説明

Fターム[5H740BB10]の内容

電力変換一般 (12,896) | 主回路スイッチング素子の接続と負荷態様 (2,347) | 誘導性負荷 (269)

Fターム[5H740BB10]に分類される特許

21 - 40 / 269


【課題】スイッチング素子S*#のオン状態への切り替えによってこれを流れる電流が急激に大きくなると、ツェナーダイオード40およびクランプ用スイッチング素子42を備えて構成されるクランプ回路による対処が間に合わなくなるおそれがあること。
【解決手段】ドライブIC20に端子T6を介して入力される操作信号g*#がオン操作指令に切り替わることで、定電流用スイッチング素子22をオン操作して、スイッチング素子S*#のゲートを充電する。スイッチング素子S*#のゲートの充電期間の初期において、クランプ用スイッチング素子42をオン状態としておく。 (もっと読む)


【課題】スイッチング素子のオンオフによる誘導性負荷の電流応答性を良好なものとしながら駆動回路内の発熱をより抑制する。
【解決手段】誘導性負荷10を駆動する駆動回路20に、誘導性負荷10と並列接続され且つ互いに直列接続された第1の抵抗42および第2の抵抗44と、第2の抵抗44に並列接続されたコンデンサ46と、誘導性負荷10と並列接続されゲートが抵抗42と第2の抵抗44(コンデンサ46)との接続点に接続されドレインがグランドに接地されたNチャネル型のFET32と、FET32のソースと電源ライン24との間に介在しドレインからソースの方向を順方向とする第1のダイオード34とを設ける。 (もっと読む)


【課題】一対のスイッチング素子S*#a,S*#bを同一の駆動信号によって駆動する場合、駆動に異常が生じることでそれらの温度同士の乖離が大きくなるものの、これを迅速に検出する手段がないこと。
【解決手段】スイッチング素子S*#a,S*#bの温度を検出する感温ダイオードSDa,SDbの出力電圧は、端子T6a,T6bに印加される。端子T6a,T6bの電位差は、差動増幅回路50を介してウィンドウコンパレータ52に取り込まれる。ウィンドウコンパレータ52では、これらの差が大きい場合に、異常が生じている旨判断する。 (もっと読む)


【課題】定電流用スイッチング素子26や放電用スイッチング素子30に異常が生じると、駆動対象とするスイッチング素子S*#を駆動できないこと。
【解決手段】定電流用スイッチング素子26および放電用スイッチング素子30は、ゲート抵抗体28を介してスイッチング素子S*#のゲートに接続されている。ゲート抵抗体28の両端の電圧は、差動増幅回路70によって出力電圧Vgiに変換され異常判断部72に取り込まれる。異常判断部72では、ゲート抵抗体28に流れる電流に基づき、定電流用スイッチング素子26や放電用スイッチング素子30に異常が生じたか否かを判断する。 (もっと読む)


【課題】より簡便に電力変換器の故障診断を可能とすることを目的としている。
【解決手段】上流側若しくは下流側に変換器用変圧器4が配置された電力変換器2の故障を診断する電力変換器2の故障診断方法である。上記変換器用変圧器4から発生する騒音の騒音スペクトルに、基本周波数BSの奇数倍のピーク周波数が含まれている場合に、上記電力変換器2が故障していると判定する。 (もっと読む)


【課題】簡素な構成で、特性に応じてスイッチング素子を適切に制御することができる電子装置を提供する。
【解決手段】制御装置12は、オン駆動用定電流回路121と、電圧制限回路123と、制御回路124と、コントローラ125とを備えている。制御回路124は、記憶されているIGBT110dの特性情報に基づいて電圧制限回路123を制御する。そのため、従来のように、2つの電源を用いることなく、オン駆動用定電流回路121と電圧制限回路123によって、IGBT110dのゲート電圧を調整することができる。従って、回路構成を簡素化することができる。また、予め記憶されているIGBT110dの特性情報に基づいて電圧制限回路123を制御する。そのため、特性に応じてIGBT110dを適切に制御することができる。 (もっと読む)


【課題】簡素な構成で、特性に応じてスイッチング素子を適切に制御することができる電子装置を提供する。
【解決手段】制御装置12は、オン駆動用定電流回路121と、電圧制限回路123と、制御回路124と、コントローラ125とを備えている。コントローラ125は、記憶されているIGBT110dの特性情報から電圧制限回路制御情報を求める。制御回路124は、求めた電圧制限回路制御情報に基づいて電圧制限回路123を制御する。そのため、従来のように、2つの電源を用いることなく、オン駆動用定電流回路121と電圧制限回路123によって、IGBT110dのゲート電圧を調整することができる。従って、回路構成を簡素化することができる。また、予め記憶されているIGBT110dの特性情報に基づいて電圧制限回路123を制御する。そのため、特性に応じてIGBT110dを適切に制御することができる。 (もっと読む)


