説明

インホイールモータ

【課題】電動車両を駆動するために十分な回転力を確保し、かつ、エネルギーの損失を低減すること。
【解決手段】電動車両駆動装置10は、第1モータ11と、第2モータ12と、第1遊星歯車機構20と、第2遊星歯車機構30と、クラッチ装置40と、ホイール軸受50とを含む。第1遊星歯車機構20は、シングルピニオン式の遊星歯車装置である。第2遊星歯車機構30は、ダブルピニオン式の遊星歯車装置である。クラッチ装置40は、第1キャリア23に連結される。クラッチ装置40は、内輪41と外輪42と複数のスプラグ43とを含み、第1キャリア23の回転を規制する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電動車両を駆動するインホイールモータに関する。
【背景技術】
【0002】
電動車両駆動装置のうち、特にホイールを直接駆動するものをインホイールモータという。ここでいうインホイールモータとは、電動車両が備えるホイールの近傍に設けられる駆動装置である。なお、インホイールモータは、必ずしもホイールの内部に収納されていなくてもよい。インホイールモータは、ホイールの内部またはホイール近傍に配置される必要がある。しかしながら、ホイールの内部やホイール近傍は、比較的狭い空間である。よって、インホイールモータは、小型化が要求される。
【0003】
インホイールモータには、減速機構を備える方式のものと、減速機構を備えないダイレクトドライブ方式のものとがある。減速機構を備える方式のインホイールモータは、電動車両の発進時や登坂時(坂道を登る時)に、電動車両を駆動するために十分な回転力を確保しやすい。しかしながら、減速機構を備える方式のインホイールモータは、減速機構を介して回転力をホイールに伝えるため、減速機構での摩擦損失が生じる。減速機構を備えるインホイールモータは、モータの出力軸の回転速度がホイールの回転速度よりも常に速い。よって、減速機構を備える方式のインホイールモータは、特に、電動車両が高速で走行する時に、減速機構での摩擦損失によってエネルギーの損失が増大する。
【0004】
一方、ダイレクトドライブ方式のインホイールモータは、減速機構を介さずに回転力をホイールに伝えるため、エネルギーの損失を低減できる。しかしながら、ダイレクトドライブ方式のインホイールモータは、減速機構によって回転力を増幅できない。これにより、ダイレクトドライブ方式のインホイールモータは、電動車両の発進時や登坂時に、電動車両を駆動するために十分な回転力を確保しにくい。電動車両を駆動するために十分な回転力を確保するための技術として、例えば、特許文献1には、インホイールモータではないが、遊星歯車機構を含む減速機構と、2つのモータとを備える技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−081932号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に開示されている技術は、動力循環経路を有する。特許文献1に開示されている技術は、動力循環経路内で回転力をまず電力に変換し、その電力を再度回転力に変換している。よって、特許文献1に開示されている技術は、動力循環経路に発電機及びモータを含む必要がある。しかしながら、上述のように、インホイールモータは、電動車両駆動装置の小型化が要求されており、発電機及びモータを設置するためのスペースをホイール近傍に確保することが困難である。また、特許文献1に開示されている技術は、動力を電力に変換し、さらに電力を動力に変換する。よって、特許文献1に開示されている技術は、エネルギーの変換時にエネルギーの損失が生じる。
【0007】
一方、インホイールモータの減速機構に、クラッチ装置が含まれている場合、クラッチ装置のトルク(回転力)容量によって、インホイールモータが出力できる最大のトルクが制限される場合がある。
【0008】
本発明は、上記に鑑みてなされたものであり、電動車両を駆動するために十分な回転力を確保し、かつ、エネルギーの損失を低減できるインホイールモータを提供することを目的とする。
【課題を解決するための手段】
【0009】
また、上述した課題を解決し、目的を達成するために、第1の発明に係るインホイールモータは、第1モータと、第2モータと、前記第1モータと連結される第1サンギアと、前記第1サンギアと噛み合う第1ピニオンギアと、前記第1ピニオンギアが自転できるように、かつ、前記第1ピニオンギアが前記第1サンギアを中心に公転できるように前記第1ピニオンギアを保持する第1キャリアと、第1部材と、前記第1部材に対して回転できる第2部材と、前記第2部材に第1方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達し、前記第2部材に前記第1方向とは逆の第2方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達