説明

Fターム[5H420DD02]の内容

電気的変量の制御(交流、直流、電力等) (13,664) | 負荷、出力回路 (950) | 負荷 (868) | 直流のもの (291)

Fターム[5H420DD02]に分類される特許

21 - 40 / 291


【課題】より効率良く蓄電池を充電する。
【解決手段】太陽光発電システム11は、太陽光発電パネル12、蓄電池13、電力制御装置14から構成される。電力制御装置14の制御ユニット25が、通信部24がネットワークを介して取得した天候を予測する情報に基づいて、太陽光発電パネル12に照射される太陽光の日射量が増加すると予測した場合、太陽光発電パネル12により発電された電力の蓄電池13への充電を開始する。本発明は、例えば、太陽光発電パネルと蓄電池とを有する太陽光発電システムに適用できる。 (もっと読む)


【課題】自然エネルギーを所望の形態の電力に変換するエネルギー変換装置において、最大電力点の検出に必要な電力検出のための電流測定を不要にして、効率を改善する。
【解決手段】電力変換手段の入出力電圧と電力変換手段の変換動作とから変換する電力を演算するようにした。 (もっと読む)


【課題】発電手段からの電気エネルギーを電力変換回路にて変換して得られる電力を最大にするように追従する最大電力変換方法において、最大電力検出のための消費電力を削減して効率を改善する。
【解決手段】発電手段の供給力の変化と前回の動作点の更新からの経過時間により、電力変換手段に設定する動作点を更新するかどうかを判定するようにした。 (もっと読む)


【課題】発電手段からの電気エネルギーを電力変換回路にて変換して得られる電力を最大にするように追従する最大電力変換方法において、検出する最大電力点の精度を高くすることにより、検出時間を短くして検出のための消費電力を削減する。
【解決手段】更新前の動作点に対して第一の値だけ大きい値を動作点として設定して得られる第一の電力と前記更新前の動作点に対して第二の値だけ小さい値を動作点として得られる第二の電力との比較値から前記電力変換回路に設定する動作点を更新する。 (もっと読む)


【課題】発電した電気エネルギーを所望の形態の電力に変換するエネルギー変換装置において、効率を改善する。
【解決手段】電力変換手段の動作点について、比較的低い頻度で供給力に対する最大電力点の特性を学習し、比較的高い頻度で学習した特性を供給力により参照して電力変換手段に設定する。 (もっと読む)


【課題】太陽電池の最大出力電力を簡易に取得する。
【解決手段】太陽電池特性取得回路11は、太陽電池13の端子にコンデンサC11を接続する構成を備えている。ここで、太陽電池13を短絡状態(スイッチS11,S12をオン状態)から開放状態(スイッチS11をオフ状態)にすることによって、太陽電池13の端子に接続されたコンデンサC11に過渡的な電圧および電流を発生させることができる。つまり、コンデンサC11の電位が0Vから開放電圧Vocにまで変化する。その変化の際に、所定のサンプリング時間間隔で、電流値および電圧値が測定される。そして、測定した電流値および電圧値を用いて算出した電力値の中から、最大出力電力値を求め、その最大出力電力値となるときの電圧値を示す最大出力動作電圧値を取得し、最大出力動作電圧値に基づいて、最大電力点に追従するように昇圧チョッパ回路12を制御する。 (もっと読む)


【課題】配電系統に連系される太陽光発電の出力電力を少ないセンサで従来よりも簡単にリアルタイムで推定する。
【解決手段】太陽光発電出力のリアルタイム推定方法は、配電系統100に接続された複数の太陽光発電装置PV1〜PV3および複数の負荷装置LD1〜LD6よりも上流側に設けられた観測地点50bにおいて、有効電力および無効電力を時系列的に測定するステップと、日の出から日没までの間で設定された分析時刻が到来する度に、到来した現分析時刻までの所定の分析期間内の複数の測定時刻に観測地点50bで測定されたデータに対して独立成分分析を行なうステップと、独立成分分析によって算出された各測定時刻における複数の太陽光発電装置PV1〜PV3全体の出力電力の推定値に基づいて、現分析時刻または現分析時刻から所定時間後における複数の太陽光発電装置PV1〜PV3全体の出力電力を推定するステップとを備える。 (もっと読む)


【課題】DCバスの直流電力を、交流電力に変換する。
【解決手段】電力システム10は、DC電力14を受けるDCバス16と、DC電力を調整された電圧出力を有するAC電力20に変換し、電気系統22に供給するラインサイドコンバータ34と、ラインサイドコンバータを制御するラインサイドコントローラ36を備える電力変換制御システム24とを備える。ラインサイドコンバータ34は、調整された電圧出力を表す電圧振幅信号を受信し、DCバス16のDC電圧フィードバック信号とDC電圧コマンド信号とを使用してDC電圧差分信号を取得し、電力コマンド信号を取得し、電力フィードバック信号を取得する。ラインサイドコントローラ36は、DC電圧差分信号と、電力コマンド信号と、電力フィードバック信号とを使用して位相角制御信号を生成し、電圧振幅信号と位相角制御信号とを使用してラインサイドコンバータ34の制御信号を生成する。 (もっと読む)


