説明

アライメント装置およびアライメント方法

【課題】より高速に且つより高精度に2つの対象物の位置合わせを行うことが可能なアライメント技術を提供する。
【解決手段】ボンディング装置30は、チップCPを保持するヘッド部33Hと基板WTを保持する基板保持部と、両対象物CP,WTの相対位置誤差を測定する測定手段(撮像部35a,35b等)とを備える。測定手段は、両対象物CP,WTが対向配置され且つ基板WTの載置面に平行な平面内においてチップCPが所定のボンディング位置(X、Y)に配置された状態で、両対象物CP,WTの各対向面とは反対側の面である2つの反対向面のうちの少なくとも一方面側(チップCPの上側および/または基板WTの下側)から、チップCPに関するアライメントマークMC1と基板WTに関するアライメントマークMC2とを撮像することによって、両対象物MC1の相対位置誤差を測定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、2つの対象物の位置合わせを行うアライメント装置(ボンディング装置等)およびそれに関連する技術に関する。
【背景技術】
【0002】
2つの対象物の位置合わせを行うアライメント装置の1つとして、チップボンディング装置が存在する。当該チップボンディング装置は、基板等上に半導体チップ(以下、単にチップとも称する)を位置決めして配置し、基板等に対して当該チップをボンディングする装置である。
【0003】
例えば、特許文献1には、上方のボンディングツールに保持されたチップに対して、下方のボンディングステージに支持された基板の位置を水平方向に移動し、チップと基板とを精密に位置決めした状態で、ボンディングツールを下降させるチップボンディング装置が記載されている。
【0004】
詳細には、特許文献1に記載されたチップボンディング装置は、二視野カメラ(上下方向を同時に観察する2台のカメラ)を備えており、当該二視野カメラを上方のチップと下方の基板との間に挿入することによって、上方のチップと下方の基板との両者に関する画像をそれぞれ取得して水平方向における当該両者の位置ずれを認識する。そして、当該両者の位置ずれ(X,Y,θの各方向のずれ)を低減するようにボンディングステージが水平面に沿って移動されることによって、チップが基板に対して正確に位置決めされる。その後、当該二視野カメラが上方のチップと下方の基板との間から抜き出され、ボンディングツールが鉛直方向(Z方向)に下降することによって、チップが基板にボンディング(例えば熱圧着)される。
【0005】
このような装置によれば、チップと基板との両者の相対的な位置ずれ量(相対位置誤差)がボンディング直前に測定される。詳細には、基板平面に平行なXY平面内におけるボンディング位置(X,Y)にチップが配置された状態で相対位置誤差が測定される。したがって、当該両者の位置合わせを正確に行うことが可能である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2000−269242号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、チップを基板の上に配置する際には、高速性および正確性が求められる。
【0008】
しかしながら、上記の特許文献1に記載の技術は、チップと基板との間に二視野カメラを挿入する時間と、チップと基板との間から当該二視野カメラを抜き取るための時間とを要する。すなわち、二視野カメラを挿脱する時間が必要である。したがって、当該技術では高速化に限界が存在する。
【0009】
また、上記の特許文献1に記載の技術においては、チップと基板との間に二視野カメラが挿入され、チップと基板とが鉛直方向(Z方向)に比較的大きく離間した状態でチップと基板との両者の相対位置関係が求められる。そのため、位置合わせ後に当該鉛直方向に移動する際に誤差が生じることも有り、鉛直方向移動後における両者の相対位置の精度は、必ずしも十分でないこともある。
【0010】
そこで、この発明は、より高速に且つより高精度に2つの対象物の位置合わせを行うことが可能なアライメント技術を提供することを課題とする。
【課題を解決するための手段】
【0011】
上記課題を解決すべく、請求項1の発明は、アライメント装置であって、第1の対象物を保持する第1の保持手段と、第2の対象物を保持する第2の保持手段と、前記第1の対象物と前記第2の対象物との両対象物が対向配置され且つ前記第2の対象物の載置面に平行な平面内において前記第1の対象物が所定のボンディング位置に配置された状態で、前記両対象物の各対向面とは反対側の面である2つの反対向面のうちの少なくとも一方面側から、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相対位置誤差を測定する測定手段と、前記第1の対象物と前記第2の対象物とを前記載置面に平行な方向に相対的に駆動して前記相対位置誤差を補正する駆動手段と、を備えることを特徴とする。
【0012】
請求項2の発明は、請求項1の発明に係るアライメント装置において、前記測定手段は、前記第1の対象物に関するアライメントマークを含む画像を前記第1の対象物の反対向面側から撮像する第1対象物側撮像手段、を有することを特徴とする。
【0013】
請求項3の発明は、請求項2の発明に係るアライメント装置において、前記測定手段は、前記第2の対象物に関するアライメントマークを含む画像を前記第2の対象物の反対向面側から撮像する第2対象物側撮像手段、をさらに有することを特徴とする。
【0014】
請求項4の発明は、請求項3の発明に係るアライメント装置において、前記第1の対象物に関するアライメントマークを含む画像を前記第1対象物側撮像手段により撮像する動作と前記第2の対象物に関するアライメントマークを含む画像を前記第2対象物側撮像手段により撮像する動作とは、並列的に実行されることを特徴とする。
【0015】
請求項5の発明は、請求項3の発明に係るアライメント装置において、前記所定のボンディング位置において前記第1の対象物と前記第2の対象物との間に挿入された状態で、前記第1の対象物を前記第1の保持手段に受け渡す供給手段、をさらに備え、前記供給手段は、薄板形状を有しており、前記第1対象物側撮像手段は、前記第1の対象物が前記供給手段から前記第1の保持手段へと受け渡された時点から、前記所定のボンディング位置からの前記供給手段の退避完了時点までの期間内において、前記第1の対象物に関するアライメントマークを含む画像を撮像し、前記第2対象物側撮像手段は、前記第2の対象物のボンディング対象部分の前記ボンディング位置への移動完了時点から、前記所定のボンディング位置からの前記供給手段の退避完了時点までの期間内において、前記第2の対象物に関するアライメントマークを含む画像を撮像することを特徴とする。
【0016】
請求項6の発明は、請求項3の発明に係るアライメント装置において、前記測定手段は、前記第1の対象物が前記第2の対象物に接触する前に、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相互間の第1の相対位置誤差を測定し、前記第1の対象物が前記第2の対象物に接触した後に、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相互間の第2の相対位置誤差を測定することを特徴とする。
【0017】
請求項7の発明は、請求項6の発明に係るアライメント装置において、前記測定手段は、前記第2の相対位置誤差に基づいて、アライメント不良判定処理を実行することを特徴とする。
【0018】
請求項8の発明は、請求項6の発明に係るアライメント装置において、前記測定手段は、前記第2の相対位置誤差に基づいて、前記第1の対象物と同一種類の対象物に関する前記第1の相対位置誤差に対する補正量を決定することを特徴とする。
【0019】
請求項9の発明は、請求項2の発明に係るアライメント装置において、前記第1対象物側撮像手段は、前記第1の対象物の反対向面側から、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを含む画像を撮像することによって、前記相対位置誤差を測定することを特徴とする。
【0020】
請求項10の発明は、請求項9の発明に係るアライメント装置において、前記第1の対象物におけるアライメントマーク部分は赤外光を透過し、前記第1対象物側撮像手段は、撮影光として赤外光を用いて、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを含む画像を撮像することを特徴とする。
【0021】
請求項11の発明は、請求項9の発明に係るアライメント装置において、前記第1対象物側撮像手段は、前記第1の対象物の前記第2の対象物に対する接触前と接触中との双方において、前記第1の対象物の反対向面側から、前記第2の対象物に関するアライメントマークと前記第1の対象物に関するアライメントマークとを含む画像を撮像することによって、前記相対位置誤差を測定することを特徴とする。
【0022】
請求項12の発明は、請求項1の発明に係るアライメント装置において、前記測定手段は、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを含む画像を前記第2の対象物の反対向面側から撮像する第2対象物側撮像手段、を有することを特徴とする。
【0023】
請求項13の発明は、請求項1または請求項2の発明に係るアライメント装置において、前記測定手段は、前記第1の対象物に設けられた第1のアライメントマークを含む第1の画像を撮像する第1の撮像部と、前記第1の対象物に設けられた第2のアライメントマークを含む第2の画像を撮像する第2の撮像部と、前記第1の画像と前記第2の画像とに基づいて、前記両対象物の相対姿勢誤差を含む前記相対位置誤差を算出する算出手段と、を有することを特徴とする。
【0024】
請求項14の発明は、請求項3の発明に係るアライメント装置において、前記第1対象物側撮像手段は、前記第1の対象物に設けられた第1のアライメントマークを含む第1の画像を撮像する第1の撮像部と、前記第1の対象物に設けられた第2のアライメントマークを含む第2の画像を撮像する第2の撮像部と、を有し、前記第2対象物側撮像手段は、前記第2の対象物に設けられた第3のアライメントマークを含む第3の画像を撮像する第3の撮像部と、を有し、前記測定手段は、前記第1の画像と第2の画像と前記第3の画像と基準時点における前記第2の対象物の姿勢角度とに基づいて、前記両対象物の相対姿勢誤差を含む前記相対位置誤差を算出する算出手段と、をさらに有することを特徴とする。
【0025】
請求項15の発明は、請求項14の発明に係るアライメント装置において、前記基準時点における前記第2の対象物の前記姿勢角度は、前記第2の対象物に設けられた2つのアライメントマークのそれぞれを前記第3の撮像部によって撮像した2つの撮影画像に基づいて求められることを特徴とする。
【0026】
請求項16の発明は、請求項2の発明に係るアライメント装置において、前記第1の保持手段に接続され前記両対象物の積層方向に移動する移動部材と、前記移動部材とともに所定軸周りに回転する回動部材と、をさらに備え、前記第1対象物側撮像手段は、前記回動部材に接続され前記回動部材とともに回転することを特徴とする。
【0027】
請求項17の発明は、請求項16の発明に係るアライメント装置において、前記第1対象物側撮像手段は、撮像部を有し、前記撮像部に関する撮影光の光路の向きを変更する光路変更部材が、前記移動部材に接続されて設けられ、前記撮像部と前記光路変更部材とは、それぞれ、前記回動部材の回転に同期して前記所定軸周りに回転することを特徴とする。
【0028】
請求項18の発明は、請求項17の発明に係るアライメント装置において、前記第1の保持手段は、撮影光を通過させる中空部を有するとともに、前記移動部材に接続されており、前記中空部も、前記回動部材の回転に同期して前記所定軸周りに回転することを特徴とする。
【0029】
請求項19の発明は、請求項1ないし請求項18のいずれかの発明に係るアライメント装置において、前記第2の対象物はその載置面に樹脂層を有しており、前記アライメント装置は、前記樹脂層を硬化する樹脂硬化手段、をさらに備えていることを特徴とする。
【0030】
請求項20の発明は、請求項19の発明に係るアライメント装置において、前記樹脂層は、光硬化性樹脂で形成されており、前記樹脂硬化手段は、紫外線照射手段による紫外線照射によって前記樹脂層を硬化することを特徴とする。
【0031】
請求項21の発明は、請求項19の発明に係るアライメント装置において、前記樹脂層は、熱硬化性樹脂で形成されており、前記樹脂硬化手段は、加熱手段を用いた加熱によって前記樹脂層を硬化することを特徴とする。
【0032】
請求項22の発明は、請求項19の発明に係るアライメント装置において、前記樹脂層は、熱可塑性樹脂で形成されており、前記樹脂硬化手段は、加熱手段を用いた加熱によって前記樹脂層を軟化させ、前記加熱手段の加熱停止を伴う冷却によって前記樹脂層を硬化することを特徴とする。
【0033】
請求項23の発明は、請求項1ないし請求項22のいずれかの発明に係るアライメント装置において、前記第1の対象物は、半導体チップであり、前記第2の対象物は、基板であることを特徴とする。
【0034】
請求項24の発明は、第1の保持手段に保持された第1の対象物と第2の保持手段に保持された第2の対象物との位置合わせを行うアライメント方法であって、a)前記第1の対象物と前記第2の対象物との両対象物を対向配置し且つ前記第2の対象物の載置面に平行な平面内において前記第1の対象物を所定のボンディング位置に配置した状態で、前記両対象物の各対向面とは反対側の面である2つの反対向面のうちの少なくとも一方面側から、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相対位置誤差を測定するステップと、b)前記第1の対象物と前記第2の対象物とを前記第1の方向に相対的に駆動して前記相対位置誤差を補正するステップと、を備えることを特徴とする。
【発明の効果】
【0035】
請求項1ないし請求項24に記載の発明によれば、特許文献1に記載の技術と比較して、二視野カメラを挿脱する時間が不要であるので、高速化を図ることができる。また、特許文献1に記載の技術と比較して、両対象物の相互間に二視野カメラが挿入された状態で位置合わせを行うことを要さず、両対象物が比較的近接された状態で位置合わせを行うことができるので、高精度化を図ることができる。
【0036】
特に、請求項5に記載の発明によれば、供給手段による第1の対象物の供給動作期間(供給手段の退避期間を含む)とは別個に両対象物のアライメント用の期間を設けることを要しないので、更なる高速化を図ることができる。
【0037】
また特に、請求項11に記載の発明によれば、より正確な位置合わせを行うことができる。
【0038】
また特に、請求項13に記載の発明によれば、第1の対象物に設けられた2つのアライメントマークに係る2つの画像を2つの撮像部を用いて高速に撮影することができる。
【0039】
また特に、請求項14に記載の発明によれば、4つの撮影部を要することなく、3つの撮像部を用いることによって、両対象物の相対姿勢誤差を含む相対位置誤差を算出することが可能であるので、コストの低減を図ることが可能である。
【0040】
また特に、請求項17に記載の発明によれば、撮像部および光路変更部材は回動部材の回転に同期して回転するので、回動部材の回転動作の前後のいずれにおいても、光路変更部材による光路変更を伴う画像を撮像部に導くことが可能である。
【0041】
また特に、請求項18に記載の発明によれば、中空部も回動部材の回転に同期して回転するので、有効な撮影部分の面積を維持しつつ、様々な位置に設けられたアライメントマークを適切に撮影することが可能である。
【図面の簡単な説明】
【0042】
【図1】第1実施形態に係るチップ実装システムの構成を示す図である。
【図2】チップ供給装置およびCOWボンディング装置を示す図である。
【図3】COWボンディング装置の上側の構成を示す図である。
【図4】図3におけるI−I断面を示す断面図である。
【図5】図3におけるII−II断面を示す断面図である。
【図6】COWボンディング装置におけるステージ付近の構成を示す上面図である。
【図7】COWボンディング装置の下側の構成を示す断面図である。
【図8】チップに設けられたチップ位置調整用マークを示す図である。
【図9】基板に設けられたチップ位置調整用マークを示す図である。
【図10】両チップ位置調整用マークの相対的な位置ずれを示す図である。
【図11】ヘッド部の詳細構成を示す図である。
【図12】チップ上のマークとヘッド部の中空部との位置関係を示す図である。
【図13】他のチップ上のマークとヘッド部の中空部との位置関係を示す図である。
【図14】Z方向における撮像部とミラー(光路変更部材)との相対移動に応じて、撮影範囲が変更される様子を示す図である。
【図15】チップ供給装置およびCOWボンディング装置の平面図である。
【図16】チップ供給装置およびCOWボンディング装置の平面図である。
【図17】第1実施形態に係る動作を示すタイミングチャートである。
【図18】電子部品実装動作を示すフローチャートである。
【図19】第1層のチップの積層動作を示すフローチャートである。
【図20】第2層以降の各層のチップの積層動作を示すフローチャートである。
【図21】樹脂層形成前の仮基板を示す図である。
【図22】樹脂層が形成された仮基板を示す図である。
【図23】1つ目のチップが仮基板上に載置される様子を示す図である。
【図24】1つ目のチップが仮基板上に載置された状態を示す図である。
【図25】2つ目のチップが仮基板上に載置される様子を示す図である。
【図26】2つ目のチップが仮基板上に載置された状態を示す図である。
【図27】複数のチップが仮基板上に載置された状態を示す図である。
【図28】仮基板の上下が反転される様子を示す図である。