【課題】ブリッジ回路を構成する一対のMOSFETの内蔵ダイオードに流れる負荷電流の逆回復を速くする。
【解決手段】ブリッジ回路3は内蔵ダイオード4a、5aを内蔵したMOSFET4、5により構成される。MOSFET4、5はスイッチング制御回路6によりゲート駆動回路7、8を介して駆動制御される。負荷電流ILがコイル1からブリッジ回路に向けて流れる状態であって、例えば内蔵ダイオード4aを介して環流電流を流す状態からMOSFET5を介して負荷電流を流す状態への移行期間の終盤にMOSFET4をオンして内蔵ダイオード4aをオフさせ、電流I1がゼロ相当になったらMOSFET4をオフ、MOSFET5をクランプ状態で一定時間オンする。その後、MOSFET5を通常のオン状態に移行させる。 (もっと読む)


【課題】定電流回路をドライブIC20によって構成することでドライブIC20の発熱量が大きくなること。
【解決手段】ドライブIC20は、スイッチング素子Sw#をオン状態に切り替えるための電荷をスイッチング素子Sw#のゲートに充電する直流電圧源DC1,DC2,DC3を備える。これら直流電圧源DC1,DC2,DC3の出力電圧V1,V2,V3の間には、「V1<V2<V3」の関係がある。直流電圧源DC1の出力電流を定電流回路SC1によって一定値に制御しつつゲートを充電した後、直流電圧源DC2の出力電流を定電流回路SC2によって一定値に制御しつつゲートを充電し、最後に、直流電圧源DC3の出力電流を定電流回路SC3によって一定値に制御しつつゲートを充電する。 (もっと読む)


【課題】オン駆動用スイッチング素子のオン故障や誤動作によって発生する、スイッチング素子をオフできない異常状態を検出することができる電子装置を提供する。
【解決手段】オン駆動用FET121aがオン故障や誤動作によってオンしたときにオフ駆動用FET122aがオンすると、IGBT110dのゲート電圧が低下せず、IGBT110dをオフできない異常状態が発生する。このとき、オン駆動用FET121aには、正常時には流れることがない、所定閾値Ith以上の電流が所定時間Tth以上流れる。制御回路128は、オン駆動用FET121aに所定閾値Ith以上の電流が所定時間Tth以上流れているとき、IGBT110dが異常状態にあると判断する。そのため、オン駆動用FET121aのオン故障や誤動作によって発生する、IGBT110dをオフできない異常状態を検出することができる。 (もっと読む)


【課題】より効率的に負荷を駆動できるようにする。
【解決手段】IGBT51〜56のゲートに入力する信号の電圧を調整する電圧調整回路20とIGBT51〜56のゲートに入力する信号のスイッチングスピードを調整するスイッチングスピード調整回路30を備え、正弦波PWM制御モード、過変調PWMモード、矩形波制御モード等の制御モードに応じて、IGBT51〜56の損失が低減されるように、IGBT51〜56のゲートに入力する信号の電圧およびスイッチングスピードを加工する。 (もっと読む)


【課題】オン駆動用スイッチング素子がオン故障等してスイッチング素子をオフできない異常状態になっても、スイッチング素子の熱破壊を防止することができる電子装置を提供する。
【解決手段】制御回路128は、オン駆動用抵抗121bの端子間電圧に基づいてオン駆動用FET121aに流れる電流を検出する。そして、駆動信号がIGBT110dのオフを指示しているにもかかわらず、オン駆動用FET121aに電流が流れているとき、駆動用電源回路120の動作を停止させ、駆動用電源回路120からの電圧の供給を遮断する。その結果、ゲート電圧がオン、オフする閾値電圧より低くなり、IGBT110dがオフする。従って、オン駆動用スイッチング素子がオン故障等した場合であっても、スイッチング素子の熱破壊を防止することができる。 (もっと読む)


【課題】より効果的に逆起電圧の発生を抑え、過電圧による素子の破壊を防ぐことが可能な保護回路を提供する。
【解決手段】第1の実施形態の保護回路2は、抵抗値可変スイッチ10,過電流検出部20,制御電圧印加部30,容量部40,制御端子電圧変更部50および外部端子11を備える。抵抗値可変スイッチ10は、制御端子10a,第1端子10bおよび第2端子10cを有する。制御端子電圧変更部50は、抵抗値可変スイッチ10の制御端子10aと基準電位端子との間に直列的に設けられたスイッチ51および抵抗器52を含む。 (もっと読む)


【課題】回生電流がモータ等の負荷から駆動回路を構成するプリドライバ回路側に流れても、駆動回路の制御に影響を与えないようにすること。
【解決手段】第1の電源電圧(VM)に接続された第1の駆動トランジスタと、接地に接続された第2の駆動トランジスタとの間の負荷に接続される接続ノード(N1)を出力端子とするブリッジ回路に接続されたプリドライバ回路において、接続ノード(N1)である出力端子に接続された出力モニタ回路を有し、該出力モニタ回路を用いて、出力端子に現れる電圧(Vout)に基づいて電圧のみをフィードバックさせる第1のフィードバック信号(S1)を生成し、第1のフィードバック信号(S1)に基づいて第2のフィードバック信号(S2)を生成して、出力端子に現れる電圧(Vout)が第1の電源電圧(VM)に近づくように、第1の駆動トランジスタを駆動制御する。 (もっと読む)