【課題】太陽電池からの出力電力が少ない場合においても、発電した電力を有効に利用する。
【解決手段】太陽光による照射エネルギーを電力に変換する太陽電池10、および蓄電手段21を有する負荷20に接続され、太陽電池10からの入力電力を負荷20に供給する電力供給装置30であって、太陽電池10からの入力電力に対して、最大限の発電量に制御する最大電力追従手段50と、最大電力追従手段50に供給される電源をオンオフする切替手段40と、を備え、切替手段40により、太陽電池10からの入力電力を、最大電力追従手段50を介して負荷20に供給するモードと、最大電力追従手段50を介さずに負荷20に供給するモードと、を切替える。 (もっと読む)


【目的】
本発明は、太陽電池の最大電力点追従法を用いる装置において最大電力を取り出す電圧コンバータシステムに関し、最大電力点が大幅に移動することが少ないことに着目し、MPPT制御の精度を維持しつつ、最大電力点付近のMPPT制御処理を効率的にすることで、太陽電池の利用効率を向上させることを目的とする。
【構成】
本発明は、太陽電池の出力電力を電圧コンバータによって計測および算出して、当該太陽電池の出力電力を最大にする最大動作電圧Vmに調整する最大電力点追従制御であって、電圧コンバータが発生する電圧Vによって前記太陽電池の出力電力を計測する周期に関して、前記電圧Vが前記Vmから離れている場合には計測及び算出周期を短くするように動作する手段と、前記電圧Vが前記Vmの近傍である場合には計測及び算出周期を長くするように動作する手段とを有することを特徴とする。 (もっと読む)


【課題】 本発明が解決しようとする課題は、限られた太陽電池面積でも効率よく2次電池を充電するとともに太陽電池の温度変化にも追随して制御回路の構成素子数が小少なく消費電流が少ない最大電力追尾方法と充電装置を実現することを課題とする。
【解決手段】 太陽電池などの再生可能なエネルギー源から2次電池充電方法に関するものであり、最大電力点から充電する充電制御方法に関するものである。
ら太陽電池の発電電力特性曲線の最大点が太陽電池パネル温度によって変化する最大電力点を太陽電池の出力電流を使って追尾する方法とそれを用いた充電装置によって上記課題を解決した。 (もっと読む)


【課題】複数種類の入力電源の利用を可能とした上で回路構成の簡素化を実現させるAC−DCコンバータを提供する。
【解決手段】リレー回路Rylは、入力電圧Vinの実効値が高いときにトランスTcの巻線比RNを低値に設定させ、誘導起電力及びこれによって生成される出力電圧Voutを低減させる。一方、入力電圧Voutの実効値が低いときにトランスTcの巻線比RNを高値に切換え、誘導起電力及びこれによって生成される出力電圧Voutを上昇させる。即ち、入力電圧Vinの実効値が高いときの出力電圧Voutと低いときの出力電圧Voutは、リレー回路Rylの動作によって其の電圧値の差が低減されるように制御される。 (もっと読む)


【課題】センサや制御回路等の動作用電力を安定に得られるとともに、不所望な電力損失をなくすとともに、小形化が可能な負荷制御装置を提供すること。
【解決手段】定電圧ダイオード15が導通していない期間、トランジスタ18はオフ、トランジスタ20がオンとなり、充電制御スイッチ13はオンしている。これにより、作動用電源部10は交流電源ACの出力により充電される。定電圧ダイオード15の導通電圧(所定電圧)に達すると、トランジスタ23はベースにバイアス信号を供給されてオンする。したがって、インバータ8の入力がロー、出力がハイになって、FET5がオンする。一方、トランジスタ18はオン、トランジスタ20がオフとなり、充電制御スイッチ13はオフする。 (もっと読む)


【課題】1V以下という低電圧動作においても安定に所望の出力電圧を得ることができる電源回路を提供する。
【解決手段】電源回路において、複数のスイッチ103を並列に接続したスイッチアレイ部104と、スイッチアレイ部104の各スイッチ103のオンまたはオフの状態を記憶するスイッチ状態レジスタ106と、参照電圧とスイッチアレイ部104の出力に接続される出力端子の電圧とを比較し、この比較結果をデジタル値として出力する比較回路105とを有する。そして、比較回路105からのデジタル値の出力により、スイッチ状態レジスタ106の値を更新することで、スイッチアレイ部104の各スイッチ103の状態を変更する。 (もっと読む)