【図29】WOWボンディング装置において、接合対象の基板と上下反転後の仮基板とが対向配置される様子を示す図である。
【図30】WOWボンディング装置における複数チップの接合動作を示す図である。
【図31】デボンド動作を示す図である。
【図32】第2の仮基板に樹脂層が形成された状態を示す図である。
【図33】第2の仮基板に複数のチップが載置された状態を示す図である。
【図34】第2の仮基板の上下が反転される様子を示す図である。
【図35】第1層のチップが接合された基板と上下反転後の第2の仮基板とが対向配置される様子を示す図である。
【図36】第1層のチップと第2層のチップとの接合動作を示す図である。
【図37】第2の仮基板に係るデボンド動作を示す図である。
【図38】接合対象の基板上に複数層のチップが積層された状態を示す図である。
【図39】第2実施形態に係るCOWボンディング装置のステージ付近を示す断面図である。
【図40】第3実施形態に係るアライメント動作を示すタイミングチャートである。
【図41】変形例に係るヘッド部を示す図である。
【図42】変形例に係る撮像部を示す図である。
【図43】チップがフェイスダウン状態で基板に載置される様子を示す図である。
【図44】チップ反転機構を有するチップ供給装置を示す図である。
【図45】チップトレイ方式のチップ供給装置等を示す平面図である。
【図46】部品トレイ搬送部付近を示す断面図である。
【図47】完成品トレイ搬送部を有するチップ供給装置等を示す平面図である。
【図48】完成品トレイ搬送部付近を示す断面図である。
【図49】比較例に係る動作を示すタイミングチャートである。
【発明を実施するための形態】
【0043】
以下、本発明の実施形態を図面に基づいて説明する。
【0044】
<1.第1実施形態>
<1−1.概要>
この実施形態においては、後述するように、図18〜図20に示すような各工程が行われることにより、基板WA上の複数の平面位置において複数層の電子部品(ここでは半導体チップ(単にチップとも称する))が積層される(図38等参照)。図38では、3層の複数のチップが積層される状態が例示されている。なお、図18〜図20は、電子部品実装動作を示すフローチャートである。
【0045】
この実施形態においては、基本的には、第i層(i=1,2,...)の各チップCPiを、接合対象の基板WA(図38参照)側に接合する動作が繰り返し実行されることによって、複数層のチップが基板WA上に積層される。各層の積層動作は基本的には互いに同様である。ただし、第1層の積層動作においては第1層の各チップCP1が基板WAに対して直接的に接合されるのに対して、第2層以降の第i層(i>2)の積層動作においては、仮基板WTi上に配置された第i層の各チップCPiが、基板WAに積層済みの第(i−1)層の各チップに接合される点で相違する。
【0046】
より具体的には、図18に示すように、まずステップS11〜S14が実行されることによって、第1層のチップの積層動作(ステップS10、図19も参照)が行われ、基板WA上に第1層の複数のチップCP1が接合される(図21〜図31も参照)。
【0047】
つぎに、次のステップS21〜S24が実行されることによって、第2層以降の各層(第i層)(i>2)のチップの積層動作(ステップS20、図20も参照)が次のようにして行われる(図32〜図37も参照)。
【0048】
・ステップS21:仮基板である基板WTi上に樹脂層RSiを形成する。
【0049】
・ステップS22:第i層の複数のチップCPiがフェイスアップ状態で基板WTi上の樹脂層RSiに平面配置されて仮固定される。
【0050】
・ステップS23:基板WTiの上下を反転して第i層の複数のチップCPiを基板WTiにフェイスダウン状態で保持し、フェイスダウン状態の第i層の複数のチップCPiと基板WA上の第(i−1)層の複数のチップCP(i−1)とを相対的に接近させる。そして、第i層の複数のチップCPiを第(i−1)層の複数のチップCP(i−1)にそれぞれ重ねて載置(接触)させ、第(i−1)層の複数のチップCP(i−1)と第i層の複数のチップCPiとをそれぞれ接合する。
【0051】
・ステップS24:第i層の複数のチップCPiが第(i−1)層の複数のチップCP(i−1)にそれぞれ接合された状態を維持しつつ、第i層の複数のチップCPiから基板WTiを分離する。このステップS24の処理は、デボンド処理とも称される。
【0052】
以上のようにして、基板WA上に接合された第(i−1)層の複数のチップCP(i−1)の上に、さらに第i層の複数のチップCPiが積層して接合される。
【0053】
これによれば、チップ(電子部品)を積層して基板上に実装することをさらに容易に実現することが可能である。
【0054】
なお、第1層に関するステップS11〜S14の各処理は、第2層以降の各層に関するステップS21〜S24の対応処理とそれぞれ同様の処理である。ただし、ステップS13,S14の各処理は、それぞれ、上述した点でステップS23,S24の各処理と相違する。すなわち、ステップS23,S24においては第2層以降の第i層(i>2)のチップCPiが既に積層済みの第(i−1)層のチップCPiに載置等されるのに対して、ステップS13,S14では第1層のチップCPiが基板WA上に直接的に載置等される。
【0055】
以下では、上述のような動作と、当該動作を実行するチップ実装システム1とについて、より詳細に説明する。
【0056】
<1−2.システム構成>
まず、この実施形態に係るチップ実装システム1(1Aとも称する)の構成について説明する。
【0057】
図1は、チップ実装システム(電子部品実装システム)1の概略構成を示す上面図である。なお、図1等においては、便宜上、XYZ直交座標系を用いて方向等を示している。
【0058】
このチップ実装システム1は、基板(チップ実装対象の基板)の複数の平面位置において多層のチップを積層して実装するシステムである。たとえば、このチップ実装システム1は、対象の基板WA上に第1層の複数のチップCP1を接合することができる。また、チップ実装システム1は、基板WA上に配置された第1層の複数のチップCP1上に第2層の複数のチップCP2等をさらに積層して接合することも可能である。
【0059】
この実施形態においては、基板WAは半導体ウエハであり、各仮基板WTi(後述)は、それぞれ、ガラス基板である。ただし、これに限定されず、各基板WA,WTiはそれぞれ各種の基板であってもよい。
【0060】
図1に示すように、チップ実装システム1は、チップ供給装置10と、ボンディング装置30(COW(Chip On Wafer)ボンディング装置とも称する)と、ボンディング装置50(WOW(Wafer On Wafer)ボンディング装置とも称する)と、搬送部70と、搬出入部90とを備える。また、チップ実装システム1は、スピンコータ80(不図示)をも備える。
【0061】
スピンコータ80は、スピンコーティング技術を用いて、仮基板WTi上に樹脂層RSiを形成する装置である。
【0062】
チップ供給装置10は、ダイシングされたウエハから各チップCPを取り出し、COWボンディング装置30に各チップCP(CPi)を供給する装置である。チップ供給装置10は、突上部11およびチップ移載装置13等を備える(図2参照)。
【0063】
COWボンディング装置30は、チップ供給装置10から供給された複数のチップCPを基板上に位置決めして配置する装置(アライメント装置とも称される)である。たとえば、COWボンディング装置30は、仮基板WTi上に形成された樹脂層RSiに、複数のチップ(電子部品)CPiをその接合面が上側を向いた状態(フェイスアップ状態)で平面的に配置(平面配置)し、複数のチップを樹脂層RSiに仮固定する。樹脂層RSiとしては例えば熱可塑性樹脂が採用される。
【0064】
なお、COWボンディング装置30およびチップ供給装置10の構成については、後に詳述する。
【0065】
搬送部70は、搬送ロボット71を用いて、搬出入部90とCOWボンディング装置30とWOWボンディング装置50との相互間で基板(基板WAおよび仮基板WTi)を搬送する。また、搬送部70の搬送ロボット71は、基板(特に仮基板WTi)の上下を反転する動作をも実行する。
【0066】
WOWボンディング装置50は、図29に示すように、下ステージ51、上ステージ53、撮像部55(詳細には55a,55b)、および位置認識部56(不図示)等を備える。撮像部55は、マークMW1,MW2(後述)に関する光像を画像データとして取得する。また、位置認識部56は、撮像部55による撮影画像に基づいて、下ステージ51に保持された基板WAと、上ステージ53に保持された仮基板WTiとの相対位置関係を認識する。詳細には、位置認識部56は、マークMW1,MW2とを用いて、仮基板WTiの基板平面に平行な方向における基板WAと仮基板WTiとの相対位置関係を求める。
【0067】
上ステージ53はZ方向駆動機構によりZ方向に移動可能である。また、下ステージ51は、そのXYθ方向駆動機構により、X方向、Y方向およびθ方向に移動可能である。これにより、上ステージ53と下ステージ51との相対位置関係を変更することが可能であり、ひいては、仮基板WTiと基板WAとの位置関係を調整すること、さらには第i層の複数のチップCPiと第(i−1)層の複数のチップCP(i−1)との位置関係を調整することが可能である。
【0068】
WOWボンディング装置50は、基板WAと仮基板WTiとのボンディング動作を実行する装置である。具体的には、WOWボンディング装置50は、基板WAを下ステージ51で保持し、仮基板WTiを上ステージ53で保持する。WOWボンディング装置50においては、基板WAはその接合面が上側を向いた状態(フェイスアップ状態)で配置される。なお、仮基板WTiは、COWボンディング装置30ではフェイスアップ状態でステージ31上に保持されているが、WOWボンディング装置50ではフェイスダウン状態(その接合面が下側を向いた状態)で上ステージ53に保持される。具体的には、仮基板WTiは、搬送ロボット71によってCOWボンディング装置30から取り出された後に、搬送ロボット71によって上下反転されてWOWボンディング装置50へと搬送され、フェイスダウン状態で上ステージ53に保持される。
【0069】
WOWボンディング装置50は、基板WAと上下反転後の仮基板WTiとの両者を対向させた状態で当該両者WA,WTiを相対的に接近させる。これにより、上下反転後の仮基板WTiにフェイスダウン状態で保持されている第i層の複数のチップCPiが基板WA側に向けて接近する。そして、第i層の複数のチップCPiが基板WA側に接合される。
【0070】
なお、WOWボンディング装置50は、第i層の複数のチップCPiと第(i−1)層の複数のチップCP(i−1)とを一括的に接合(ボンディング)する装置であることから、一括接合装置(ギャングボンダ)とも称される。
【0071】
また、WOWボンディング装置50においては、第i層の複数のチップCPiから仮基板WTiを分離する分離処理も実行される。この分離処理は、基板WA側に対して第i層の複数のチップCPiが接合された状態を維持しつつ実行される。この分離処理は、例えば、仮基板WTiを保持する上ステージ53に内蔵されたヒータ(加熱処理部)で仮基板WTiの樹脂層RSiを加熱することによって実行される。
【0072】
<1−3.チップ供給装置10>
チップ供給装置10は、ダイシング処理等によって基板WCから取り出された各チップCPを、COWボンディング装置30に供給する装置である。なお、ダイシング処理は、複数の電子回路を有する基板WCを縦方向および横方向に切削しチップ化する処理である。
【0073】
図2に示すように、チップ供給装置10は、突上部(突上ニードル)11およびチップ移載装置13等を備える。チップ移載装置13は、ダイピッカ131とチップ供給機135とを有する。
【0074】
チップ供給装置10(図2)内において、ダイシングされた複数のチップCPがダイシングテープTE上に載置される。図2においては、各チップCPは、フェイスアップ状態(ハンダバンプBUが付された側の面が上側を向いた状態)でダイシングテープTE上に載置されている。
【0075】
そして、切り出された各チップCPは、チップ供給装置10の突上部(突上ニードル)11(図2)によって、1個ずつ上方に突き上げられ、ダイピッカ131に位置PG1で受け渡される。ダイピッカ131は、その先端(下端)の吸着部でチップCPを吸着し、さらに上方に移動した後に、COWボンディング装置30のチップ搬送部39側へ向けて移動し、仮置台133にチップCPを載置して退避する。その後、今度はチップ供給機135が仮置台133上のチップCPを吸着して、COWボンディング装置30のチップ搬送部39側へ向けて移動する。
【0076】
チップ搬送部39は、チップ供給機135からチップCPを位置PG3(後述する受取位置PR1(図15)でもある)で受け取ると、中心軸AX周りの回転動作によって当該チップCPをボンディング部33のヘッド部33H(後述)の直下位置PG5(受渡位置PR2(図16))にまで搬送する。チップCPは、このような搬送動作を経て、フェイスアップ状態のまま受渡位置PR2にまで到達する。
【0077】
その後、ボンディング部33によるボンディング動作がさらに実行される。ボンディング動作については後述する。
【0078】
なお、ここでは、各チップCPがフェイスアップ状態のまま受渡位置PR2にまで搬送される場合が例示されているが、これに限定されない。たとえば、後述するように、各チップCPは、搬送経路の途中で、上下反転され、フェイスアップ状態からフェイスダウン状態に遷移した後に、受渡位置PR2にまで搬送されるようにしてもよい(図44参照)。
【0079】
<1−4.COWボンディング装置30>
COWボンディング装置30は、図2および図3にも示すように、ステージ31、ボンディング部33、Z方向駆動部34、撮像部(カメラ)35、位置認識部46(不図示)、θ方向回動部36、θ方向駆動部37、ベアリング38、および回転式のチップ搬送部39等を備える。
【0080】
<ボンディング部33>
ボンディング部33は、チップCPを基板WT上に載置する部分であり、チップマウンタとも称される。
【0081】
図3に示すように、ボンディング部33は、Z軸方向移動部材331と上側円盤部材332とピエゾアクチュエータ333と下側円盤部材334とミラー固定用部材336とミラー(光路変更部材)337とヘッド部(ボンディングヘッド部とも称する)33Hとを有する。
【0082】
Z軸方向移動部材331の下端には、上側円盤部材332が固定されている。また、上側円盤部材332の下側には、下側円盤部材334が配置されている。上側円盤部材332と下側円盤部材334とは、3本のピエゾアクチュエータ333を介して接続されている。さらに、下側円盤部材334の下面側には、ヘッド部33Hが固定されている。このように、Z軸方向移動部材331は、上側円盤部材332、ピエゾアクチュエータ333、および下側円盤部材334等を介して、ヘッド部33Hに接続されている。
【0083】
ヘッド部33Hは、チップCPを吸着して保持する保持部材であり、チップ保持部材(電子部品保持部材)とも表現される。
【0084】
ヘッド部33Hは、図11にも示すように、チップツール411とヘッド本体部413とを有している。チップツール411は、撮影光(赤外光等)を透過する部材(シリコン(Si)等)で形成される。また、ヘッド本体部413は、例えばセラミックヒータ等を内蔵して形成される。なお、セラミックヒータは、(コイルヒータ等に比べて)急速な加熱処理を施すことが可能である。また、ヘッド本体部413は、撮影光を透過(通過)させるための中空部(孔部)415,416を有している。各中空部415,416は、撮影光を透過する透過部分(スリット部分とも称される)であり、ヘッド本体部413を鉛直方向に貫通するように設けられている。詳細には、各中空部415,416は、上面視において楕円形状を有している。2つの中空部415,416は、上面視略正方形形状を有するヘッド本体部413の対角部分において、軸BXを中心に点対称に配置されている(図12も参照)。なお、撮影光を透過させるため、下側円盤部材334の対応部分等にも孔部(中空部)が設けられている。
【0085】
3本のピエゾアクチュエータ333(図3)のそれぞれのZ方向における伸縮の程度を制御することによって、水平面に対する下側円盤部材334(ひいてはヘッド部33H)の傾き角度が調整される。たとえば、地平面に対する下側円盤部材334(およびヘッド部33H)の平行調整動作を行うことが可能である。なお、3本のピエゾアクチュエータ333は、撮像部35に関する照明光(反射光を含む)を遮らない位置(平面位置)に配置されている(図5も参照)。
【0086】
また、上側円盤部材332(図3)にはミラー(光路変更部材)337が設けられている。詳細には、ミラー337は、ミラー固定用部材336を介して上側円盤部材332に固定され、上側円盤部材332と下側円盤部材334との間の空隙に配置されている。このように、ミラー337は、Z軸方向移動部材331に接続されて設けられている。また、ミラー337は、斜め下方向き45度の傾斜角度を有する傾斜平面を2つ有している。ミラー337は、これらの傾斜平面を用いて、撮像部35に関する撮影光(照明光(その反射光を含む))の光路の向きを変更する光路変更部材である。
【0087】
<Z方向駆動部34>
Z方向駆動部(Z方向駆動機構とも称する)34は、サーボモータおよびボールネジ等を有している。Z方向駆動部34は、θ方向回動部36(回動部材361(後述))の上端側に設けられ、ボンディング部33(詳細にはZ軸方向移動部材331)をZ方向(鉛直方向)に駆動する。Z方向駆動部34によってZ軸方向移動部材331がZ方向に移動されると、当該移動動作に伴って、ボンディング部33の下端側のヘッド部33HもZ方向に移動する。すなわち、ヘッド部33Hは、Z方向駆動部34によってZ方向(基板に対するチップの積層方向などとも称される)において駆動される。
