説明

Fターム[5H420BB12]の内容

Fターム[5H420BB12]に分類される特許

21 - 40 / 267


【課題】センサや制御回路等の動作用電力を安定に得られるとともに、不所望な電力損失をなくすとともに、小形化が可能な負荷制御装置を提供すること。
【解決手段】定電圧ダイオード15が導通していない期間、トランジスタ18はオフ、トランジスタ20がオンとなり、充電制御スイッチ13はオンしている。これにより、作動用電源部10は交流電源ACの出力により充電される。定電圧ダイオード15の導通電圧(所定電圧)に達すると、トランジスタ23はベースにバイアス信号を供給されてオンする。したがって、インバータ8の入力がロー、出力がハイになって、FET5がオンする。一方、トランジスタ18はオン、トランジスタ20がオフとなり、充電制御スイッチ13はオフする。 (もっと読む)


【課題】1V以下という低電圧動作においても安定に所望の出力電圧を得ることができる電源回路を提供する。
【解決手段】電源回路において、複数のスイッチ103を並列に接続したスイッチアレイ部104と、スイッチアレイ部104の各スイッチ103のオンまたはオフの状態を記憶するスイッチ状態レジスタ106と、参照電圧とスイッチアレイ部104の出力に接続される出力端子の電圧とを比較し、この比較結果をデジタル値として出力する比較回路105とを有する。そして、比較回路105からのデジタル値の出力により、スイッチ状態レジスタ106の値を更新することで、スイッチアレイ部104の各スイッチ103の状態を変更する。 (もっと読む)


【課題】スイッチの切り替えによって出力電圧を広い範囲で容易かつ細かく調整が可能であり、変換効率が高く耐久性も高くかつ安価な交流電圧調整装置を提供する。
【解決手段】交流電圧調整装置10は、100vの交流電源が入力される一対の入力端a1,a2に単巻トランスSTが両端にて接続されており、両端を含めた間には他端側から順に等間隔で5つのタップt1〜t5を設けている。入力端a1と出力端b1の間には、降圧トランスである複巻トランスFTが一次巻線に磁気結合された二次巻線の両端にて接続されている。複巻トランスFTの一次巻線の一端にはタップ切替スイッチSW1が接続されており、一端とタップt1〜t5のいずれか1つとの接続を切り替え可能になっている。
複巻トランスFTの一次巻線の他端には切替スイッチSW2が接続されており、一次巻線の他端と入力端a1と入力端a2のいずれか一方との接続を切り替え可能になっている。 (もっと読む)


【課題】コストが安い太陽電池と、電力変換効率に優れたコンバータとを組合せることを可能として、システム全体として安価で太陽電池の電力利用率に優れた太陽光発電システムを提供する。
【解決手段】太陽電池1から入力される入力電圧を変換するDC/DCコンバータ2b1と、太陽電池の動作点が略最適動作点となるよう上記DC/DCコンバータ2b1の変換動作を制御するコントローラ2cと、を備え太陽光発電システムにおいて、DC/DCコンバータ2b1への入力電圧を当該DC/DCコンバータ2b1の耐圧入力電圧以下に制限する入力電圧制限回路2dを設けた。 (もっと読む)


【課題】 接点容量が小規模化された電圧調整装置を提供する。
【解決手段】 直列巻線1,1’と、複数のタップをもつ分路巻線2,2’を中性点6を境に対称させて接続した単巻変圧器Aと、単巻変圧器の電圧値を測定するセンサ11,11’と、中性点6と分路巻線の複数のコンタクタ9,9’,10,10’の内の一つとをセンサから受けた電圧値に基づいて接続することで分路巻線の巻回数を変更する制御部12をもつ電圧調整装置。 (もっと読む)


【課題】高電圧直流電源を用いて交流電圧を発生する場合に生じる高周波特性の劣化という問題を解消した、電力の消費量が少ない交流電圧発生器を提供すること。
【解決手段】前記交流電圧発生器は、電圧印加対象物にコンデンサが並列に接続された構成を有する。並列に接続された一方のコンデンサに蓄電した正電荷を前記電圧印加対象物に印加し、続けて、並列に接続された他方のコンデンサに蓄電した負電荷を前記電圧印加対象物に印加しあるいは並列に接続された短絡回路により放電する。 (もっと読む)


【課題】交流電源安定出力機構の提供。
【解決手段】この交流電源安定出力機構は、正半周期限流回路と負半周期限流回路を包含し、該正半周期限流回路は第1ダイオードと第1限流回路を包含し、該負半周期限流回路は第2ダイオードと第2限流回路を包含し、該第1ダイオードは交流電源の正半周期電流を通過させ、該第2ダイオードは交流電源の負半周期電源を通過させる。ゆえに、入力電源が交流である時、該第1ダイオードと該第2ダイオードがそれぞれ正半周期と負半周期の電流を通過させ、さらに、該第1限流回路と該第2限流回路がそれぞれ該正半周期電流と負半周期電流を処理して、出力する交流電源の平均電流値を安定値に制限して負荷に入力する。 (もっと読む)