しない複数のスプラグとを含み、前記第1キャリアの回転を規制できるクラッチ装置と、前記第1ピニオンギアと噛み合い、かつ、前記第2モータと連結される第1リングギアと、前記第1モータと連結される第2サンギアと、前記第2サンギアと噛み合う第2ピニオンギアと、前記第2ピニオンギアと噛み合う第3ピニオンギアと、前記第2ピニオンギア及び前記第3ピニオンギアがそれぞれ自転できるように、かつ、前記第2ピニオンギア及び前記第3ピニオンギアが前記第2サンギアを中心に公転できるように前記第2ピニオンギア及び前記第3ピニオンギアを保持すると共に、前記第1リングギアと連結される第2キャリアと、前記第3ピニオンギアと噛み合い、かつ、電動車両のホイールと連結される第2リングギアと、を含み、前記第1方向は、前記電動車両を前進させるように前記第1モータが回転力を出力し、かつ、前記第2モータが作動していない際に前記第2部材が回転する方向であることを特徴とする。
【0010】
上記構成により、第1の発明に係るインホイールモータは、第1変速状態と第2変速状態の2つの変速状態を実現できる。第1変速状態では、第1モータは作動し、第2モータは作動せず、クラッチ装置は係合状態である。第1変速状態で、第1の発明に係るインホイールモータは、第2キャリアから第1リングギアに回転力の一部が戻り、さらに第1リングギアに伝わった回転力が第1サンギアを介して第2サンギアに伝わる。すなわち、第1の発明に係るインホイールモータは、回転力が循環する。これにより、第1の発明に係るインホイールモータは、より大きな変速比を実現できる。すなわち、第1の発明に係るインホイールモータは、第1変速状態の時に、第1モータが出力する回転力よりも大きな回転力をホイールに伝達できる。
【0011】
第2変速状態では、第1モータ及び第2モータは作動し、クラッチ装置は非係合状態である。第1の発明に係るインホイールモータは、第2変速状態の際、第2モータから出力される回転力の角速度が変化することで、変速比を連続的に変更できる。これにより、第1の発明に係るインホイールモータは、第1モータの角速度と、出力軸となる第2リングギアの角速度との差を低減できる。これにより、第1の発明に係るインホイールモータは、摩擦損失を低減できる。
【0012】
また、前記クラッチ装置が、第1部材と、前記第1部材に対して回転できる第2部材と、前記第2部材に第1方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達し、前記第2部材に前記第1方向とは逆の第2方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達しない複数のスプラグと、を含み、前記第1方向は、前記電動車両を前進させるように前記第1モータが回転力を出力し、かつ、前記第2モータが作動していない際に前記第2部材が回転する方向である構成であることで、第2部材に作用する回転力の方向が切り替えられることによって、係合状態と非係合状態とを切り替えできる。よって、ピストンを移動させるための機構や、電磁アクチュエータを必要としない。これにより、本発明に係るインホイールモータは、部品点数を低減でき、かつ、自身(クラッチ装置)を小型化できる。また、ピストンを移動させるための機構や、電磁アクチュエータを作動させるためのエネルギーが不要となる。
【0013】
また、前記クラッチ装置が、摩擦係合部材としてスプラグを用いていることにより、スプラグを、円柱状のカムの数よりも多数第1部材と第2部材との間に配置することができる。そのため、前記クラッチ装置のトルク容量を、円柱状のカムを配置したカムクラッチ装置よりも大きくすることができる。その結果、第1部材と第2部材との間で伝達できる力の大きさはより大きくなるため、ホイールに出力する回転力の最大値を大きく設定することができる。
【0014】
また、上述した課題を解決し、目的を達成するために、第2の発明に係るインホイールモータは、第1モータと、第2モータと、前記第1モータと連結される第1サンギアと、前記第1サンギアと噛み合う第1ピニオンギアと、前記第1ピニオンギアが自転できるように、かつ、前記第1ピニオンギアが前記第1サンギアを中心に公転できるように前記第1ピニオンギアを保持する第1キャリアと、前記第1ピニオンギアと噛み合い、かつ、電動車両のホイールと連結される第1リングギアと、前記第1モータと連結される第2サンギアと、前記第2サンギアと噛み合う第2ピニオンギアと、前記第2ピニオンギアと噛み合う第3ピニオンギアと、前記第2ピニオンギア及び前記第3ピニオンギアがそれぞれ自転できるように、かつ、前記第2ピニオンギア及び前記第3ピニオンギアが前記第2サンギアを中心に公転できるように前記第2ピニオンギア及び前記第3ピニオンギアを保持する第2キャリアと、第1部材と、前記第1部材に対して回転できる第2部材と、前記第2部材に第1方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達し、前記第2部材に前記第1方向とは逆の第2方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達しない複数のスプラグとを含み、前記第2キャリアの回転を規制できるクラッチ装置と、前記第3ピニオンギアと噛み合い、かつ、前記第1キャリアと連結され、かつ、前記第2モータと連結される第2リングギアと、を含み、前記第1方向は、前記電動車両を前進させるように前記第1モータが回転力を出力し、かつ、前記第2モータが作動していない際に前記第2部材が回転する方向であることを特徴とする。