【0088】
<θ方向回動部36>
θ方向回動部36は、略円筒形状の回動部材361を有している。回動部材361は、COWボンディング装置30の本体上部(筐体30K付近)において、鉛直方向(Z方向)には固定され且つ回転軸BX周りに回転可能となるように設置されている。回動部材361は、COWボンディング装置30の上部側の筐体部分に設けられたθ方向駆動部37によって、回転軸BXを中心に回転される。θ方向駆動部(θ方向駆動機構とも称する)37は、サーボモータおよびギア機構等を有している。
【0089】
また、略円筒形状の回動部材361の内部空間には、ベアリング38を介して、ボンディング部33のZ軸方向移動部材331が配置されている。
【0090】
図4は、図3のI−I断面における断面図である。図4にも示すように、Z軸方向移動部材331は、略八角形の断面を有する棒状部材(略八角柱形状部材)である。また、略円筒状の外周面を有する回動部材361は、その内周側においては略八角柱形状の孔(空隙)を有している。そして、当該孔にはZ軸方向移動部材331が挿入されて配置されている。また、回動部材361の内周面とZ軸方向移動部材331との間には、ベアリング38が設けられている。詳細には、Z軸方向移動部材331の8つの側面のうち、1つおきの4つの側面にそれぞれベアリング38が設けられている。各ベアリング38は、Z方向に伸延されて配置されている。このような構成により、Z軸方向移動部材331は、回動部材361の内周面に対して鉛直方向(Z方向)においては滑らかに摺動することが可能である。
【0091】
また、略八角柱形状部材のZ軸方向移動部材331は、上記4つの側面でベアリング38を介して回動部材361の内側面に対して接触しており、水平方向においては回動部材361に対して相対移動しない。したがって、Z軸方向移動部材331は、回動部材361の回転軸BXを中心とする回転動作に伴って、回動部材361とともに回転する。すなわち、Z軸方向移動部材331と回動部材361とは同期して回転軸BXを中心として回転する。ひいては、ボンディング部33とθ方向回動部36とは同期して回転軸BX周りに回転する。
【0092】
<撮像部35>
θ方向回動部36の回動部材361には、2つの撮像部35(35a,35b)が接続されている。詳細には、撮像部35aは、カメラZ方向駆動部363およびカメラF方向駆動部365等を介して回動部材361に接続されており、撮像部35bは、カメラZ方向駆動部363およびカメラF方向駆動部365等を介して回動部材361に接続されている。
【0093】
撮像部35(詳細には35a,35b)は、マークMC1,MC2(後述)に関する光像を画像データとして取得する。位置認識部46は、撮像部35による撮影画像に基づいて、各チップCPの仮基板WTi上での位置を認識する。詳細には、位置認識部46は、マークMC1,MC2とを用いて、仮基板WTiの基板平面に平行な方向における各チップの位置(基板WTiに平行な面内における各チップと基板WTiとの相対位置関係)を認識する。
【0094】
各撮像部35a,35bは、それぞれ、撮像センサ351とレンズ部352とを有している。また、各撮像部35a,35bは、それぞれ、同軸照明系を有し、当該同軸照明系の光源(出射部とも称される)から出射された照明光(ここでは赤外光)の反射光に関する画像データを取得する。なお、各撮像部35a,35bの各同軸照明系から水平方向に出射された照明光は、ミラー(光路変更部材)337(図3)で反射されて、その進行方向が鉛直下向きに変更される。そして、当該光は、ヘッド部33Hに保持されたチップCP(図2)と当該チップCPに対向配置された仮基板WTiとを含む撮影対象部分に向けて進行し、当該撮影対象部分で反射される。また、当該撮影対象部分からの反射光は、上方に向けて進行した後、ミラー(光路変更部材)337で再び反射されて、その進行方向が水平方向に変更されて、各撮像部35a,35bへと到達する。これにより、撮影対象部分の光像に関する画像データ(反射光による画像データ)が取得される。たとえば、ヘッド部33Hに保持されたチップCP内に配置されるマークMC1(MC1a,MC1b)と、当該チップCPに対向配置された仮基板WTi内に配置されるマークMC2(MC2a,MC2b)とを含む画像データが取得される。より詳細には、撮像部35aは、マークMC1aとマークMC2aとを含む画像データを取得し、撮像部35bは、マークMC1bとマークMC2bとを含む画像データを取得する。
【0095】
なお、この実施形態においては、反射光による画像データが取得される場合が例示されているが、これに限定されず、透過光による画像データが取得されるようにしてもよい。
【0096】
<Z方向同期移動およびフォーカス調整>
撮像部35a,35bは、それぞれ、カメラF方向駆動部365(図3)によってフォーカス方向に駆動されることによって、各撮像部35a,35bによる各撮影画像の合焦状態がそれぞれ調整される。
【0097】
また、撮像部35a,35bは、それぞれ、カメラZ方向駆動部363(図3)によってZ方向(鉛直方向)に駆動される。
【0098】
基本的には、撮像部35a,35bは、それぞれ、Z軸方向移動部材331のZ方向移動量と撮像部35a,35bの各Z方向移動量とが同一となるように、Z軸方向移動部材331のZ方向の移動に同期して、各カメラZ方向駆動部363によってZ方向に移動される。これによれば、Z軸方向移動部材331(ひいてはヘッド部33H)がZ方向に移動しても、撮像部35a,35bの撮影対象範囲は、それぞれ、移動の前後で不変である。
【0099】
<Z方向非同期移動(撮影範囲変更)>
ただし、撮像部35a,35bの各Z方向移動量がZ軸方向移動部材331のZ方向移動量と異なるように、撮像部35a,35bは各カメラZ方向駆動部363によってZ方向に移動されることもある。これによれば、各撮像部35a,35bとミラー337とのZ方向における相対位置がそれぞれ変化し、各撮像部35a,35bによる撮影対象範囲がそれぞれ変更される。
【0100】
たとえば、図14に示すように、撮像部35aがミラー337に対して比較的上側の位置に向けてZ方向に微小量移動すると、撮像部35aの撮影対象範囲は、中心軸BXから比較的離れた範囲へとシフトする。撮像部35bについても同様である。換言すれば、各撮像部35a,35bがミラー337に対して相対的に上側に移動すると、各撮像部35a,35bによる各撮影範囲がそれぞれ比較的外側にシフトし、撮像部35aによる撮影範囲と撮像部35aによる撮影範囲との間隔が比較的大きくなる。図14においては、移動前の撮像部35a,35bの光軸が細い二点鎖線で示されており、移動後の撮像部35a,35bの光軸が細い実線で示されている。
【0101】
逆に、各撮像部35a,35bがミラー337に対して相対的に下側に移動すると、各撮像部35a,35bによる各撮影範囲がそれぞれ比較的内側(中心軸BX側)にシフトし、撮像部35aによる撮影範囲と撮像部35aによる撮影範囲との間隔が比較的小さくなる。このようにして、両撮影範囲の相互間の間隔(ピッチ)が調整され得る。
【0102】
<θ方向同期回転>
また、撮像部35a,35bは、回動部材361(図3)に接続されており、回動部材361と共に回転する。
【0103】
上述のように、回動部材361とZ軸方向移動部材331とは同期して回転する。さらに、各撮像部35a,35bは回動部材361に接続(θ方向には固定)され、ミラー337はZ軸方向移動部材331に接続(固定)されている。したがって、2つの撮像部35a,35bとミラー337とは共に回動部材361に同期して回転する。その結果、回転動作の前後において、水平面に平行な面内での2つの撮像部35a,35bとミラー337との相対的な位置関係は不変である。したがって、回動部材361の回転動作の前後のいずれにおいても、ミラー337による光路変更を伴う画像(ミラー直下位置付近の画像)を撮像部35a,35bに導くことができる。
【0104】
また、ヘッド部33Hの中空部(透過部分)415,416も、回動部材361の回転に同期して軸BX周りに回転する。これによれば、チップの形状等に応じて、各撮像部35a,35bの撮影範囲を柔軟に変更することが可能である。
【0105】
たとえば、図12に示すように、略正方形形状を有するチップCP(且つその対角部分にマークMC1a,MC1bを有する)に対しては、各撮像部35a,35bが当該チップの対角線上に配置されればよい。より詳細には、各撮像部35a,35bの共通の光軸CX(図11も参照)が矩形状チップCPの或る一辺に対して約45度傾斜する位置にまで、回動部材361をθ方向に回動する。これによって、中空部415,416を通過する撮影光を用いて、マークMC1a,MC1b(およびMC2a,MC2b)を含む画像を撮影することができる。なお、撮影画像内において中空部415,416に対応する部分は、有効な撮影部分であるとも表現される。一方、中空部415,416以外に対応する部分(撮影光が透過できない部分)は、無効な撮影部分であるとも表現される。
【0106】
また、図13に示すように、横長の矩形形状を有するチップCP(且つその対角部分にマークMC1a,MC1bを有する)に対しては、各撮像部35a,35bの共通の光軸CXが矩形状チップCPの横方向の辺に対して45度よりも浅い角度(例えば約25度)傾斜する位置にまで、回動部材361をθ方向に回動する。これによって、中空部(透過部分)415,416を透過する撮影光を用いて、マークMC1a,MC1b(およびMC2a,MC2b)を含む画像を撮影することができる。図13における回動部材361の回転角度θと図12における回動部材361の回転角度θとは、角度α異なる。
【0107】
このように、チップ上のマーク位置に応じて、回動部材361のθ方向の回転角度を変更することによって、より適切に各マークを撮影することが可能である。
【0108】
なお、ヘッド部33Hを回動部材361とは独立してθ方向に回転させることも考えられる。ただし、その場合には、中空部415,416以外の部分で撮影光が遮光されてしまうことがある。すなわち、有効な撮影部分内にチップ上の各マークを収めることが困難である。一方、上述のように、ヘッド部33Hの中空部(透過部分)415,416が、回動部材361の回転に同期して、撮像部35a,35bおよびミラー337と共に軸BX周りに回転することによれば、有効な撮影部分の面積を維持しつつ、チップ上の様々な位置に設けられたマークに比較的容易に対応することが可能である。
【0109】
<ステージ31>
ステージ31(図2)は、XY方向駆動機構により、X方向およびY方向に移動可能である。これにより、ボンディング部33とステージ31との相対位置関係を変更することが可能であり、ひいては仮基板WTi上における各チップCPiの位置を調整することが可能である。
【0110】
図6および図7にも示すように、ステージ31は、X方向移動部311とY方向移動部313と基板保持部315とX方向駆動部(X方向駆動機構)321とY方向駆動部(Y方向駆動機構)323とを備えている。
【0111】
COWボンディング装置30のベース部材301(図7)上には、X方向駆動部(X方向駆動機構)321を介してX方向移動部311が配置されている。X方向駆動部321は、リニアモータおよびスライドレール等を有しており、X方向移動部311をベース部材301に対してX方向に駆動する。図6においては、それぞれX方向に伸びる2つのX方向駆動部321がY方向に所定距離離間して設けられている。
【0112】
X方向移動部311上には、Y方向駆動部(Y方向駆動機構)323を介してY方向移動部313が配置されている。Y方向駆動部323は、リニアモータおよびスライドレール等を有しており、Y方向移動部313をX方向移動部311に対してY方向に駆動する。図6および図7においては、それぞれY方向に伸びる2つのY方向駆動部323がX方向に所定距離離間して設けられている。
【0113】
Y方向移動部313には基板保持部315が固定されている。基板保持部315は、X方向駆動部321およびY方向駆動部323の駆動に応じて、X方向およびY方向に駆動される。
【0114】
また、X方向移動部311の中央部分には矩形状の中空部(孔部)312が設けられている。同様に、Y方向移動部313の中央部分には矩形状の中空部(孔部)314が設けられている。さらに、基板保持部315の中央部分には円形状の中空部(孔部)316が設けられている。これらの中空部312,314,316に対応する部分には、赤外線照射部318が設けられている。赤外線照射部318は、赤外線照射によって基板WTi等を加熱することができる。
【0115】
<チップ搬送部39>
チップ搬送部(ターレットとも称する)39(図2)は、チップ供給装置10から供給されるチップをボンディング部33(詳細にはヘッド部33H)に受け渡す装置である。
【0116】
チップ搬送部39は、複数枚(N枚;ここでは3枚)の羽根部分(プレート部)391(図15参照)を備えている。各プレート部391は、薄板形状を有しており、例えば数mm(ミリメートル)程度(好ましくは1mm〜2mm程度以下)の厚さを有している。複数枚のプレート部391は、上面視において、軸AXを中心に等間隔で配置される。なお、プレート部391は、奇数枚(例えば、3枚、5枚、7枚、9枚等)設けられることが好ましい。
【0117】
チップ搬送部39は、複数のプレート部391を一斉に回転駆動する駆動部392をも備えている。チップ搬送部39は、駆動部392を用いて、所定の鉛直軸AXを中心に複数のプレート部391を回転させることが可能である。
【0118】
図15に示すように、チップ供給装置10から供給されたチップCPは、チップ搬送部39の3枚のプレート部391(詳細には、391a,391b,391c)のうちのいずれか(例えば391b)によって受け取られる。その後、当該プレート部391が180度回転した後に、プレート部391上のチップは、ボンディング部33(ヘッド部33H)へと受け渡される。
【0119】
また、チップ搬送部39は複数枚のプレート部391を有しており、同様の動作が連続的に繰り返し実行される。
【0120】
より具体的には、N枚(ここではN=3)のプレート部391を有するチップ搬送部39が角度β(ここでは60度(=360度/(N*2)=360/6))回転するごとに、チップ供給装置10からプレート部391へのチップCPの受け取り動作と、プレート部391からボンディング部33(ヘッド部33H)へのチップCPの受け渡し動作とが交互に実行される。
【0121】
たとえば、図15に示すように、或るチップCPが受取位置PR1でプレート部391bによって受け取られプレート部391bに載置される。すなわち、プレート部391bによるチップ受け取り動作が実行される。なお、このとき、別のチップCPがプレート部391aによって既に受け取られプレート部391a上に載置されており、位置PR9に存在する。
【0122】
この状態から、チップ搬送部391が軸AX周りに(時計回りに)角度β(60度)回転すると、図16に示すように、プレート部391a上のチップCPは、ヘッド部33Hの直下位置(受渡位置PR2)にまで移動する。ヘッド部33Hは、所定の基準位置(チップCPに干渉しない位置)から若干量下降し、プレート部391a上のチップCPを受け取り、ヘッド部33Hの先端部(下端部)で当該チップCPを吸着する。ヘッド部33Hは、プレート部391a上のチップCPを吸着した後に今度は若干上昇して元のZ方向位置(基準位置)に戻る。これにより、プレート部391a上のチップCPは、ヘッド部33Hに受け渡される。このようにして、プレート部391aからヘッド部33HへのチップCPの受け渡し動作等が実行される。
【0123】
このとき、チップ搬送部391(詳細にはそのプレート部391a)は、受渡位置PR2(XY平面においてボンディング位置と同じ位置)において、上側のチップCPと下側の基板WTとの間に挿入された状態で、チップCPをヘッド部33Hに受け渡す。
【0124】
つぎに、再び角度βの回転動作が実行される。今度は、プレート部391cが受取位置PR1に移動する。この状態において、さらに別のチップCPが受取位置PR1でプレート部391cによって受け取られる。このとき、プレート部391bには上述の動作によって既にチップCPが載置されている。
【0125】
この角度βの回転動作によって、プレート部391aがヘッド部33Hの直下位置から移動し、プレート部391aとヘッド部33Hとの干渉が回避される。この回転動作は、プレート部391aがボンディング位置(X,Y)から退避する動作(退避動作)であるとも表現される。そして、この退避動作後においてヘッド部33Hとチップ搬送部39とが干渉しない状態で、ヘッド部33Hが下降し、ヘッド部33Hに吸着保持されたチップCPが位置PG7(図2)にまで下降される。これにより、ヘッド部33Hの先端部で吸着されていたチップCPが、ステージ31上の仮基板WT1の所定の平面位置に載置される。このとき、後述するような位置合わせ動作(アライメント動作)等が実行され、当該チップCPが基板WTi上の所望の位置に載置される。その後、ヘッド部33Hは上昇して再び基準位置に復帰し、プレート部391aとヘッド部33Hとの干渉が回避される。
【0126】
その後、さらに角度βの回転動作が実行されると、今度はプレート部391bが受渡位置PR2に移動し、プレート部391bからヘッド部33HへのチップCPの受け渡し動作等が実行される。
【0127】
そして、さらに角度βの回転動作が実行され、今度はプレート部391aが受取位置PR1に移動し、プレート部391aによるチップCPの受け取り動作が実行される。
【0128】
以後、同様の動作が繰り返し実行される。
【0129】