【課題】 受動素子の消費仕事量(又は消費電力)を安定化させる方法を開示する。
【解決手段】 受動素子を含む電子製品がAC入力電圧源に接続されている間に、一定の入力/出力仕事量と前記入力電圧源の電圧曲線に応じて対応減少電流が計算される。従って、前記電子製品が、異なる等級を有したり不安定である電圧源の下で駆動されていても、計算減少電流は前記入力仕事量又は前記出力仕事量を安定化させるように供給される。 (もっと読む)


【課題】限られた太陽電池面積でも効率よく2次電池を充電するとともに太陽電池の温度変化にも追随して制御回路の構成素子数、消費電流が少ない最大電力追尾方法と充電装置を実現する。
【解決手段】再生可能エネルギー源が接続される入力端子と、入力端子からのDC電圧を別のDC電圧に変換するDCDC変換器と、DCDC変換器の基準電圧を供給する基準電圧調整器とを有し再生可能エネルギー源の出力電流を電圧に変換する、電流電圧変換器U4と基準電圧調整器と電流電圧変換器の出力電圧を減衰率Kで減衰させる減衰器と、電流電圧変換器出力と減衰器の出力電圧とを比較し基準電圧VREFを調整する基準電圧調整器U20とを有し、再生可能エネルギー源の開放電圧の90%以下の電圧時の電流を短絡電流Imaxとすると、K*Imaxで再生可能エネルギー源を動作させて再生可能エネルギー源の最大電力点を追尾する。 (もっと読む)


【課題】自然エネルギー発電機の出力における最大電力点を安価な構成で追跡する。
【解決手段】本装置は、最大電力点を有する直流電源からの出力電圧を昇圧変換する第1D/Dコンバータと、第1D/Dコンバータの出力電圧に応じた電圧の出力信号を出力する第1電圧検出回路と、第1電圧検出回路の出力信号の電圧と第1目標電圧との差に応じて、第1D/Dコンバータに対して定電圧制御を行う第1定電圧制御回路と、第1D/Dコンバータの出力電圧を降圧変換する第2D/Dコンバータと、第2D/Dコンバータの出力電圧に応じた電圧の出力信号を出力する第2電圧検出回路と、第2電圧検出回路の出力信号の電圧と第2目標電圧との差に応じて、第2D/Dコンバータに対して定電圧制御を行う第2定電圧制御回路と、第1定電圧制御回路による第1D/Dコンバータの駆動レベルが所定レベル以上になると第2電圧検出回路の出力信号の電圧と第2目標電圧との電位差を強制的に狭める調整回路とを有する。 (もっと読む)


【課題】高精度な出力電流を出力できる出力端子の動作電圧範囲を大幅に拡大することができると共に、効率を高めることができる定電流回路及び定電流回路を使用した発光ダイオード駆動装置を得る。
【解決手段】第1定電流i1と同じ電流値の第4定電流i4を生成してNMOSトランジスタM1と同一導電型のNMOSトランジスタM16に供給し、NMOSトランジスタM16における第4定電流i4が入力されるドレインの電圧をレベルシフトさせてNMOSトランジスタM16のゲートに入力して得られたNMOSトランジスタM16のドレイン電圧を基準電圧とし、電圧調整回路4を構成するNMOSトランジスタM14と定電流源2との接続部の電圧と該基準電圧との電圧を誤差増幅回路OP1で比較して該比較結果を示す信号Doutを出力するようにした。 (もっと読む)


【課題】 太陽光発電装置の発電電力をより有効に利用できる直流配電システムを提供する。
【解決手段】 負荷装置4に直流電力を供給する直流配電系統ESDと、直流配電系統ESDに太陽光発電装置2の発電電力を電圧変換して供給する第1電力変換装置11と、直流配電系統ESDに常時接続された電力貯蔵装置3と直流配電系統ESDとの間で電圧変換して、少なくとも電力貯蔵装置3側から直流配電系統ESD側へ電力供給する第2電力変換装置12と、を備えた直流配電システム1であって、電力貯蔵装置3に太陽光発電装置2の発電電力を電圧変換して供給する第3電力変換装置13を備える。 (もっと読む)


【課題】負荷の出力変動を抑えつつ電力の変換効率の向上を図る。
【解決手段】本実施形態の電源装置PSは、第1の電力変換部2から第1の照明負荷LA1に電力を供給するとともに第2の電力変換部3から第2の照明負荷LA2に電力を供給し、第1の電力変換部2と第2の電力変換部3を電気的に完全に独立させ、第1及び第2の照明負荷LA1,LA2の負荷出力(光出力)を合成している。したがって、直流電力系統DCの供給量が減少したときには第2の電力変換部3の出力を減らして第2の照明負荷LA2の負荷出力(光出力)を下げるとともに第1の電力変換部2の出力を増やして第1の照明負荷LA1の負荷出力(光出力)を上げることで負荷の出力変動(光出力の変動)を抑えることができる。しかも、従来例のように交流電源と直流電源を混合して同一の負荷に供給する場合に比較して電力の変換効率の向上を図ることができる。 (もっと読む)


21 - 40 / 291