【0015】
上記構成により、第2の発明に係るインホイールモータは、第1変速状態と第2変速状態の2つの変速状態を実現できる。第1変速状態では、第1モータは作動し、第2モータは作動せず、クラッチ装置は係合状態である。第1変速状態で、第2の発明に係るインホイールモータは、第1キャリアから第2リングギアに回転力の一部が戻り、さらに第2リングギアに伝わった回転力が第2サンギアを介して第1サンギアに伝わる。すなわち、第2の発明に係るインホイールモータは、回転力が循環する。これにより、第2の発明に係るインホイールモータは、より大きな変速比を実現できる。すなわち、第2の発明に係るインホイールモータは、第1変速状態の時に、第1モータが出力する回転力よりも大きな回転力をホイールに伝達できる。
【0016】
第2変速状態では、第1モータ及び第2モータは作動し、クラッチ装置は非係合状態である。第2の発明に係るインホイールモータは、第2変速状態の際、第2モータから出力される回転力の角速度が変化することで、変速比を連続的に変更できる。これにより、第2の発明に係るインホイールモータは、第1モータの角速度と、出力軸となる第1リングギアの角速度との差を低減できる。これにより、第2の発明に係るインホイールモータは、摩擦損失を低減できる。
【0017】
また本発明に係るインホイールモータは、前記クラッチ装置が、前記スプラグを前記第1部材と前記第2部材とに接触させる弾性部材を含むことを特徴とする。これにより、前記クラッチ装置が、非係合状態から係合状態に切り替わる際に要する時間を低減できる。
【0018】
本発明に係るインホイールモータは、前記クラッチ装置が、前記複数のスプラグを互いに等間隔に保持する、第1の保持器と第2の保持器とを含むことを特徴とする。これにより、クラッチ装置に作用する全トルクは、均等に分割されて各スプラグに作用する。そのため、保持器を備えていないクラッチ装置と比較して、本発明に係るクラッチ装置のトルク容量をさらに大きくすることができる。
【0019】
本発明の好ましい態様としては、前記第1の保持器は、互いに等間隔に配置された複数の第1の開口部を側面に有する円筒であり、前記第2の保持器は、互いに等間隔に配置された、前記第1の保持器と同数の第2の開口部を側面に有し、前記第1の保持器の内径よりも外径が小さい円筒であり、前記第1の開口部と前記第2の開口部とが対向するように、かつ前記第1の保持器の内側に前記第2の保持器が配置され、対向する前記第1の開口部と前記第2の開口部とに前記スプラグが挿し通されることが望ましい。
【0020】
前記第1の発明の好ましい態様としては、前記第2モータが出力する第2回転力と、前記第1モータが出力する第1回転力との比は、前記第2サンギアと前記第2キャリアとの間に作用する回転力比の82%以上であることが望ましい。
【0021】
前記第1の発明に係るインホイールモータは、第1モータが出力する回転力であるTAと、第2モータが出力する回転力であるTBと、第2サンギアの歯数Z1と、第2リングギアの歯数Z4とが、後で説明する下記の式(7)を満たす必要がある。しかしながら、モータが出力する回転力は、モータの寸法や、磁気特性などの要因により、設計値に対して最大で18%程度の誤差が生じる。前記第1の発明の好ましい態様に係るインホイールモータは、上記構成により、個体差によらず、第1モータが出力する回転力であるTAと、第2モータが出力する回転力であるTBと、第2サンギアの歯数Z1と、第2リングギアの歯数Z4とが、下記の式(7)を満たすことができる。
【0022】
【数7】

【0023】
前記第2の発明の好ましい態様としては、前記第2モータが出力する第2回転力と、前記第1モータが出力する第1回転力との比は、前記第1サンギアと前記第1キャリアとの間に作用する回転力比の82%以上であることが望ましい。上記構成により、前記第2の発明の好ましい態様に係るインホイールモータは、個体差によらず、第1モータが出力する回転力であるTAと、第2モータが出力する回転力であるTBと、第1サンギアの歯数Z5と、第1リングギアの歯数Z7とが、後で説明する下記の式(8)を満たすことができる。
【0024】
【数8】

【0025】
本発明の好ましい態様としては、前記第1モータの回転軸に直交する平面で前記第1モータのステータコアを切った断面形状と、前記第2モータの回転軸に直交する平面で前記第2モータのステータコアを切った断面形状とは、同一であることが望ましい。