ここにおいて、奇数枚(特に3枚以上)のプレート部391が軸AX周りに略等間隔で(角度γ(=β×2)間隔で)配置されており、チップ搬送部39が角度β(=γ/2)回転するごとに、位置PR1でのチップ受け取り動作と位置PR2でのチップ受け渡し動作とが互いに干渉することなく交互に実行され得る。
【0130】
特に、回転式のチップ搬送部39によって、角度γの回転移動ごとに各チップCPを供給することができる。詳細には、或るチップの載置後においては、角度β(例えば60度)の回転移動で、次のチップを供給することができる。したがって、1つの移載部を用いて位置PR1から位置PR2へとチップCPを1個ずつ搬送(往復搬送)する場合に比べて、比較的小さな時間間隔で複数のチップCPを順次に供給することが可能である。すなわち、チップ供給におけるサイクルタイムを短縮することが可能である。特に、プレート部391の枚数Nが大きいほど、1回あたりの移動距離が短縮されるので、供給時間間隔を短縮することが可能である。
【0131】
<1−5.チップ位置調整用マークMC>
この実施形態(ステップS12,S22参照)では、アライメントマークMC1,MC2(図23等参照)を用いて、各チップCP(CPi)が水平方向において位置決めされて仮基板WTi上に載置される。
【0132】
アライメントマークMC1,MC2は、チップCP(電子部品)の位置を調整するためのマークであり、チップ位置調整用マーク(あるいは部品位置調整用マーク)とも称される。ここでは、1つのチップCPにつき、2つのマークMC1a,MC1bがマークMC1として設けられる。同様に、1つのチップCPにつき2つのマークMC2a,MC2bがマークMC2として設けられる。マークMC1はチップCPに設けられ、マークMC2は基板上に設けられる。また、チップCPにおけるマークMC1の付与部分、および基板におけるマークMC2の付与部分は、撮影光(赤外光等)を透過する。
【0133】
この2種類のマークMC1,MC2は、互いに異なる形状(より詳細には、互いに重複しない形状)を有している。たとえば、図8に示すように、マークMC1(詳細にはマークMC1a,MC1b)としては、比較的小さな径を有する円形状のものが用いられる。一方、図9に示すように、マークMC2(詳細にはマークMC2a,MC2b)としては、比較的大きな径を有する円形状のものが用いられる。
【0134】
マークMC1aは、各チップCPにおける第1の基準位置(平面位置)(図8では左方手前側)に設けられ、マークMC1bは、各チップCPにおける第2の基準位置(平面位置)(図8では右方奥側)に設けられる。また、マークMC2aは、仮基板WTiにおいて、各チップCPの第1の基準位置に対応する正規の位置(平面位置)に設けられ、マークMC2bは、仮基板WTiにおいて各チップCPの第2の基準位置に対応する正規の位置(平面位置)に設けられる。端的に言えば、マークMC2aはマークMC1aの対応位置に設けられ、マークMC2bはマークMC1bの対応位置に設けられる。なお、各チップCPと仮基板WTiとの相対角度を良好に調整するため、マークMC1a,MC1bは、各チップCPにおいて、互いに離間した位置(たとえば、チップCPの両端部付近)に設けられることが好ましい。マークMC2a,MC2bも同様である。
【0135】
また、マークMC1a,MC1bは、それぞれ、フェイスアップ状態のチップCP1の上側の面(仮基板WT1側の面とは反対側の面)上に設けられている。ただし、これに限定されず、マークMC1a,MC1bは、それぞれ、フェイスアップ状態のチップCP1の下側の面(仮基板WT1側の面)上に設けられても良く、あるいは、チップCP1の内部に埋め込まれて設けられても良い。
【0136】
なお、この実施形態では、第i層(i=1,2,...)の各チップCPiは、当該各チップCPi内における同様の各基準位置に同一のマークMC1(MC1a,MC1b)を有している(図23、図27および図33等参照)。また、複数の仮基板WTiは、第i層の各チップCPiに対応する各マークMC2(MC2a,MC2b)を互いに同一の各基準位置に有している(図21および図32等参照)。すなわち、複数の仮基板WTiは、それぞれ、同一の複数のマークMC2が同一の複数の位置に付された基板である。また、ここでは、各仮基板WTiは、物理的には互いに異なる基板である場合を例示するが、これに限定されず、各仮基板WTiは、物理的にも同一の基板であってもよい。換言すれば、1枚の基板を各仮基板WTiとして用いるようにしてもよい。
【0137】
<1−6.基板位置調整用マークMW>
また、後述するように、この実施形態(ステップS13,S23参照)では、アライメントマークMW1,MW2を用いて、両基板WA,WTiが水平方向において位置決めされる。アライメントマークMW1,MW2は、基板WA,WTiの相対位置を調整するためのマークであり、基板位置調整用マークとも称される。
【0138】
基板位置調整用マークMW1,MW2は、上述のチップ位置調整用マークMC1,MC2と同様に、互いに異なる形状(より詳細には、互いに重複しない形状)を有している。たとえば、マークMW1(詳細にはマークMW1a,MW1b)としては、比較的大きな径を有する円形状のものが用いられ、マークMW2(詳細にはマークMW2a,MW2b)としては、比較的小さな径を有する円形状のものが用いられる。
【0139】
マークMW1aは、基板WAにおける第1の基準位置(平面位置)(図29では基板WTiの左端側)に設けられ、マークMW1bは、基板WAにおける第2の基準位置(平面位置)(図29では基板WTiの右端側)に設けられる。
【0140】
マークMW2aは、仮基板WTiにおいて、基板WAの第1の基準位置に対応する正規の位置(平面位置)(図29では基板WTiの左端側)に設けられる。マークMW2bは、仮基板WTiにおいて、基板WAにおける第2の基準位置に対応する正規の位置(平面位置)(図29では基板WTiの右端側)に設けられる。端的に言えば、マークMW2aはマークMW1aの対応位置に設けられ、マークMW2bはマークMW1bの対応位置に設けられる。なお、両基板WA,WTiの相対角度を良好に調整するため、マークMW1a,MW1bは、基板WAにおいて互いに離間した位置(たとえば、基板WAの両端部付近)に設けられることが好ましい。マークMW2a,MW2bも同様である。
【0141】
また、マークMW1a,MW1bは、それぞれ、フェイスアップ状態の基板WAの上側の面(各チップが固定される側の面)上に設けられている。マークMW2a,MW2bは、それぞれ、フェイスダウン状態の仮基板WTiの下側の面(各チップが仮固定される側の面)上に設けられている。ただし、これに限定されず、各マーク(MC1a,MC1b),(MW1a,MW1b)は、それぞれ、逆側の面に設けられても良く、あるいは、各基板WA,WTiの内部に埋め込まれて設けられても良い。
【0142】
また、この実施形態においては、複数の仮基板WTiは、互いに、各マークMW2(MW2a,MW2b)を同一の各基準位置に有している。すなわち、複数の仮基板WTiは、同一のマークMW2が同一の位置に付されているという意味においても、互いに同一の基板である。
【0143】
<1−7.動作詳細>
次に、図18〜図20のフローチャート等を参照しつつ、この実施形態におけるチップ実装動作(電子部品実装動作)について詳細に説明する。ここでは、複数のチップが3層に積層される場合を例示する。なお、これに限定されず、2層に積層されるようにしてもよく、あるいは4層以上に積層されるようにしてもよい。
【0144】
<1−7−1.第1層のチップの積層工程>
最初に、第1層のチップの積層動作(ステップS10)(図18および図19参照)が次のようにして行われる。
【0145】
<ステップS11:準備工程>
詳細には、まずステップS11(図19)において、仮基板である基板WT1(図21)上に樹脂層RS1が形成される(図22)。なお、仮基板WT1には、マークMC2,MW2が樹脂層RS1の形成前に予め付されている。この樹脂層RSiは、光(赤外光等)を透過する。
【0146】
詳細には、たとえば、液状の熱可塑性樹脂(熱可塑性接着剤等)がスピンコータ80によって基板WT1上に塗布されることによって、基板WT1上に樹脂層RS1が形成される。スピンコーティング手法を用いて樹脂層を形成することによれば、非常に容易に樹脂層を形成することができる。なお、これに限定されず、基板WT1上に樹脂シートを貼付することによって、基板WT1上に樹脂層RS1が形成されるようにしてもよい。これによっても、非常に容易に樹脂層を形成することができる。
【0147】
樹脂層RS1が形成された仮基板WT1は、搬送ロボット71によって、COWボンディング装置30へと搬送される。当該仮基板WT1は、COWボンディング装置30内のステージ31上に載置され、当該ステージ31に保持される(図1および図2参照)。
【0148】
<ステップS12:COW工程>
次に、ステップS12において、第1層の複数のチップCP1がフェイスアップ状態で樹脂層RS1に平面配置されて仮固定される(図23〜図27等参照)。ここで、各チップCPの「フェイスアップ状態」は、当該各チップCPの接合面(例えば、ハンダバンプBUが付された側の面)が上側を向いた状態である。以下では、ステップS12について、図17のタイミングチャートをも参照しながら説明する。
【0149】
まず、ステージ31(詳細には、基板WTを保持する基板保持部315(図6,図7参照)がX方向および/またはY方向に移動して、基板WTの接合表面におけるボンディング対象部分が、ヘッド部33Hの対向位置(すなわちヘッド部33Hに保持されるチップCPの対向位置)へと移動する(時刻T10〜T11)。
【0150】
また、このような基板WTの移動動作に並行して、ヘッド部33Hの直下位置へのチップCPの搬送動作が実行される。具体的には、上述のように、チップ供給装置10から供給されたチップCPが位置PG3(受取位置PR1)(図2および図15参照)で受け取られた後、チップ搬送部39が中心軸AX周りに回転し、当該回転動作によって当該チップCPがボンディング部33のヘッド部33Hの直下位置PG5にまで搬送される。より詳細には、上述のように角度βごとの移動動作において、位置PR9(図15参照)(受渡位置PR2(図16参照)に対して角度β手前の回転位置)から角度β移動して(時刻T10〜時刻T12(図17参照))、当該チップCPがボンディング部33のヘッド部33Hの直下位置PG5(受渡位置PR2)にまで搬送される。
【0151】
ヘッド部33Hは、チップCPの載置位置PG5付近にまで若干量下降し(時刻T12〜時刻T13)、チップ搬送部39からチップCPを受け取ってヘッド部33Hの先端部(下端部)で当該チップCPを吸着し(時刻T13〜時刻T14)、再び元のZ方向位置(基準位置)まで上昇する(時刻T14〜時刻T15)。その後、ヘッド部33Hとの干渉回避のためにチップ搬送部39が所定角度回転(時刻T15〜時刻T19)する。
【0152】
この状態において、ヘッド部33Hに保持されたチップCPは、基板WTiに平行な平面(水平平面(XY平面))内における所定のボンディング位置(X,Y)に配置されている。ただし、若干の位置誤差は未だ存在する。また、当該チップCPは、Z方向において、基板WTiに対して近接して配置されている。チップCPと基板WTiとの離間距離は、例えば数ミリメートル程度である。
【0153】
その後、ヘッド部33Hとチップ搬送部39とが干渉しない状態でヘッド部33Hが下降し、ヘッド部33Hに吸着保持されたチップCPが位置PG7(図2)にまで下降される(時刻T19〜時刻T23)。これにより、ヘッド部33Hの先端部で吸着されていたチップCPが、ステージ31上の仮基板WT1の所定の平面位置に載置される。
【0154】
この下降期間(時刻T19〜時刻T23)において、アライメントマークMC1,MC2(図23参照)を用いて、チップCP(CP1)は、次述するようにさらに正確に位置決めされて仮基板WT1上に載置される。
【0155】
COWボンディング装置30は、上述のように、位置認識部(位置計測部とも称される)46を備えている。位置認識部46は、水平方向におけるチップCPと基板WTiとの相対位置(詳細にはX,Y,θ)を認識する処理部である。
【0156】
各チップCPと仮基板WTiとの位置合わせ動作(アライメント動作)は、位置認識部46により、各チップCPと仮基板WTiとに付された2組のマーク(MC1a,MC2a),(MC1b,MC2b)の位置を認識することによって実行される。このアライメント動作は、下降期間の一部の期間(例えば時刻T21〜時刻T22)等において実行される。特に、チップCPと基板WTi(詳細にはその樹脂層RSi)との両者が非常に近接した状態(当該両者間の距離が例えば数十マイクロメートル〜数マイクロメートル程度)で、アライメント動作が実行されることが好ましい。
【0157】
図23に示すように、位置認識部46は、ヘッド部33Hによって保持された各チップCP(CP1)が仮基板WT1に対向する状態において、同軸照明系を有する撮像部35a,35bの光源(出射部とも称される)から出射された照明光(ここでは赤外光)の反射光に関する画像データを用いて、基板WT1におけるチップCPの位置を認識する。なお、図23においては、撮像部35a,35bが基板WTiの上側においてチップCPよりもさらに上方にから当該チップ等を撮影している様子、が概念的に示されている。ここでは、各撮像部35a,35bの光軸が鉛直方向に配置されるように示されているが、実際には上述したように、光路変更部材であるミラー337が存在し、撮像部35a,35bの光軸CXは水平方向に配置される。
【0158】
図11にも示すように、撮像部35aの光源から出射された光は、ミラー337で反射された後、ヘッド部33Hの中空部415、シリコン(Si)製のチップツール411、チップ(シリコンチップ)CPおよび樹脂層RSi等を透過する。一方、当該光は、マークMC1a,MC2aで反射され、当該反射光は、逆向きの経路を辿って、撮像部35aの撮像素子で受光される。これにより、各チップと基板WTiとに関する光像(各マーク部分の赤外光(反射光)による光像)を含む画像が画像データGaとして取得される。すなわち、2種類のマークMC1a,MC2aを同時に読み取った撮影画像Gaが取得される。位置認識部46は、当該撮影画像Gaに基づいて各チップと基板WTiとに付された或る1組のマーク(MC1a,MC2a)の位置を認識するとともに、当該1組のマークMC1a,MC2aの相互間の位置ずれ量(Δxa,Δya)を求める(図10参照)。
【0159】
同様に、撮像部35bの光源から出射された光は、ミラー337で反射された後、ヘッド部33Hの中空部416、シリコン(Si)製のチップツール411、チップ(シリコンチップ)CPおよび樹脂層RSi等を透過する。一方、当該光は、マークMC1b,MC2bで反射され、当該反射光は、逆向きの経路を辿って、撮像部35bの撮像素子で受光される。これにより、各チップと基板WTiとに関する光像(各マーク部分の赤外光(反射光)による光像)を含む画像が画像データGbとして取得される。すなわち、2種類のマークMC1b,MC2bを同時に読み取った撮影画像Gbが取得される。位置認識部46は、当該撮影画像Gbに基づいて各チップと基板WTiとに付された或る1組のマーク(MC1b,MC2b)の位置を認識するとともに、当該1組のマークMC1b,MC2bの相互間の位置ずれ量(Δxb,Δyb)を求める。
【0160】
位置認識部46は、これら2組のマークの位置ずれ量(Δxa,Δya),(Δxb,Δyb)に基づいて、水平方向(X方向、Y方向およびθ方向)における各チップCPと仮基板WTとの相対的位置ずれ量(Δx,Δy,Δθ)を算出する。ここで、値ΔxはX方向における両者CP,WTの相対的な位置ずれであり、値ΔyはY方向における両者CP,WTの相対的な位置ずれである。また、値Δθはθ方向(回転方向)における両者CP,WTの相対的な位置ずれ(相対姿勢誤差とも称される)である。両者CP,WTの相対的位置ずれ量(Δx,Δy,Δθ)は、当該両者CP,WTの相対位置誤差であるとも表現される。
【0161】
そして、位置認識部46により認識された当該相対的ずれ量が低減されるように、ステージ31が2つの並進方向(X方向およびY方向)に駆動(並進駆動)されるとともに、θ方向回動部36およびボンディング部33がθ方向に駆動(回転駆動)される。これにより、仮基板WTi上とチップCPとが相対的に移動され、上記の位置ずれ量が補正される。
【0162】
このようにして、(X方向、Y方向およびθ方向に関する)チップCP1のアライメント動作が実行される。
【0163】
その後、第1層の1つのチップCP1を保持したヘッド部33Hがさらに下降し、当該チップCP1が仮基板WT1の樹脂層RSの所定の水平位置に載置される(図17の時刻T23〜T26)(図24も参照)。
【0164】
このようにして、チップCP1および基板WTに関する、位置認識動作(位置ずれ計測動作)と位置合わせ用の駆動動作(位置ずれの補正動作)とが実行され、チップCP1が仮基板WT1に対して位置決めされて配置される。
【0165】
さらに、第1層の2つ目以降のチップの載置動作も同様にして実行される(図25および図26)。これにより、図27に示すように、第1層の複数のチップCP1が仮基板WT1上の所定の平面位置に位置決めされて配置される。このように、2種類のマークMC1,MC2を用いることによって、第1層の複数のチップCP1のそれぞれが仮基板WT1の基板平面(主平面)に平行な方向(X,Y,θ)において位置決めされ、第1層の複数のチップCP1のそれぞれが仮基板WT1上の樹脂層RS1に載置される。
【0166】
ここにおいて、樹脂層RSとして、熱可塑性樹脂が用いられる場合には、たとえば、完全に流動化する温度T1(例えば200℃)よりも低い温度T2(例えば150℃)にまで当該熱可塑性樹脂を(赤外線照射部318等を用いて)加熱し、当該樹脂が軟化(半硬化)した状態で各チップが載置される。温度T2は、各チップのハンダバンプが溶融しないように、ハンダの融点よりも低いことが好ましい。その後、樹脂層RS1が冷却(赤外線照射部318および/またはヘッド部33Hの加熱停止による冷却等)されることによって、樹脂層RS1が硬化される。これにより、各チップが樹脂層RS1に仮固定される。