【課題】より高出力な発電を行う。
【解決手段】出力変換機21−1乃至21−8は、太陽電池モジュール22−1乃至22−8において発電された電力が、最大電力となるような制御に従って電圧を変換して出力する。パワーコンディショナ12は、出力変換機21−1乃至21−8から出力される直流の電力を交流の電力に変換する変換手段に入力される直流の電力が、所定の一定電圧となるように制御する。本発明は、例えば、太陽電池モジュールごとに出力変換機を備えた太陽光発電システムに適用できる。 (もっと読む)


【課題】 従来のサイリスタを用いた位相制御方式の電力調整器だけでは、入力電圧と出力電圧の比率に関係なく、入力電流と出力電流の値は同じになる。たとえば、抵抗値0.5Ωのニクロム線に電流40Aをかけようとする時、入力電圧が200Vの場合はサイリスタを用いた位相制御方式で20Vに落として使用する。その場合入力電力量は200V×40A=8KVAとなるが、出力電力量は20V×40A=0.8KVAとなる。
従ってエネルギー効率が悪いといえる。
【解決手段】 本発明は、サイリスタを用いた位相制御方式の電力調整器だけで電圧調整をするのではなく、サイリスタを用いた位相制御方式の電力調整器の後ろに、電圧を下げるダウントランスを設けたものを使用する。 (もっと読む)


【課題】内部に有する双方向スイッチ素子自体の発熱を抑制した2線式交流スイッチを提供する。
【解決手段】交流電源101と負荷102との間に接続されて用いられる2線式交流スイッチ100aであって、双方向に電流を流す構成を有するとともに当該電流の流れをオン又はオフするスイッチ素子であって、交流電源101及び負荷102と直列に接続され、かつ、交流電源101及び負荷102ととともに閉回路を構成する、III族窒化物半導体からなる双方向スイッチ素子103と、交流電源101から電源を全波整流する全波整流器104と、全波整流後の電圧を平滑化し、直流電源を供給する電源回路105と、双方向スイッチ素子103に制御信号を出力する第1のゲート駆動回路107及び第2のゲート108と、第1のゲート駆動回路107及び第2のゲート108を制御する制御回路106とを備える。 (もっと読む)


【課題】未知の動作点でも推定した最大動作点による制御を行う。
【解決手段】MPPT制御器20は、日射計14/温度計15から日射量および/または温度を取得し、電流計17a/電圧計17bから電流値および/または電圧値を取得する計測データ取得部31と、インバータ18を制御することによりアレイ10の動作点を制御して最大動作点を探索する探索制御部34と、上記日射量と上記最大動作電流値との間に成立する推定式(A)および/または上記温度と上記最大動作電圧値との間に成立する推定式(B)を推計する推定式算出32と、或る日射量または或る温度における最大動作点を推定式(A)または(B)を用いて推定するMPP推定部35と、を備える。 (もっと読む)


【課題】装置構成を大型化することなく、太陽電池の運転と二次電池の運転との切り替えを容易に行うことができる太陽光発電装置を得ることである。
【解決手段】制御装置17は、太陽電池11の運転のときはスイッチ回路19のスイッチ素子20をオフしてインバータ15により太陽電池11の出力電力が最大電力となるように最大電力追従制御を行い、二次電池12の放電運転のときはスイッチ回路19のスイッチ素子20をオンしてインバータ15により二次電池12の放電制御を行い、二次電池12の充電運転のときはインバータ15により直流系統13の電圧を二次電池12の定格電圧に調整してスイッチ回路19のダイオード21を介して二次電池12の充電制御を行う。 (もっと読む)


【課題】小さくて、安価で、効率のいい、スイッチモード・パワー・コンバータを提供する。
【解決手段】電力線サイクルの正の半サイクルと負の半サイクルを有する交流電源のライン電圧端子のプラグJ1と負荷が接続されるプラグJ2の間に連結されたリレーK1で負荷への印加電圧を制御する。制御は抵抗R6と抵抗R7およびコンデンサC5にてリレーK1のコイルにかかる平均電圧を検出し、この平均電圧に応じたパルス幅変調信号を生成してドライブトランジスタQ3のベースに印加し、負荷に印加する電圧を制御する。リレーK1のコイル駆動電源はプラグJ1からダイオードD7を介して交流電源のライン電圧を半波整流して供給される。J4は交流電源のニュートラルラインであり、パルス幅変調信号生成回路のニュートラルバスのプラグJ3に連結されている。 (もっと読む)


【課題】自動電力調整装置及び自動電圧調整装置の相互間で協調を取りながら、送電線の系統電圧を維持しつつ有効電力を所定の抑制値にまで抑制できる変電所自動制御システムを提供することである。
【解決手段】自動電力調整装置18は位相タップ15の制御を行ったときは、自動電圧調整装置19を起動し、自動電圧調整装置19は電圧タップ14の制御を行ったときは自動電力調整装置18を起動し、自動電圧調整装置19による自動制御にて送電端系統電圧を系統電圧範囲内に維持しつつ、自動電力調整装置18によって送電線の有効電力を所定の抑制値未満まで抑制する。 (もっと読む)