【課題】オン駆動用スイッチング素子がオン故障等した場合であっても、スイッチング素子の熱破壊を防止することができる電子装置を提供する。
【解決手段】オン駆動用抵抗121bとオフ駆動用抵抗122bの抵抗値は、オン駆動用FET121aとオフ駆動用FET122aがともにオンした場合に、IGBT110dのゲート電圧が、オン電圧が増加するオン、オフの閾値電圧付近の所定範囲外であって、オン、オフの閾値電圧より低くなるように設定されている。そのため、オン駆動用FET121aがオン故障等したときにオフ駆動用FET122aがオンしても、オン電圧が増加してIGBT110dの発熱が増大することなく、IGBT110dをオフすることができる。従って、IGBT110dの熱破壊を防止することができる。 (もっと読む)


【課題】電源回路における回路素子の破壊を防止することが可能な誘導性負荷駆動装置を提供する。
【解決手段】誘導性負荷駆動装置の構成として、電源回路の出力端子と誘導性負荷の一端との間に介挿された第1のスイッチング素子と、前記誘導性負荷の他端とアースとの間に介挿された第2のスイッチング素子と、前記第1及び第2のスイッチング素子の両方がオフの時に前記誘導性負荷の他端から出力される逆起電流を前記電源回路の出力端子に回生させる逆起電流回生回路と、前記電源回路の出力電圧が予め設定された閾値以上となった場合に、前記第2のスイッチング素子をオンにする回路素子保護回路と、を備えた構成を採用する。 (もっと読む)


【課題】オン駆動用スイッチング素子がオン故障してスイッチング素子をオフできない異常状態になっても、スイッチング素子の熱破壊を防止することができる電子装置を提供する。
【解決手段】制御回路128は、オン駆動用FET121aのゲート電圧がオンしない電圧であるにもかかわらず、ドレイン−ソース間電圧がオンした際の電圧であるとき、オン駆動用FET121aがオン故障していると判断する。そして、駆動用電源回路120の動作を停止させ、駆動用電源回路120からの電圧の供給を遮断する。その結果、ゲート電圧がオン、オフする閾値電圧より低くなり、IGBT110dがオフする。そのため、オン駆動用FET121aがオン故障してIGBT110dをオフできない異常状態になっても、IGBT110dの熱破壊を防止できる。 (もっと読む)


【課題】スイッチング素子をオフするように制御しているにもかかわらず、オフできない異常状態を検出することができる電子装置を提供する。
【解決手段】IGBT110dに流れる電流が電流閾値より大きくなると、電流検出回路125は、IGBT110dに電流が流れていると判断する。制御回路128は、駆動信号がIGBT110dのオフを指示しているにもかかわらず、電流検出回路125がIGBT110dに電流が流れていると判断すると、IGBT110dをオフできない異常状態にあると判断する。そして、駆動用電源回路120の動作を停止させ、駆動用電源回路120からの電圧の供給を遮断する。その結果、ゲート電圧がオン、オフする閾値電圧より低くなり、IGBT110dがオフする。そのため、駆動信号がIGBT110dのオフを指示しているにもかかわらず、IGBT110dをオフできない異常状態を検出することができ、IGBT110dの熱破壊を防止できる。 (もっと読む)


【課題】 制御回路部から主回路部へ少ない数のケーブルを用いて、波形をずらすことなくゲート信号を正確に伝送し、電力変換器としての制御性能を劣化を防ぐ。
【解決手段】 実施形態に係る電力変換器制御装置は、複数の電力用半導体素子及び前記複数の電力用半導体素子を駆動するゲート駆動回路から構成される主回路部と、前記ゲート駆動回路に入力されるゲート信号を生成する制御回路部とを備えた電力変換器において、前記制御回路部は、ゲート信号の生成周期毎にゲート信号を符号化する手段と、前記制御回路部から前記主回路部へ、前記生成周期毎にクロック信号を伴わせずにゲート信号を符号伝送する手段とを具備し、前記ゲート駆動回路は、前記生成周期毎にゲート信号を復元し、復元されたゲート信号を前記複数の電力用半導体素子に供給する手段を具備する。 (もっと読む)


【課題】IGBTモジュールを並列接続した構成で、VCEを検出して過電流保護(遮断)する場合、配線インダクタンスの影響で、高速で、確実な保護ができない課題がある。
【解決手段】並列接続されたIGBTモジュール内のIGBTのVCE検出用のダイオードを各IGBT毎又は複数個に対して1個の割合で接続し、過電流時いずれかのVCEが上昇した場合には並列接続された全てのIGBTのゲート信号を強制遮断する。 (もっと読む)


21 - 40 / 269