【0167】
<ステップS13:WOW工程>
その後、ステップS13の処理が実行される。
【0168】
ステップS13においては、まず、基板WT1が搬送ロボット71によって保持される。搬送ロボット71は、基板WT1の上下を反転し、当該基板WT1をWOWボンディング装置50へと搬送する(図28参照)。そして、上下反転後の基板WT1が、WOWボンディング装置50の上ステージ53に保持される(図29参照)。このとき、基板WT1に仮固定された複数のチップCP1は、フェイスダウン状態で保持される。
【0169】
一方、WOWボンディング装置50の下ステージ51には、搬送ロボット71によって搬送されてきた基板WAが予め保持されている。
【0170】
WOWボンディング装置50において、両基板WA,WT1は、その接合面が互いに対向する状態で保持される。
【0171】
つぎに、アライメントマークMW1,MW2を用いて、両基板WA,WT1が、次述するようにして位置決めされる。
【0172】
WOWボンディング装置50は、上述のように、位置認識部(位置計測部とも称される)56を備えている。位置認識部56は、水平方向における基板WAと基板WTiとの相対位置(詳細にはX,Y,θ)を認識する処理部である。
【0173】
基板WAと仮基板WTi(ここではWT1)との位置合わせ動作(アライメント動作)は、位置認識部56により、基板WAと仮基板WTiとに付された2組のマーク(MW1a,MW2a),(MW1b,MW2b)の位置を認識することによって実行される。
【0174】
図29に示すように、位置認識部56は、下ステージ51によって保持された基板WAと上ステージ53によって保持された基板WT1とが対向する状態において、同軸照明系を有する撮像部55a,55bの光源(出射部とも称される)から出射された照明光(ここでは赤外光)の反射光に関する画像データを用いて、基板WA,WTiの位置を認識する。
【0175】
具体的には、撮像部55aの光源から出射された光(赤外光)は、下ステージ51の中空部、シリコン基板WA、および樹脂層RS等を透過する。一方、当該光は、マークMW1a,MW2aで反射され、当該反射光は撮像部55aの撮像素子で受光される。これにより、両基板WA,WTiにおける各マーク(MW1a,MW2a)部分に関する光像(赤外光(反射光)による光像)を含む画像が画像データGcとして取得される。すなわち、2種類のマークMW1a,MW2aを同時に読み取った撮影画像Gcが取得される。位置認識部56は、当該撮影画像Gcに基づいて両基板WA,WTiに付された或る1組のマーク(MW1a,MW2a)の位置を認識するとともに、当該1組のマークMW1a,MW2aの相互間の位置ずれ量(Δxc,Δyc)を求める。
【0176】
同様に、撮像部55aの光源から出射された光(赤外光)は、下ステージ51の中空部、シリコン基板WA、および樹脂層RS等を透過する。一方、当該光は、マークMW1b,MW2bで反射され、当該反射光は撮像部55bの撮像素子で受光される。これにより、両基板WA,WTiにおける各マーク(MW1b,MW2b)部分に関する光像(赤外光(反射光)による光像)を含む画像が画像データGdとして取得される。すなわち、2種類のマークMW1b,MW2bを同時に読み取った撮影画像Gdが取得される。位置認識部56は、当該撮影画像Gdに基づいて両基板WA,WTiに付された或る1組のマーク(MW1b,MW2b)の位置を認識するとともに、当該1組のマークMW1b,MW2bの相互間の位置ずれ量(Δxd,Δyd)を求める。
【0177】
なお、撮像部55a,55bは、それぞれ、X方向、Y方向、Z方向に移動可能であり、撮影範囲を変更して調整することが可能である。
【0178】
その後、位置認識部56は、これら2組のマークの位置ずれ量(Δxc,Δyc),(Δxd,Δyd)に基づいて、水平方向(X方向、Y方向およびθ方向)における基板WAと仮基板WTiとの相対的位置ずれ量(Δx,Δy,Δθ)を算出する。
【0179】
そして、位置認識部56により認識された当該相対的ずれ量が低減されるように、下ステージ51が2つの並進方向(X方向およびY方向)と回転方向(θ方向)とに適宜に駆動される。これにより、基板WAと仮基板WTiとの両者が相対的に移動され、当該両者間の相対的位置ずれ量が補正される。
【0180】
このようにして、(X方向、Y方向およびθ方向に関する)基板WA,WTiのアライメント動作が実行される。
【0181】
その後、上ステージ53がさらに下降し、基板WAと基板WTiとが相対的に接近し、仮基板WTiにフェイスダウン状態で保持された複数のチップCPi(ここではCP1)と基板WAとが相対的に接近する。この接近動作に応じて、フェイスダウン状態の複数のチップCPiが基板WAの所定の水平位置にそれぞれ載置される(図30参照)。なお、チップCPiの「フェイスダウン状態」は、当該各チップCPiが仮固定されている仮基板WTiの接合面(例えば、チップCPiが仮固定された側の面)が下側を向いた状態であり、仮基板WTiのフェイスダウン状態であるとも表現される。
【0182】
このとき、仮基板WTiに仮固定された複数のチップCPiを基板WA上に確実に接触させるため、チップCPiと基板WAとの両者間に所定の圧力を作用させる処理(加圧処理)を伴うことが好ましい。
【0183】
その後、下ステージ51に内蔵されたヒータによって基板WAを加熱するとともに、上ステージ53に内蔵されたヒータによって基板WTiを加熱する。これにより、各チップCP1のハンダバンプBUが溶融され、基板WA上に複数のチップCPiが接合される。
【0184】
ここにおいて、上述のように、マークMC1,MC2を用いてチップCPiが基板WTi上に正確に位置決めされている(ステップS12)とともに、マークMW1,MW2を用いて基板WAと基板WTiとが正確に位置決めされている(ステップS13)。そのため、フェイスダウン状態の複数のチップCPiは、基板WAの所定の水平位置にそれぞれ正確に位置決めされて接合される。
【0185】
<ステップS14:デボンド工程>
つぎに、ステップS14において、「デボンド処理」が実行される。具体的には、複数のチップCP1が基板WAの所定位置にそれぞれ載置(接合)された状態を維持しつつ、複数のチップCP1から基板WT1が分離される。
【0186】
より詳細には、上ステージ53に内蔵されたヒータによって、樹脂層RS1を所定温度T4に加熱する。そして、このような加熱状態において、仮基板WT1を保持したまま上ステージ53を上昇させることによって、樹脂層RS1を有する仮基板WT1が複数のチップCP1から剥離する(図31参照)。図31においては、仮基板WT1がチップCP1から剥離する様子が模式的に示されている。
【0187】
なお、樹脂層RS1の熱可塑性樹脂の滴下を防止するため、温度T4は、樹脂層RS1が完全に流動化する程の高温ではなく樹脂層RS1が半硬化する程度の温度(例えば、180℃)であることが好ましい。また、基板WAに接合された各チップCP1のハンダバンプが再溶融することを防ぐため、温度T4はハンダの融点よりも低いことが好ましい。
【0188】
以上のようにして、基板WA上に第1層の複数のチップCP1が平面配置された状態で基板WAの所定の位置に接合される(ステップS10)。
【0189】
<1−7−2.第2層のチップの積層工程>
つぎに、第2層のチップの積層動作(ステップS20)(図18および図20参照)が次のようにして行われる。上述したように、第2層に関するステップS21〜S24の対応処理は、第1層に関するステップS11〜S14の各処理とそれぞれ同様の処理である。ただし、ステップS13,S14では第1層のチップCPiが基板WA上に直接的に載置等されるのに対して、第i層(ここではi=2)に関するステップS23,S24においては第i層のチップCPiが既に積層済みの第(i−1)層のチップCPiに載置等される。
【0190】
まず、ステップS21において、仮基板である基板WT2上に樹脂層RS2が形成される(図32参照)。詳細には、スピンコータ80等を用いて、仮基板WT2上に樹脂層RS2が形成される。樹脂層RS2が形成された仮基板WT2は、搬送ロボット71によって、COWボンディング装置30内のステージ31上に載置され、当該ステージ31に保持される(図1および図2参照)。
【0191】
次のステップS22において、第2層の複数のチップCP2がフェイスアップ状態で基板WT2上の樹脂層RS2に平面配置されて仮固定される(図33参照)。
【0192】
詳細には、チップ供給装置10(図2)によって基板WCから切り出された各チップCPi(ここではCP2)は、チップ供給装置10の突上部11およびチップ移載装置13等によって、COWボンディング装置30のチップ搬送部39に引き渡される。チップ搬送部39は、位置PG3で受け取ったチップCPをボンディング部33のヘッド部33Hの直下位置PG5にまで搬送する。ヘッド部33Hとチップ搬送部39とが干渉しない状態において、ヘッド部33Hが下降し、ヘッド部33Hに吸着保持されたチップCPが位置PG5から位置PG7にまで下降される。これにより、ヘッド部33Hの先端部で吸着されていたチップCPが、ステージ31上の仮基板WT1の所定の平面位置に載置される。
【0193】
ステップS22においても、ステップS12と同様に、各チップCP(CP2)は、チップCPごとに設けられたアライメントマークMC1,MC2を用いて、位置決めされて仮基板WT2上に載置される。
【0194】
さらに、ステップS23においては、まず、仮基板WT2が搬送ロボット71によって保持される。搬送ロボット71は、仮基板WT2の上下を反転し、当該仮基板WT2をWOWボンディング装置50へと搬送する(図34参照)。そして、上下反転後の仮基板WT2が、WOWボンディング装置50の上ステージ53に保持される(図35参照)。このとき、仮基板WT2に仮固定された複数のチップCP2は、フェイスダウン状態で保持される。
【0195】
一方、WOWボンディング装置50の下ステージ51には、ステップS10の処理が施された基板WAが保持されている。
【0196】
ステップS23においても、ステップS13と同様にして、仮基板WT2と基板WAとが対向した状態で、アライメントマークMW1,MW2を用いて両基板WA,WT2の水平方向における相対位置が調整される。
【0197】
その後、上ステージ53がさらに下降し、互いに対向する仮基板WT2と基板WAとを相対的に接近させることによって、フェイスダウン状態の第2層の複数のチップCP2と基板WA上の第1層の複数のチップCP1とを相対的に接近させる(図35参照)。そして、フェイスダウン状態の第i層の複数のチップCPi(CP2)が、基板WAに既に積層済みの第(i−1)層のチップCPi(CP1)の所定の位置に載置されて接合される(図36参照)。
【0198】
このようにして、基板WAにおける基板位置調整用マークMW1と仮基板WT2における基板位置調整用マークMW2とを用いて、基板WAと仮基板WT2とが水平方向において位置決めされる。また、その結果、基板WAに保持された第1層の複数のチップCP1のそれぞれと基板WT2に保持された第2層の複数のチップCP2のそれぞれとの位置関係が調整されて、各チップCP1と対応する各チップCP2とがそれぞれ接合される。
【0199】
ここにおいて、マークMC1,MC2を用いて第2層の各チップCP2が基板WT2上に正確に位置決めされる(ステップS22)とともに、マークMW1,MW2を用いて基板WAと基板WT2とが正確に位置決めされる(ステップS23)。そのため、フェイスダウン状態の第2層の各チップCP2は、基板WA上の所定の水平位置(詳細には基板WAの第1層の各チップCP1上)にそれぞれ正確に位置決めされて接合される。
【0200】
その後、ステップS24において、第2層の複数のチップCP2が第1層の複数のチップCP1にそれぞれ接合された状態を維持しつつ、第2層の複数のチップCP2から基板WT2が分離される。より詳細には、樹脂層RS2を上述の温度T4に加熱した状態で、仮基板WT2を保持したまま上ステージ53を上昇させることによって、樹脂層RS2を有する仮基板WT2が複数のチップCP2から剥離する(図37参照)。なお、図37においては、仮基板WT2がチップCP2から剥離する様子が模式的に示されている。
【0201】
以上のようにして、基板WA上に接合された第1層の複数のチップCP1の上に、さらに第2層の複数のチップCP2が積層して接合される。
【0202】
ステップS30(図18)で未だ処理が終了していないと判定される場合には、再びステップS20に戻る。そして、第2層の積層動作と同様にして、第3層以降のチップの積層動作が実行される。最終層のチップの積層動作が終了したと判定される(ステップS30でYES)と、本処理が終了する。
【0203】
なお、たとえば、第3層のチップCP3の積層動作は、次のようにして実行される。
【0204】
まず、ステップS21において、仮基板WT3上に樹脂層RS3が形成され、ステップS22において、第3層の複数のチップCP3がフェイスアップ状態で樹脂層RS3に平面配置して仮固定される。
【0205】
つぎに、ステップS23において、仮基板WT3の上下が反転され第3層の複数のチップCP3がフェイスダウン状態で仮基板WT3に保持され、互いに対向する基板WAと仮基板WT3とが相対的に接近する。これに応じて、フェイスダウン状態の第3層の複数のチップCP3と基板WA上の第2層の複数のチップCP2とが相対的に接近し、第2層の複数のチップCP2と第3層の複数のチップCP3とがそれぞれ接合される。
【0206】
そして、ステップS24において、第3層の複数のチップCP3が第2層の複数のチップCP2にそれぞれ接合された状態を維持しつつ、第3層の複数のチップCP3から仮基板WT3が分離される。
【0207】
このようにして、第3層の複数のチップCP3が、基板WA上に積層された第1層の複数のチップCP1および第2層の複数のチップCP2の上に更に積層される。
【0208】
<1−8.実施形態の効果>
上述のような態様によれば、ステップS12,S22において、チップCPを基板WTiの載置面に対向配置し且つ水平平面(XY平面)内の所定のボンディング位置(X,Y)に配置した状態で、対向する両対象物CP,WTの外側(詳細には、チップCPの上面側)からチップCPの位置が測定されることによって、当該両対象物の相対位置誤差(Δx,Δy,Δθ)が測定される。なお、チップCPの上面は、両対象物CP,WTの各対向面(内側の面)とは反対側の面である2つの反対向面(外側の面)のうちの一方の面であるとも表現される。
【0209】
したがって、上記の特許文献1に記載の技術と比較して、二視野カメラを挿脱する時間が不要であるので、高速化を図ることができる。
【0210】
なお、図49は、二視野カメラの挿脱を伴う比較例(特許文献1に記載の技術と同様の技術)に係る動作を示すタイミングチャートである。この比較例においては、まず、チップCPと基板WTとがZ方向に非常に大きく離れた状態において、二視野カメラが移動してチップCPと基板WTとの間に当該二視野カメラが挿入される(時刻T19〜時刻T31)。そして、第1組のマーク(MC1a,MC2a)に関する2つの撮影画像が撮影され(時刻T31〜T32)、その後、さらに二視野カメラが移動して第2組のマーク(MC1b,MC2b)に関する2つの撮影画像が撮影される(時刻T33〜T34)。また、これらの撮影画像に基づいて算出される相対位置誤差に基づいて、チップCPと基板WTとが相対的に駆動されて位置誤差が低減され、二視野カメラが退避する(時刻T40)。このような比較例においては、時刻T19〜時刻T40までの期間において、二視野カメラの挿脱の時間(例えば1秒〜2秒程度)を要する。
【0211】
一方、上述の実施形態(図17参照)においては、時刻T19〜時刻T40までの期間(図49参照)は不要である。したがって、上記実施形態によれば、当該比較例に比べて高速化を図ることができる。たとえば、比較例においては、1チップあたりの載置時間(サイクルタイム)が2〜3秒程度であるのに対して、本実施形態においては1秒程度のサイクルタイムを実現することが可能である。
【0212】
また、上記実施形態においては、チップCPが水平平面内の所定のボンディング位置(X、Y)に配置された状態(詳細には、ほぼ正規のボンディング位置に配置された状態)で、位置計測動作が行われる。これによれば、位置計測後のXY方向における移動量が微小(ゼロに近い値)であるため、正確なアライメント動作(位置合わせ動作)を行うことが可能である。特に、チップCPが所定のボンディング位置から大きく離れた状態で当該チップCPの位置が計測され、その位置計測結果に基づいて、チップCPがボンディング位置へ移動した後にチップ位置と基板位置との微調整が行われる場合に比べて、正確なアライメント動作を行うことが可能である。
【0213】
また、上記実施形態によれば、上記の特許文献1に記載の技術(および比較例)と比較して、チップと基板との間に二視野カメラが挿入された状態で位置合わせを行わずに済むため、チップと基板との両者が比較的近接された状態で位置合わせが行われる。たとえば、比較例に係る技術においてはチップCPと基板WTとの距離が数十ミリメートルから百数十ミリメートル程度であるのに対して、上記の実施形態においてはチップCPと基板WTとの距離は数ミリメートル程度(より好適には数十マイクロメートル程度以下)にまで低減され得る。したがって、位置測定後におけるZ方向の移動距離が低減されるので、両者の相対位置の位置決め精度を向上させることができる。たとえば、比較例における位置決め精度が2マイクロメートル程度であるのに対して、本実施形態においては、0.2マイクロメートル程度の位置決め精度を実現することが可能である。このように、より高精度に両者の位置合わせを行うことが可能である。
