに第1燃料輸送ポンプ34の消費電力が所定範囲にあるか否かによって第1燃料輸送ポンプ34の故障の有無を判定し、また、燃料電池3の発電量が所定値であるときに第1燃料輸送ポンプ34の消費電力が所定範囲にあるか否かによって電流センサ38の故障の有無を判定する。 (もっと読む)


41 - 60 / 1,273