【課題】発電機電圧制御とタップ切換制御間の相互協調制御を行う発電所の電圧制御装置を得る。
【解決手段】変圧器4を介して発電機電圧を入力する電圧変換器5と、変圧器4を介して発電機電圧を入力すると共に、変流器7を介して発電機電流を入力し、入力された発電機電圧と発電機電流とから発電機無効電力を検出する無効電力変換器8と、無効電力変換器8の出力する無効電力と電圧変換器5の出力する発電機電圧とを入力するシーケンサ6を有し、シーケンサ6は、無効電力変換器8の出力する無効電力と予め設定された無効電力目標値との比較結果に差異が発生しているときに自動電圧調整装置10へ電圧増減信号を出力する無効電力比較部6bと、電圧変換器5の検出する発電機電圧が、発電機1の運転範囲内にあるか否かを確認し、運転範囲外にある場合は、タップ増減信号を主変圧器1へ出力する電圧比較部6cを備えた。 (もっと読む)


PVアレイ(2)をインバータ(3)経由でAC電力グリッド(4)に接続するために、最初は、インバータ(3)の入力側のDCリンク(7)が、AC電力グリッド(4)からプリチャージされる。DCリンク(7)のリンク電圧は、AC電力グリッド(4)に接続されるインバータ(3)によってプリセット値であって、PVアレイ(2)の開放電圧より低いプリセット値に合うよう調節され、そして次に、リンク電圧がプリセット値に合うよう連続的に調節される間、その開放電圧のPVアレイ(2)が、DCリンク(7)に直接接続される。 (もっと読む)


【課題】いわゆるDCDC変換時における損失を抑える。
【解決手段】モジュールMOD11から出力された電流に対して電圧を設定し、該電圧で外部へ出力する出力変換機T11において、上記電圧を変更可能なDCDC変換部53と、DCDC変換部53から出力される電力を検出する二次側電圧・電流監視部56と、二次側電圧・電流監視部56によって検出される出力電力が最大となるようにDCDC変換部53によって設定される電圧を決定する最大動作点制御部54と、モジュールMOD11から出力された電流をDCDC変換部53を迂回して外部へ出力するためのDCDC短絡スイッチ51と、を備え、最大動作点制御部54が、通信ネットワークを介して受信した太陽電池アレイの出力電力を示すアレイ出力データに基づいて、DCDC変換部53を介して外部へ出力するかを決定する。 (もっと読む)


【課題】いわゆるDCDC変換時における損失を抑える。
【解決手段】モジュールMOD11から出力された電流に対して電圧を設定し、該電圧で外部へ出力する出力変換機T11において、上記電圧を変更可能なDCDC変換部53と、DCDC変換部53から出力される電力を検出する二次側電圧・電流監視部56と、二次側電圧・電流監視部56によって検出される出力電力が最大となるようにDCDC変換部53によって設定される電圧を決定する最大動作点制御部54と、を備える。 (もっと読む)


【課題】交流電力と直流電力とをそれぞれ配電するシステムにおいて、直流電力を出力するDC−DCコンバータを安定動作させ、安定した直流電力の供給を可能にする。
【解決手段】太陽電池1から出力される直流電力を交流電力系統ACの位相に同期した交流電力に変換して出力するパワーコンディショナ3と、太陽電池1から出力される直流電力の電圧レベルを所望の電圧レベルに変換して出力するDC−DCコンバータ5とを備え、これらのパワーコンディショナ3とDC−DCコンバータ5とが同時動作可能である構成において、DC−DCコンバータ5の入力電圧がパワーコンディショナ3の動作電圧範囲と同じかまたは狭い所定の範囲である場合のみ、この所定の動作電圧範囲においてDC−DCコンバータ5を動作させる。 (もっと読む)


【課題】配電装置において、太陽電池から直流電力を配電する際にも、太陽電池から電力をより効率よく取り出すことにある。
【解決手段】バッテリ20により第1コンバータ55の出力側の電位が規定(固定)される。このように、電位が規定されることで、第1コンバータ55の出力電流Ioutの制御を通じて、太陽電池3から入力される太陽電池電力Ppvが決定される。第1コンバータ55において、その入出力電力Ppv,Poutは、ほぼ等しい。よって、第1コンバータ55は、出力側の電流制御を通じて、太陽電池電力Ppv(入力電力)を決定することができる。また、太陽電池電力Ppvを変化させることで、太陽電池電圧Vpvを決定することもできる。よって、第1コンバータ55は、出力側の電流制御を通じて、太陽電池電圧Vpvを最大出力電圧とすることで、太陽電池3から高い効率で電力を得ることができる。 (もっと読む)


21 - 40 / 267