【0214】
特に、この実施形態においては、両対象物CP,WTが近接した状態で当該両対象物に付されたマークMC1a,MC2aを1つの撮像部35aで同時に撮像した画像Gaが取得されるので、両対象物の相対位置を非常に正確に求めることが可能である。画像Gbについても同様である。
【0215】
また、2つの撮像部35a,35bを用いて、2つの撮影画像Ga,Gbが同時に撮像される。したがって、1つの撮像部を移動して2つの撮影画像Ga,Gbを撮像する場合に比べて、2つの撮影画像Ga,Gbを高速に撮像することが可能である。したがって、アライメント動作の高速化を図ることができる。
【0216】
<2.第2実施形態>
上記第1実施形態においては、チップCPの上面側(チップCPの反対向面側)と基板WTの下面側(基板WTの反対向面側)とのうちの一方面側のみからの撮像動作を伴う位置検出動作が実行される場合が例示されているが、これに限定されない。例えば、チップCPの上面側と基板WTiの下面側とのうちの双方からの撮像動作を伴う位置検出動作が実行されるようにしてもよい。詳細には、チップCPに付されたアライメントマークMC1がチップCPの上面側から撮像されるとともに、基板WTに付されたアライメントマークMC2が基板WTの下面側から撮像されることによって、両対象物CP,WTの相対位置誤差が測定されるようにしてもよい。
【0217】
第2実施形態においては、このような態様について説明する。第2実施形態は、第1実施形態の変形例であり、以下では、相違点を中心に説明する。
【0218】
図39は、第2実施形態に係るCOWボンディング装置30(30B)のステージ31付近を示す断面図である。
【0219】
図39に示すように、COWボンディング装置30Bにおいては、赤外線照射部318bに加えて撮像部35cが配置されている。この撮像部35cは、XYθ駆動部を有しており、X方向、Y方向、θ方向に適宜移動される。なお、赤外線照射部318bを設けることなく、撮像部35cの同軸照明系の赤外線光源を用いた赤外光照射によって基板WTiを加熱するようにしてもよい。
【0220】
この第2実施形態においては、上記のステップS12,S22等において、この撮像部35cが利用される。
【0221】
具体的には、ステップS12,S22において、チップCPを基板WTiの載置面に対向配置し且つ水平平面(XY平面)内の所定のボンディング位置(X,Y)に配置した状態で、アライメント動作が実行される。このアライメント動作は、ここでは、第1実施形態と同様に、ヘッド部33Hの下降期間(時刻T19〜時刻T23(図17参照))の一部の期間(例えば時刻T21〜時刻T22)等において実行される。なお、上側の2つの撮像部35a,35bによる撮影動作と下側の1つの撮像部35cによる撮影動作とは、同時期(例えば時刻T21〜時刻T22)において並列的に(同時に)実行される。
【0222】
詳細には、チップCP上のマークMC1a,MC1bの一方ずつを含む2つの撮影画像が2つの撮像部35a,35bによってチップCPの上面側から同時に撮影される。具体的には、マークMC1aを含む撮影画像が撮像部35aによって撮影され、マークMC1bを含む撮影画像が撮像部35bによって撮影される。そして、撮像部35a,35bの各座標系(各撮影画像座標系)内における位置に基づいて、各マークMC1a,MC1bの位置が算出される。
【0223】
また、この第2実施形態においては、基板WTiの下面側から基板WTi上のマークMC2a,MC2bのうちの一方(例えばマークMC2a)のみに関する撮影画像が撮像部35cにより取得され、当該撮影画像を用いて当該一方のマーク(MC2a)の位置が求められる。より詳細には、撮像部35cの光源から出射された光は、マークMC2(MC2a)で反射され、当該反射光は、撮像部35cの撮像素子で受光される。これにより、基板WTに関する光像(各マーク部分の赤外光(反射光)による光像)を含む画像が取得される。そして、撮像部35cの座標系(撮影画像座標系)内における位置に基づいて、マークMC2aの位置が算出される。
【0224】
また、ここでは、複数のチップCPを基板WTi上に配置する期間においてθ方向の位置ずれ変化は生じないと仮定して、2つのマークMC2a,MC2bのうちの一方のみ(例えばマークMC2aのみ)をチップCPごとに実際に測定する。すなわち、2つのマークMC2a,MC2bのうちの他方(例えばマークMC2b)の位置を実際には測定しない。
【0225】
このような態様(第2実施形態)によれば、撮像部35cの移動を伴わずに済むため、次のような比較例に比べて、第1実施形態と同様に、高速化を図ることが可能である。当該比較例に係る技術は、撮像部35cのX方向およびY方向への移動を伴って、マークMC2aの撮影とマークMC2bの撮影とを別時点で行い、2つの撮影画像を用いて基板WTi上のマークMC2a,MC2bの位置を測定する技術である。
【0226】
ここにおいて、複数のチップCPに関する位置測定期間においては、基板WTiのθ位置変化は非常に微小であり、基板WTiのθ位置は変化しないとみなすものとする。或る時点での測定結果(基板WTiのθ位置)を、複数のチップCPに対して共通に用いることができる。
【0227】
具体的には、基板WTiに対する最初のチップCPの載置前の所定の時点(基準時点)における基板WTiのθ位置(姿勢角度θ)を予め1回測定しておく。当該基準時点における基板WTiの姿勢角度θは、基板WTiに設けられた2つのアライメントマーク(例えば、MW2a,MW2b(図21参照))のそれぞれを撮像部35cによって順次に撮像した2つの撮影画像に基づいて求められる。
【0228】
この測定結果(基準時点における基板WTiの姿勢角度θ)は、複数のチップCPに対して共通に用いられる。具体的には、基準時点における基板WTiの姿勢角度θと、複数のチップCPのそれぞれが基板WTのボンディング位置に配置された際における3つの撮影画像Ga,Gb,Gcとに基づいて両対象物の相対位置誤差(Δx,Δy,Δθ)が算出される。撮影画像Gaは各チップCPのマークMC1aに関する画像であり、撮影画像Gbは、各チップCPのマークMC1bに関する画像であり、撮影画像Gcは、基板WTiのマークMC2(MC2a)に関する画像である。
【0229】
より詳細には、例えば、まず、マークMC2bの位置が、マークMC2aの位置と基準時点における基板WTiの姿勢角度θとに基づいて算出される。そして、4つのマークMC1a,MC1b,MC2a,MC2bの位置に基づいて、両対象物の相対位置誤差(Δx,Δy,Δθ)が算出される。詳細には、第1実施形態と同様にして、位置認識部46は、マークMC1a,MC2aの相互間の位置ずれ量(Δxa,Δya)、およびマークMC1b,MC2bの相互間の位置ずれ量(Δxb,Δyb)を求め、さらに、各チップCPと仮基板WTiとの相対的位置ずれ量(Δx,Δy,Δθ)を算出する。なお、撮像部35a,35b,35cの各座標系(各撮影画像座標系)の相互間の関係は、事前のキャリブレーションによって正確に把握されているものとする。
【0230】
このような動作が複数のチップCPについて同様に実行される。詳細には、各チップCPの上面側から各チップCP上のマークMC1a,MC1bの一方ずつを含む2つの撮影画像が2つの撮像部35a,35bによって同時に撮影されるとともに、各チップCPの下面側から基板WT上のマークMC2a(各チップCPに対応するマークMC2a)を含む1つの撮影画像もが撮像部35cによって同時期に撮影される。これによれば、各チップCP載置時における、基板WTiの位置(X,Y)および各チップCPの位置(X,Y,θ)が正確に把握される。そして、基準時点における基板WTiの姿勢角度θをも用いることによって、各チップCP載置時における、各チップCPと基板WTiとの相対位置関係が正確に把握される。
【0231】
以上のような動作によれば、ステップS12,S22において、チップCPが基板WTiに対向配置され且つ水平平面(XY平面)内の所定のボンディング位置(X,Y)に配置された状態で、両対象物CP,WTの外側から、チップCPの位置および基板WTの位置がそれぞれ測定される。詳細には、チップCPの上面側からチップCPの位置が測定されるとともに、基板WTiの下面側から基板WTiの位置が測定される。そして、これらの測定結果に基づいて、当該両対象物(チップCPおよび基板WT)の相対位置誤差(Δx,Δy,Δθ)が測定される。なお、基板WTの下面は、両対象物CP,WTの各対向面とは反対側の面である2つの反対向面のうちの一方の面であるとも表現される。
【0232】
この第2実施形態によれば、第1実施形態と同様の高速化を図ることが可能である。
【0233】
また、第2実施形態によれば、第1実施形態と同様の高精度化を図ることが可能である。ただし、第2実施形態においては、上側の撮像部35a,35bと下側の撮像部35cとが設けられており、両者の温度が異なる場合等においては、熱変形の度合いが、上側の撮像部35a,35bと下側の撮像部35cとで互いに異なることもある。そのときには、上側の撮像部35a,35bと下側の撮像部35cとの間において、熱による相対位置変化が生じ、測定精度が若干低下する。したがって、このような観点からは、第2実施形態よりも第1実施形態を採用することが好ましい。
【0234】
なお、この第2実施形態においては、下側に単一の撮像部35cが設けられる場合が例示されているが、これに限定されない。たとえば、基板WTの下側に2つの撮像部35c,35dを設け、当該2つの撮像部35c,35dを用いて、マークMC2aに係る撮影画像とマークMC2bに係る撮影画像とが同時に撮像されるようにしてもよい。
【0235】
<3.第3実施形態>
第3実施形態は、第2実施形態の変形例である。以下では、第2実施形態との相違点を中心に説明する。
【0236】
上記第2実施形態では、第1実施形態と同様に、アライメント動作がヘッド部33Hの下降期間(例えば時刻T21〜時刻T22等(図17参照))において実行される場合が例示されているが、これに限定されない。たとえば、ボンディング部33(ヘッド部33H)とチップ搬送部39との間でのチップCPの授受動作等と並列的に、アライメント動作が実行されるようにしてもよい。より具体的には、チップ搬送部39の退避期間等(詳細には、待避完了時点T19までの期間)にアライメント動作が実行されるようにしてもよい。第3実施形態では、このような態様について説明する。
【0237】
図40は、第3実施形態に係るCOWボンディング装置30(30C)におけるアライメント動作を示すタイミングチャートである。なお、第3実施形態に係るCOWボンディング装置30(30C)は、第2実施形態に係るCOWボンディング装置30(30B)と同様の構成を備えている。
【0238】
図40に示すように、この第3実施形態においては、まず、上記と同様にして、ステージ31がX方向および/またはY方向に移動して、基板WTにおけるボンディング対象部分が、ヘッド部33Hに保持されるチップCPの対向位置(ボンディング位置)へと移動する(時刻T10〜T11)。
【0239】
また、上記と同様にして、チップ搬送部39のプレート部391が中心軸AX周りに位置PR9(図15参照)から角度β回転し(時刻T10〜時刻T12)、当該回転動作に応じて、当該チップCPがボンディング部33のヘッド部33Hの直下位置PG5(受渡位置PR2(図16参照))にまで搬送される。
【0240】
つぎに、ヘッド部33Hは、チップCPの載置位置PG5(図2参照)付近にまで若干量下降し(時刻T12〜時刻T13)、チップ搬送部39からチップCPを受け取ってヘッド部33Hの先端部(下端部)で当該チップCPを吸着し(時刻T13〜時刻T14)、再び元のZ方向位置(基準位置)まで上昇する(時刻T14〜時刻T15)。これにより、ヘッド部33HによるチップCPの吸着保持動作(チップ受取動作)が完了する。
【0241】
その後、ヘッド部33Hとの干渉回避のためにチップ搬送部39が所定角度回転する(時刻T15〜時刻T19)。換言すれば、チップ搬送部39のプレート部391は、ヘッド部33Hとの干渉を回避するために、ボンディング位置から退避する。
【0242】
この第3実施形態においては、アライメント動作が時刻T11〜時刻T19に行われる。
【0243】
具体的には、ボンディング位置への基板WTの移動完了時点(時刻T11)からプレート部391の退避完了時点T19までの期間内(例えば、時刻T11〜T13)において、撮像部35cは、基板WT上のアライメントマークMC2(例えばMC2a)を含む撮影画像を撮影し、基板WTの位置(詳細には基板WT内におけるチップへの対応部分の位置)を測定する。ここにおいて、撮像部35cは、基板WTの下面側から基板WTを撮像するので、基板WTの上側(詳細には、基板WTとチップCPとの間)にプレート部391が存在するか否かにかかわらず、基板WTに設けられたアライメントマークMC2を撮像することができる。
【0244】
また、ヘッド部33HによるチップCPの吸着保持完了時点(チップ受取完了時点)T15からプレート部391の退避完了時点T19までの期間内(例えば、時刻T17〜時刻T18)において、チップCP上のアライメントマークMC1(MC1a,MC1b)を含む撮影画像が撮像部35a,35bによりそれぞれ撮影される。そして、当該撮影画像を用いて、チップCPの位置が測定される。
【0245】
ここにおいて、撮像部35a,35bは、チップCPの上面側からチップCPを撮像するので、チップCPの下側(詳細には、チップCPと基板WTとの間)にプレート部391が存在するか否かにかかわらず、チップCPに設けられた各アライメントマークMC1(MC1a,MC1b)をそれぞれ撮像することができる。
【0246】
そして、第2実施形態と同様に、アライメントマークMC1a,MC1b,MC2aの測定結果等に基づいて、チップCPと基板WTとの相対位置誤差(Δx,Δy,Δθ)が算出される。さらに、当該相対位置誤差を低減するように、チップCPと基板WTとが相対的に駆動される。
【0247】
このように、基板WTに付されたマークMC2(MC2a)を撮像する動作が、基板WTのボンディング対象部分のボンディング位置への移動完了時点T11から、プレート部391の退避完了時点T19までの期間内(例えば、時刻T11〜T13)において、撮像部35cによって行われる。また、撮像部35a,35bによってチップCPに関するマークMC1を撮像する動作(マークMC1撮像動作)、およびチップCPと基板WTとを相対的に駆動する動作(相対移動動作)は、チップ搬送部39によるヘッド部33Hへのチップ供給動作(時刻T10〜時刻T19)と並列的に行われる。詳細には、当該チップ位置測定動作等は、ヘッド部33HがチップCPをチップ搬送部39から受け取ってヘッド部33HがチップCPを吸着した直後の期間(より詳細には、チップ搬送部39の退避期間T15〜T19内の一部の期間(例えば時刻T17〜T18)に行われる。
【0248】
その後、ヘッド部33Hとチップ搬送部39とが干渉しない状態でヘッド部33Hが下降し、ヘッド部33Hに吸着保持されたチップCPが位置PG7にまで下降される(時刻T19〜時刻T23)。これにより、ヘッド部33Hの先端部で吸着されていたチップCPが、ステージ31上の仮基板WT1の所定の平面位置に載置される。
【0249】
さらに、第1層の2つ目以降のチップの載置動作も同様にして実行される(図25および図26)。これにより、図27に示すように、第1層の複数のチップCP1が仮基板WTi上の所定の平面位置に位置決めされて配置される。このように、2種類のマークMC1,MC2を用いることによって、第1層の複数のチップCP1のそれぞれが仮基板WT1の基板平面(主平面)に平行な方向(X,Y,θ)において位置決めされ、第1層の複数のチップCP1のそれぞれが仮基板WT1上の樹脂層RS1に載置される。
【0250】
また、第2層以後のチップの積層動作についても同様に実行される。
【0251】
以上のような態様によれば、ステップS12,S22において、チップCPが基板WTiに対向配置され且つ水平平面(XY平面)内の所定のボンディング位置(X,Y)に配置された状態で、対向する両対象物CP,WTの外側から、チップCPの位置および基板WTiの位置がそれぞれ測定される。詳細には、チップCPの上面側からチップCPの位置が測定され、基板WTiの下面側から基板WTiの位置が測定される。そして、これらの測定結果に基づいて、当該両対象物(チップCPおよび基板WTi)の相対位置誤差(Δx,Δy,Δθ)が測定される。
【0252】
したがって、第3実施形態によれば、第1実施形態と同様の高精度化を図ることが可能である。
【0253】
また、第3実施形態によれば、第1実施形態と同様の高速化を図ることが可能である。特に、この第3実施形態においては、ボンディング部33(ヘッド部33H)とチップ搬送部39との間でのチップCPの授受動作等の実行期間(時刻T11〜時刻T19)と並列的にアライメント動作が実行され、ヘッド部33Hの下降動作の開始時点T19までにチップCPの位置決めが完了している。そのため、チップCPと基板WTとをアライメントするための期間(アライメント用期間)を、チップ搬送部39によるチップCPの供給動作期間T10〜T19(チップ搬送部39の退避期間T15〜T19を含む)とは別個に設けることを要しない。したがって、チップCPを基板WT上の所定位置に載置する動作(ボンディング動作)をさらに高速化することができる。
【0254】
ここにおいて、上述の第1実施形態においては、時刻T21(図17)からのアライメント動作に際して、ボンディング部33Hの下降動作を一旦停止する期間(下降停止期間)TS(例えば、0.1秒〜0.2秒程度の停止期間)を設けることも考えられる(図17の破線LDも参照)。たとえば、チップCPと基板WTとが非常に微小な距離(例えば、数十マイクロメートル程度)にまで近接され、アライメントマークを含む画像が撮像される場合において、当該撮像動作後(および/または撮像動作中)に下降停止期間TSを設けることによって、XY平面に平行な面内での位置補正動作がチップCPと基板WTとの接触前までに更に確実に完了するようにしてもよい。
【0255】
一方、この第3実施形態によれば、ヘッド部33Hの下降動作の開始時点T19までにアライメント動作が実行されており、時刻T21以後に下降停止期間TS(例えば、0.1秒〜0.2秒程度の停止期間)を設けることを要しない。したがって、特に、第1実施形態にて下降停止期間TSを設ける上述のような場合(図17の破線LD参照)に比べて、各チップCPを基板WT上の各所定位置に載置する動作をさらに高速化することができる。より具体的には、当該下降停止期間TSに相当する時間を短縮したサイクルタイム(例えば0.8秒)を実現することが可能である。
【0256】
なお、この第3実施形態においては、ヘッド部33Hの下降動作の開始時点T19までにチップCPの位置決めが完了している場合が例示されているが、これに限定されない。たとえば、ヘッド部33Hの下降動作の開始時点T19までに3つのマークMC1a,MC1b,MC2aの撮影動作が完了し、チップCPと基板WTとの接触時点T23までにチップCPと基板WTとの相対位置誤差を低減する補正駆動動作が完了するようにしてもよい。
【0257】
<4.変形例等>
また、この発明は上述の内容に限定されるものではなく、様々な改変が可能である。
【0258】
<4−1.接触中のアライメント動作)>
たとえば、上記各実施形態においては、COWボンディング装置30におけるチップCPと基板WTとのアライメント動作が、チップCPと基板WTとの接触時点T23よりも前(時刻T12〜T15、時刻T19〜T23等)に実行される場合が例示されているが、これに限定されない。
【0259】
具体的には、当該アライメント動作(撮像動作を含む)は、チップCPと基板WTとの接触中(チップ下降後のボンディング期間T23〜T26)、換言すれば、チップCPを樹脂層RSに押し付けて載置した後にも、実行されるようにしてもよい。詳細には、チップCPが基板WTに接触した後(且つ、好ましくは樹脂が硬化する前)(たとえば、時刻T24〜T25(図17および図40))において、撮像部35a,35b(,35c)によってチップCPと基板WTとの相対位置誤差が検出され、当該相対位置誤差に基づいてチップCPと基板WTとの相対位置が調整されるようにしてもよい。特に、上記各実施形態におけるアライメント動作(チップCPと基板WTとの接触前のアライメント動作)に加えて、チップCPと基板WTとの接触後のアライメント動作が行われることが好ましい。より詳細には、両者CP,WTの接触前に当該両者の相対位置誤差の検出動作と当該相対位置誤差を補正するための駆動動作とが行われ、その後に当該両者が接触し、当該両者の接触後に当該両者の相対位置誤差の検出動作と当該相対位置誤差を補正するための駆動動作とがさらに行われればよい。これによれば、両者CP,WTの接触後において、両者CP,WTの相対位置をさらに微調整することが可能である。したがって、さらに正確な位置合わせ動作(アライメント動作)が実行され得る。
【0260】
<4−2.接触後の位置ずれ検査>
また、チップCPが基板WTに接触した後に検出された相対位置誤差(接触後の撮影画像に基づく検出誤差)は、当該チップCPと基板WTとの位置補正動作のみならず、チップCPと基板WTとの間の相対位置に関する補正量(測定値に関するオフセット値)の算出動作に利用されるようにしてもよい。
【0261】
たとえば、接触前後における2つの相対位置誤差E1,E2の相互間のずれ量GP(=E2−E1)をオフセット値STとして算出しておく。ここで、相対位置誤差E1(Δx,Δy,Δθ)は、例えば、第3実施形態において、或るチップCPに関して時刻T11〜T19にて撮像部35a,35b,35cによって撮像された撮影画像に基づいて算出された、或るチップCPと基板WTとの相対位置誤差(接触前の誤差)である。また、相対位置誤差E2(Δx,Δy,Δθ)は、当該チップCPに関して時刻T24〜T25(図40参照)において撮像部35a,35b,35cによって撮像された撮影画像に基づいて算出された、当該チップCPと基板WTとの相対位置誤差(接触後の誤差)である。
【0262】
そして、このオフセット値ST(ずれ量GP)を別のチップCP(上述の或るチップと同一種類のチップ)と基板WTとの相対位置誤差EB(Δx,Δy,Δθ)に対する補正量として用いるようにすればよい。すなわち、或るチップの位置測定結果に関するオフセット値STを、別のチップに関する位置測定結果に対する補正量として反映させるようにしてもよい。特に、複数のチップCPに関するずれ量GPの平均値等(統計処理結果)を当該オフセット値STとして算出することによれば、より正確な補正量が算出され得る。
【0263】
より詳細には、まず、比較的少数の複数(例えば10個)のチップCPに関して値GPを求める。詳細には、各チップCPに関して、時刻T11〜T19での測定誤差E1(Δx,Δy,Δθ)と時刻T24〜T25での測定誤差E2(Δx,Δy,Δθ)との差GP(=E2−E1)をそれぞれ求める。そして、10個の値GPの平均値をオフセット値STとして決定する。
【0264】
つぎに、比較的多数の複数(例えば1000個)の別のチップCPに関しては、時刻T11〜T19での相対位置誤差E1のみを測定し、当該値E1に対してオフセット値STを補正量として反映させて相対位置誤差E1を修正する。たとえば、オフセット値STが「+α」であるときには、「−α」を値E1に加算することによって、相対位置誤差E1が補正されればよい。なお、相対位置誤差E2は、比較的少数の複数(例えば10個)のチップCPに関してのみ測定されればよく、比較的多数の複数(例えば1000個)の別のチップCPに関しては測定されない。
【0265】
これによれば、相対位置誤差E2の測定動作は、比較的少数のチップに関してのみ行われればよいので、アライメント時間の増大を抑制しつつ高速化を図ることが可能である。
【0266】
あるいは、チップCPが基板WTに接触した後に検出された相対位置誤差は、当該チップCP部分のアライメントの良否の判定処理(アライメント不良判定処理)(端的に言えば不良品判定処理)に用いられるようにしてもよい。
【0267】
具体的には、第3実施形態において、各チップCPに関して時刻T24〜T25において相対位置誤差(同じチップCPと基板WTとの相対位置誤差)E2(Δx,Δy,Δθ)を測定し、当該相対位置誤差E2が許容誤差範囲に収まっているか否かに基づいて、当該アライメントの良否を判定すればよい。詳細には、相対位置誤差E2が許容誤差範囲に収まっていないときには、アライメント不良が発生していると判定されればよい。
【0268】
<4−3.ヘッド部>
また、上記各実施形態におけるヘッド部33H(図11)に代えて、図41に示すようなヘッド部33Hbが設けられるようにしてもよい。
【0269】
このヘッド部33Hbは、ヘッド本体部413bとガラス製のチップツール411bとを有している。ヘッド本体部413bは、略円筒状の外周部材414と、外周部材414に巻回されるコイルヒータ418と、ガラス製の2枚の円盤状部材417a,417bとを有している。円盤状部材417aは、円筒状の外周部材414の底面部に設けられ、円盤状部材417bは、円盤状部材417aに対して略平行に設けられ、円盤状部材417aと円盤状部材417bとの間にはチップ吸着用の真空空間SPが形成される。チップツール411bおよび円盤状部材417a,417bは、ガラス(透光性材料)で形成され、撮影光(可視光および赤外光等)を透過する。
【0270】
<4−4.可視光による位置調整>
また、上記実施形態等においては、赤外光を用いて位置認識用の画像が取得される場合が例示されているが、これに限定されない。たとえば、可視光を用いて位置認識用の画像が取得されるようにしてもよい。
【0271】
たとえば、第2実施形態あるいは第3実施形態において、上述のヘッド部33Hb(図41)が用いられればよい。当該ヘッド部33Hbおよび撮像部35a,35bを用いてチップCP上のマークMC1が撮像され、撮像部35cを用いてマークMC2が撮像されればよい。
【0272】
あるいは、図42に示すように、(チップCPの上側ではなく)基板WTiの下側に2つの撮像部35(35c,35d)を設けて、当該2つの撮像部35c,35dによって、第1実施形態と同様に、撮影画像Ga,Gbがそれぞれ撮影されるようにすればよい。より詳細には、可視光を透過する透光性のガラス基板が仮基板WTiとして用いられるとともに、各マークMC1(MC1a,MC1b)が、フェイスアップ状態の各チップCPiの仮基板WTi側の下面FTに設けられる。そして、当該ガラス基板WTiと可視光を透過する透光性の樹脂層RSiとを透過して得られるマークMC1,MC2に関する光像を同時に撮影した画像が位置認識用画像として取得されるようにすればよい。より具体的には、撮像部35cは、2種類のマークMC1a,MC2aを同時に読み取った撮影画像Gaを撮影し、撮像部35dは、2種類のマークMC1b,MC2bを同時に読み取った撮影画像Gbを撮影する。
【0273】
なお、樹脂層RSiとしては、可視光を透過する透光性を有するものが採用されればよい。
【0274】
<4−5.樹脂層>
また、上記各実施形態等においては、樹脂層RSが熱可塑性樹脂で形成される場合を例示したが、これに限定されず、樹脂層RSは光硬化性樹脂(紫外線硬化樹脂等)で形成されるようにしてもよい。
【0275】
樹脂層RSが光硬化性樹脂(紫外線硬化樹脂等)で構成される場合には、ステップS12,S22においては、光照射(紫外線照射部319(不図示)による紫外線照射等)によって樹脂を硬化することによって、各チップを仮基板WTiに仮固定するようにすればよい。また、ステップS14,S24においては、レーザアブレーション技術(レーザ光を照射して樹脂層に気泡を発生させる技術)を用いて、各チップを仮基板WTiから分離するようにしてもよい。
【0276】
なお、紫外線照射部319は、第1実施形態における赤外線照射部318(図7)に代えて設けられる(あるいは赤外線照射部318に併設される)ようにすればよい。また、紫外線照射部319は、第2実施形態等における赤外線照射部318b(図39)に代えて(あるいは赤外線照射部318bとともに)、撮像部35cに併設されるようにすればよい。
【0277】
また、樹脂層RSは、熱硬化性樹脂で形成されてもよい。
【0278】
樹脂層RSが熱硬化性樹脂で構成される場合には、ステップS12,S22においては、未硬化の樹脂を(赤外線照射部318および/またはヘッド部33H等を用いて)加熱して硬化することによって、各チップを仮基板WTiに仮固定するようにすればよい。また、ステップS14,S24においては、レーザアブレーション技術(レーザ光を照射して樹脂層に気泡を発生させる技術)を用いて、各チップを仮基板WTiから分離するようにしてもよい。
【0279】
<4−6.基板上へのチップ配置>
また、上記各実施形態等においては、第1層のチップの積層動作も第2層以降の各層のチップの積層動作と同様にして実行される場合が例示されているが、これに限定されず、その他の手法を用いて第1層の複数のチップが基板WA上に平面配置されるようにしてもよい。
【0280】
また、上記各実施形態等においては、第i層(i=1,2,...)の各チップCPiが仮基板WTiに対してフェイスアップ状態で配置され、当該仮基板WTiが反転され基板WAに対向配置される動作等が繰り返されることによって、複数層のチップが基板WA上に積層される場合が例示されているが、これに限定されない。たとえば、単一層のチップが基板上に積層される場合に上記の思想が適用されるようにしてもよい。
【0281】
また、上記各実施形態等においては、各チップCPiのバンプ面(バンプが配置された面)が上側を向いた状態(フェイスアップ状態)で、各チップCPiが基板WTi上に位置決めされて配置される場合が例示されているが、これに限定されない。たとえば、各チップCPiのバンプ面(バンプが配置された面)が下側を向いた状態(フェイスダウン状態)で、各チップCPiが基板上に位置決めされて配置される場合に上記の思想が適用されるようにしてもよい。
【0282】
より詳細には、図43に示すように、各チップCPiがフェイスダウン状態で直接的に基板WA上の樹脂層(例えば非導電性樹脂(NCP:Non conductive Paste)で形成された樹脂層)の所定位置に位置決めされて配置される場合に上記の思想が適用されるようにしてもよい。より詳細には、各チップCPにはマークMC1(MC1a,MC1b)をそれぞれ設けるとともに、基板WA上の対応部分(各チップCPへの対応部分)にマークMC2(MC2a,MC2b)を設ける。そして、マークMC1,MC2を用いて、チップCPと基板WAとの位置合わせ動作を行うようにすればよい。
【0283】
なお、このような態様においては、次述するように図44等に示すようにして、フェイスダウン状態で各チップCPiが供給されればよい。
【0284】
<4−7.チップ反転>
上記各実施形態においては、図2に示すようにフェイスアップ状態のチップCPがそのままCOWボンディング装置30に供給される場合が例示されているが、これに限定されない。たとえば、図44に示すように、フェイスアップ状態のチップCPが、反転機構を有するダイピッカ131によって上下反転されて、フェイスダウン状態でCOWボンディング装置30に供給されるようにしてもよい。
【0285】
具体的には、突上部(突上ニードル)11による突き上げ動作を伴ってダイピッカ131に保持されたチップCP(フェイスアップ状態)が、反転機構を有するダイピッカ131によって上下反転されて、チップ供給機135に受け渡されフェイスダウン状態で保持される。チップCPは、フェイスダウン状態でチップ搬送部39によって位置PG3(PR1)で受け取られる。
【0286】
チップ搬送部39は、中心軸AX周りの回転動作によって当該チップCPをボンディング部33のヘッド部33Hの直下位置PG5(受渡位置PR2)にまで搬送する。チップCPは、このような搬送動作を経て、フェイスダウン状態で受渡位置PR2に到達する。
【0287】
また、上記各実施形態では、チップ供給装置10において、フェイスアップ状態の各チップCPを有する基板WCから当該各チップが切り出され、各チップがそのままフェイスアップ状態で仮基板WTi上に供給される場合が例示されているが、これに限定されない。
【0288】
たとえば、「フェイスダウン状態」の各チップCPを有する基板WCから当該各チップCPが切り出されて供給されるようにしてもよい。この場合、チップ供給装置10において、フェイスダウン状態で切り出された各チップCPの上下を反転させてフェイスアップ状態で各チップCPをCOWボンディング装置30に供給するようにしてもよい。あるいは、各チップCPは、フェイスダウン状態のままでCOWボンディング装置30に供給されるようにしてもよい。
【0289】
<4−8.チップ供給手法(チップトレイ方式)>
また、上記各実施形態においては、チップ供給手法として、ウエハピックアップ方式(チップを基板(ウエハ)WCから直接的にピックアップする方式)が例示されている(図2および図44参照)が、これに限定されない。たとえば、チップ供給手法として、チップトレイ方式(ウエハから取り出されたチップが一旦トレイ上に配置され、当該チップが配置されたトレイ(チップトレイ)から、チップがピックアップされる方式)が採用されるようにしてもよい。
【0290】
図45および図46は、チップトレイ方式を採用するチップ実装システム1(1E)の一部を示す図である。図45は、チップトレイ方式に係るチップ供給装置10(10E)およびCOWボンディング装置30を示す平面図である。また、図46は部品トレイ搬送部27付近を示す側断面図である。
【0291】
チップ供給装置10は、部品としてのチップCPをトレイに積載して搬送する部品トレイ搬送部27を備える。
【0292】
部品トレイ搬送部27は、複数のトレイ21を有している。複数のトレイ21のそれぞれは、複数のチップCPを収容可能である。
【0293】
部品トレイ搬送部27は、待機位置TP11と授受位置TP12と排出位置TP13とを有している。
【0294】
待機位置TP11においては、複数のチップ(部品としてのチップ)CPをそれぞれ収容した複数のトレイ21が段積みされている(図46参照)。待機位置TP11において段積みされている複数のトレイ21は、段ばらし機構(不図示)によって1つずつ取り出され、授受位置TP12へ向けてY方向(−Y向き)に移動される。
【0295】
授受位置TP12においては、搬送された1つのトレイ21からチップCPを個別に取り出す動作が行われる。具体的には、撮像部24(図46)によって取出対象のチップCPの位置が認識された状態で、チップ移載装置13(チップ供給機135等)が当該チップCPを吸着保持してトレイ21から取り出し、当該チップCPを位置PR1(図45)へと搬送する。また、当該チップCPはチップ搬送部39によって位置PR2(図16参照)に搬送される。このようにして当該チップCPはCOWボンディング装置30へと供給される。同様の動作が繰り返されることによって、トレイ21内の複数のチップがそれぞれ個別にCOWボンディング装置30へと供給される。
【0296】
また、授受位置TP12のトレイ21内の全てのチップが当該トレイ21から取り出されると、当該トレイ21(空トレイ)は排出位置TP13へと搬送される。そして、トレイ21は、チップ取出済みの他のトレイ(空トレイ)とともに段積みされて保持される。
【0297】
このようなチップトレイ方式によって各チップが供給されるようにしてもよい。
【0298】
さらに、チップトレイ方式は、基板上にチップを積層する場合のみならず、チップ上にチップを積層する技術(COC(Chip On Chip)技術)に採用されるようにしてもよい。また、図45においては、部品としてのチップCPを供給する際にトレイ21を用いる場合を例示したが、完成品としての多層チップCSを収容する際にトレイ21を用いるようにしてもよい。
【0299】
図47および図48は、このような態様に係るチップ実装システム1(1F)の一部を示す図である。図47は、チップ供給装置10(10F)およびCOWボンディング装置30を示す平面図である。また、図48は、完成品トレイ搬送部28付近を示す側断面図である。
【0300】
チップ供給装置10Fは、上述の部品トレイ搬送部27に加えて、COWボンディング装置30等によって多層に積層された積層チップ(完成品)CSを搬送する完成品トレイ搬送部28をも備える。
【0301】
このシステム1Fにおいては、上述のチップトレイ供給方式によって供給されたチップCPを用いて、第1実施形態と同様の手法によって、COWボンディング装置30およびWOWボンディング装置50によって、多層に積層された多層チップCSが基板WA上に形成される。そして、多層チップCSを有する基板WAが、WOWボンディング装置50から再びCOWボンディング装置30に搬送される。そして、複数の多層チップCSは、それぞれ、基板WAから剥離され、今度は逆向きの経路を辿って、COWボンディング装置30のチップ搬送部39からチップ供給装置10の完成品トレイ搬送部28へと搬送される。
【0302】
完成品トレイ搬送部28は、複数のトレイ22を有している。複数のトレイ22のそれぞれは、複数の多層チップ(完成品)CSを収容可能である。
【0303】
完成品トレイ搬送部28は、待機位置TP21と授受位置TP22と排出位置TP23とを有している。
【0304】
待機位置TP21においては、複数のトレイ22が段積みされている。待機位置TP21において段積みされている複数のトレイ22は、いずれも空である。当該複数のトレイ22は、段ばらし機構(不図示)によって1つずつ取り出され、授受位置TP22へ向けてY方向(−Y向き)に移動される。
【0305】
授受位置TP22においては、チップ搬送部39から13を介して搬送されてきた多層チップCSがトレイ22に載置される。同様の動作が繰り返されることによって、トレイ22内に複数の多層チップCSが配置される。
【0306】
また、トレイ22内において多層チップCSの配置スペースが無くなると、当該トレイ22(フルトレイ)は排出位置TP23へと搬送される。そして、トレイ22は、完成品チップCS載置済みの他のトレイ22とともに段積みされて保持される。
【0307】
このようなチップトレイ方式によって、部品としての各チップCPが供給され且つ完成品としての多層チップCSが収容されるようにしてもよい。
【0308】
なお、ここでは、WOWボンディング装置50をも用いて、基板WA上に多層チップCSが形成される場合が例示されているが、これに限定されない。たとえば、COWボンディング装置等において、基板を用いることなく1層もしくは複数層のチップが直接的に積層されて多層チップが形成されるようにしてもよい。また、このような場合においても、上記のような各チップトレイ方式(図45〜図48)を採用することが可能である。
【0309】
<4−9.その他>
また、上記各実施形態等においては、アライメントマークによる反射光を用いて位置認識用の画像が取得される場合が例示されているが、これに限定されない。たとえば、アライメントマークを挟んで一方側に照明系を配置し他方側に撮像部を配置するとともに、アライメントマークに関する透過光を用いて位置認識用の画像が取得されるようにしてもよい。より詳細には、例えば、第1実施形態における赤外線照射部318から照射される赤外光を照明光原として用いて、透過光による撮影画像が撮像部35a,35bによってチップCPの上面側から観測(撮像)されて取得されるようにしてもよい。
【0310】
また、上記各実施形態等においては、2つの撮像部35a,35bが設けられ、各マークMC1a,MC1bに関する2つの撮影画像Ga,Gbが同時に撮影される場合が例示されているが、これに限定されない。たとえば、チップCPの上側に単一の撮像部35aを設け、当該撮像部35aを順次にXY平面に沿って移動させることによって、マークMC1aに関する撮影画像GaとマークMC1bに関する撮影画像Gbとが順次に撮影されるようにしてもよい。ただし、2つの撮像部35a,35bによってマークMC1a,MC1bに関する2つの撮影画像Ga,Gbが同時に撮影されることによれば、位置測定動作をより高速に実行することが可能である。
【0311】
また、上記第1実施形態においては、チップCPの上面側(チップCPの上下2つの主面のうち基板WTに対向する面(対向面)とは反対側の面(反対向面)の側)から2つの撮像部35a,35bを用いて位置認識用の画像が取得される場合が例示されているが、これに限定されない。たとえば、図42に示すように、基板WTの下面側(基板WTの上下2つの主面のうちチップCPに対向する面(対向面)とは反対側の面(反対向面)の側)から2つの撮像部35c,35dを用いて、アライメントマークMC1,MC2を含む位置認識用の画像が取得され、アライメントマークMC1,MC2の位置(ひいてはチップCPおよび基板WTの位置)が測定されるようにしてもよい。なお、撮影光としては、可視光が用いられてもよく、あるいは赤外光等が用いられてもよい。
【0312】
また、上記第2および第3実施形態においては、チップCPの上面側に2つの撮像部35a,35bが設けられ、基板WTの下面側に1つの撮像部35cが設けられる場合が例示されているが、これに限定されない。
【0313】
たとえば、チップCPの上面側に2つの撮像部35a,35bが設けられるとともに、基板WTの下面側に2つの撮像部35c,35dが設けられるようにしてもよい。より詳細には、撮像部35aによってアライメントマークMC1aを含む画像が撮影され、撮像部35bによってアライメントマークMC1bを含む画像が撮影され、撮像部35cによってアライメントマークMC2aを含む画像が撮影され、撮像部35dによってアライメントマークMC2bを含む画像が撮影されるようにしてもよい。
【0314】
このように、4つの撮影部35a,35b,35c,35dを用いて、両対象物CP,WTの相対姿勢誤差を含む相対位置誤差を算出するようにしてもよい。
【0315】
ただし、上述の第2実施形態および第3実施形態によれば、4つの撮影部を要することなく、3つの撮像部を用いることによって、両対象物CP,WTの相対姿勢誤差を含む相対位置誤差を算出することが可能である。したがって、コストの低減を図ることが可能である。
【符号の説明】
【0316】
1 チップ実装システム
10 チップ供給装置
27 部品トレイ搬送部
28 完成品トレイ搬送部
30 ボンディング装置
31 ステージ
33 ボンディング部
33H ヘッド部
35,35a,35b,35c,35d 撮像部
36 θ方向回動部
37 θ方向駆動部
38 ベアリング
39 チップ搬送部
50 ボンディング装置
70 搬送部
80 スピンコータ
90 搬出入部
311 X方向移動部
313 Y方向移動部
315 基板保持部
321 X方向駆動部(X方向駆動機構)
323 Y方向駆動部(Y方向駆動機構)
331 軸方向移動部材
332 上側円盤部材
333 ピエゾアクチュエータ
334 下側円盤部材
337 ミラー
391,391a,391b,391c プレート部
411 チップツール
CP チップ
MC,MC1,MC2 チップ位置調整用マーク
MW,MW1,MW2 基板位置調整用マーク
RS 樹脂層
WA 基板
WT 基板(仮基板)

【特許請求の範囲】
【請求項1】
アライメント装置であって、
第1の対象物を保持する第1の保持手段と、
第2の対象物を保持する第2の保持手段と、
前記第1の対象物と前記第2の対象物との両対象物が対向配置され且つ前記第2の対象物の載置面に平行な平面内において前記第1の対象物が所定のボンディング位置に配置された状態で、前記両対象物の各対向面とは反対側の面である2つの反対向面のうちの少なくとも一方面側から、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相対位置誤差を測定する測定手段と、
前記第1の対象物と前記第2の対象物とを前記載置面に平行な方向に相対的に駆動して前記相対位置誤差を補正する駆動手段と、
を備えることを特徴とするアライメント装置。
【請求項2】
請求項1に記載のアライメント装置において、
前記測定手段は、
前記第1の対象物に関するアライメントマークを含む画像を前記第1の対象物の反対向面側から撮像する第1対象物側撮像手段、
を有することを特徴とするアライメント装置。
【請求項3】
請求項2に記載のアライメント装置において、
前記測定手段は、
前記第2の対象物に関するアライメントマークを含む画像を前記第2の対象物の反対向面側から撮像する第2対象物側撮像手段、
をさらに有することを特徴とするアライメント装置。
【請求項4】
請求項3に記載のアライメント装置において、
前記第1の対象物に関するアライメントマークを含む画像を前記第1対象物側撮像手段により撮像する動作と前記第2の対象物に関するアライメントマークを含む画像を前記第2対象物側撮像手段により撮像する動作とは、並列的に実行されることを特徴とするアライメント装置。
【請求項5】
請求項3に記載のアライメント装置において、
前記所定のボンディング位置において前記第1の対象物と前記第2の対象物との間に挿入された状態で、前記第1の対象物を前記第1の保持手段に受け渡す供給手段、
をさらに備え、
前記供給手段は、薄板形状を有しており、
前記第1対象物側撮像手段は、前記第1の対象物が前記供給手段から前記第1の保持手段へと受け渡された時点から、前記所定のボンディング位置からの前記供給手段の退避完了時点までの期間内において、前記第1の対象物に関するアライメントマークを含む画像を撮像し、
前記第2対象物側撮像手段は、前記第2の対象物のボンディング対象部分の前記ボンディング位置への移動完了時点から、前記所定のボンディング位置からの前記供給手段の退避完了時点までの期間内において、前記第2の対象物に関するアライメントマークを含む画像を撮像することを特徴とするアライメント装置。
【請求項6】
請求項3に記載のアライメント装置において、
前記測定手段は、
前記第1の対象物が前記第2の対象物に接触する前に、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相互間の第1の相対位置誤差を測定し、
前記第1の対象物が前記第2の対象物に接触した後に、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相互間の第2の相対位置誤差を測定することを特徴とするアライメント装置。
【請求項7】
請求項6に記載のアライメント装置において、
前記測定手段は、前記第2の相対位置誤差に基づいて、アライメント不良判定処理を実行することを特徴とするアライメント装置。
【請求項8】
請求項6に記載のアライメント装置において、
前記測定手段は、前記第2の相対位置誤差に基づいて、前記第1の対象物と同一種類の対象物に関する前記第1の相対位置誤差に対する補正量を決定することを特徴とするアライメント装置。
【請求項9】
請求項2に記載のアライメント装置において、
前記第1対象物側撮像手段は、前記第1の対象物の反対向面側から、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを含む画像を撮像することによって、前記相対位置誤差を測定することを特徴とするアライメント装置。
【請求項10】
請求項9に記載のアライメント装置において、
前記第1の対象物におけるアライメントマーク部分は赤外光を透過し、
前記第1対象物側撮像手段は、撮影光として赤外光を用いて、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを含む画像を撮像することを特徴とするアライメント装置。
【請求項11】
請求項9に記載のアライメント装置において、
前記第1対象物側撮像手段は、前記第1の対象物の前記第2の対象物に対する接触前と接触中との双方において、前記第1の対象物の反対向面側から、前記第2の対象物に関するアライメントマークと前記第1の対象物に関するアライメントマークとを含む画像を撮像することによって、前記相対位置誤差を測定することを特徴とするアライメント装置。
【請求項12】
請求項1に記載のアライメント装置において、
前記測定手段は、
前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを含む画像を前記第2の対象物の反対向面側から撮像する第2対象物側撮像手段、
を有することを特徴とするアライメント装置。
【請求項13】
請求項1または請求項2に記載のアライメント装置において、
前記測定手段は、
前記第1の対象物に設けられた第1のアライメントマークを含む第1の画像を撮像する第1の撮像部と、
前記第1の対象物に設けられた第2のアライメントマークを含む第2の画像を撮像する第2の撮像部と、
前記第1の画像と前記第2の画像とに基づいて、前記両対象物の相対姿勢誤差を含む前記相対位置誤差を算出する算出手段と、
を有することを特徴とするアライメント装置。
【請求項14】
請求項3に記載のアライメント装置において、
前記第1対象物側撮像手段は、
前記第1の対象物に設けられた第1のアライメントマークを含む第1の画像を撮像する第1の撮像部と、
前記第1の対象物に設けられた第2のアライメントマークを含む第2の画像を撮像する第2の撮像部と、
を有し、
前記第2対象物側撮像手段は、
前記第2の対象物に設けられた第3のアライメントマークを含む第3の画像を撮像する第3の撮像部と、
を有し、
前記測定手段は、
前記第1の画像と第2の画像と前記第3の画像と基準時点における前記第2の対象物の姿勢角度とに基づいて、前記両対象物の相対姿勢誤差を含む前記相対位置誤差を算出する算出手段と、
をさらに有することを特徴とするアライメント装置。
【請求項15】
請求項14に記載のアライメント装置において、
前記基準時点における前記第2の対象物の前記姿勢角度は、前記第2の対象物に設けられた2つのアライメントマークのそれぞれを前記第3の撮像部によって撮像した2つの撮影画像に基づいて求められることを特徴とするアライメント装置。
【請求項16】
請求項2に記載のアライメント装置において、
前記第1の保持手段に接続され前記両対象物の積層方向に移動する移動部材と、
前記移動部材とともに所定軸周りに回転する回動部材と、
をさらに備え、
前記第1対象物側撮像手段は、前記回動部材に接続され前記回動部材とともに回転することを特徴とするアライメント装置。
【請求項17】
請求項16に記載のアライメント装置において、
前記第1対象物側撮像手段は、撮像部を有し、
前記撮像部に関する撮影光の光路の向きを変更する光路変更部材が、前記移動部材に接続されて設けられ、
前記撮像部と前記光路変更部材とは、それぞれ、前記回動部材の回転に同期して前記所定軸周りに回転することを特徴とするアライメント装置。
【請求項18】
請求項17に記載のアライメント装置において、
前記第1の保持手段は、撮影光を通過させる中空部を有するとともに、前記移動部材に接続されており、
前記中空部も、前記回動部材の回転に同期して前記所定軸周りに回転することを特徴とするアライメント装置。
【請求項19】
請求項1ないし請求項18のいずれかに記載のアライメント装置において、
前記第2の対象物はその載置面に樹脂層を有しており、
前記アライメント装置は、
前記樹脂層を硬化する樹脂硬化手段、
をさらに備えていることを特徴とするアライメント装置。
【請求項20】
請求項19に記載のアライメント装置において、
前記樹脂層は、光硬化性樹脂で形成されており、
前記樹脂硬化手段は、紫外線照射手段による紫外線照射によって前記樹脂層を硬化することを特徴とするアライメント装置。
【請求項21】
請求項19に記載のアライメント装置において、
前記樹脂層は、熱硬化性樹脂で形成されており、
前記樹脂硬化手段は、加熱手段を用いた加熱によって前記樹脂層を硬化することを特徴とするアライメント装置。
【請求項22】
請求項19に記載のアライメント装置において、
前記樹脂層は、熱可塑性樹脂で形成されており、
前記樹脂硬化手段は、加熱手段を用いた加熱によって前記樹脂層を軟化させ、前記加熱手段の加熱停止を伴う冷却によって前記樹脂層を硬化することを特徴とするアライメント装置。
【請求項23】
請求項1ないし請求項22のいずれかに記載のアライメント装置において、
前記第1の対象物は、半導体チップであり、
前記第2の対象物は、基板であることを特徴とするアライメント装置。
【請求項24】
第1の保持手段に保持された第1の対象物と第2の保持手段に保持された第2の対象物との位置合わせを行うアライメント方法であって、
a)前記第1の対象物と前記第2の対象物との両対象物を対向配置し且つ前記第2の対象物の載置面に平行な平面内において前記第1の対象物を所定のボンディング位置に配置した状態で、前記両対象物の各対向面とは反対側の面である2つの反対向面のうちの少なくとも一方面側から、前記第1の対象物に関するアライメントマークと前記第2の対象物に関するアライメントマークとを撮像することによって、前記両対象物の相対位置誤差を測定するステップと、
b)前記第1の対象物と前記第2の対象物とを前記第1の方向に相対的に駆動して前記相対位置誤差を補正するステップと、
を備えることを特徴とするアライメント方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate


【公開番号】特開2012−238775(P2012−238775A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2011−107787(P2011−107787)
【出願日】平成23年5月13日(2011.5.13)
【出願人】(304019355)ボンドテック株式会社 (36)
【Fターム(参考)】