【0026】
本発明に係るインホイールモータは、上記構成により、第1モータと第2モータとでステータコアの設計が共通するため、設計に要する労力を低減できる。また、第1モータのステータコアの断面形状と、第2モータのステータコアの断面形状とが同一の場合、第1モータのステータコア及び第2モータの第2ステータコアは、同一の金型で製造されることができる。よって、本発明に係るインホイールモータは、製造に要する労力を低減できる。また、本発明に係るインホイールモータは、製造に要するコストを低減できる。
【0027】
前記第1の発明の好ましい態様としては、前記第1モータの回転軸方向における前記第1モータのステータコアの寸法と、前記第2モータの回転軸方向における前記第2モータのステータコアの寸法との比は、前記第2サンギアと前記第2キャリアとの間に作用する回転力比の82%以上118%以下であることが望ましい。また前記第2の発明の好ましい態様としては、前記第1モータの回転軸方向における前記第1モータのステータコアの寸法と、前記第2モータの回転軸方向における前記第2モータのステータコアの寸法との比は、前記第1サンギアと前記第1キャリアとの間に作用する回転力比の82%以上118%以下であることが望ましい。
【0028】
ステータコアの断面形状が同一の場合、モータが出力する回転力の大きさは、回転軸方向のステータコアの寸法に比例する。よって、前記第1の発明の好ましい態様に係るインホイールモータは、上記構成により、第1モータが出力する回転力であるTAと、第2モータが出力する回転力であるTBと、第2サンギアの歯数Z1と、第2リングギアの歯数Z4とが、上記の式(7)を満たすことができる。また、前記第2の発明の好ましい態様に係るインホイールモータは、上記構成により、第1モータが出力する回転力であるTAと、第2モータが出力する回転力であるTBと、第1サンギアの歯数Z5と、第1リングギアの歯数Z7とが、上記の式(8)を満たすことができる。
【0029】
本発明の好ましい態様としては、前記第1モータの回転軸に直交する平面で前記第1モータのロータコアを切った断面形状と、前記第2モータの回転軸に直交する平面で前記第2モータのロータコアを切った断面形状とは、同一であることが望ましい。
【0030】
本発明に係るインホイールモータは、上記構成により、第1モータと第2モータとでロータコアの設計が共通するため、設計に要する労力を低減できる。また、第1モータのロータコアの断面形状と、第2モータのロータコアの断面形状とが同一の場合、第1モータのロータコア及び第2モータの第2ロータコアは、同一の金型で製造されることができる。よって、本発明に係るインホイールモータは、製造に要する労力を低減できる。また、本発明に係るインホイールモータは、製造に要するコストを低減できる。
【0031】
本発明の好ましい態様としては、前記第1モータの回転軸方向における前記第1モータのロータコアの寸法と、前記第2モータの回転軸方向における前記第2モータのロータコアの寸法との比は、前記回転力比の82%以上118%以下であることが望ましい。
【0032】
ロータコアの断面形状が同一の場合、モータが出力する回転力の大きさは、回転軸方向のロータコアの寸法に比例する。よって、前記第1の発明の好ましい態様に係るインホイールモータは、上記構成により、第1モータが出力する回転力であるTAと、第2モータが出力する回転力であるTBと、第2サンギアの歯数Z1と、第2リングギアの歯数Z4とが、上記の式(7)を満たすことができる。また、前記第2の発明の好ましい態様に係るインホイールモータは、上記構成により、第1モータが出力する回転力であるTAと、第2モータが出力する回転力であるTBと、第1サンギアの歯数Z5と、第1リングギアの歯数Z7とが、上記の式(8)を満たすことができる。
【発明の効果】
【0033】
本発明は、電動車両を駆動するために十分な回転力を確保し、かつ、エネルギーの損失を低減できるインホイールモータを提供できる。
【図面の簡単な説明】
【0034】
【図1】図1は、実施形態1の電動車両駆動装置の構成と、電動車両駆動装置が第1変速状態の時に回転力が伝わる経路とを示す説明図である。
【図2】図2は、実施形態1の電動車両駆動装置が第1変速状態での各部の各回転速度を示す共線図である。
【図3】図3は、実施形態1の電動車両駆動装置が第2変速状態の時に回転力が伝わる経路を示す説明図である。
【図4】図4は、実施形態1の第1モータ及び第2モータの角速度−回転力特性の一例を示すグラフである。
【図5−1】図5−1は、実施形態1のクラッチ装置の分解説明図である。
【図5−2】図5−2は、実施形態1のクラッチ装置を示す説明図である。
【図6】図6は、実施形態1のクラッチ装置のスプラグを拡大して示す説明図である。
【図7】図7は、実施形態1の電動車両駆動装置の外観を模式的に示す説明図である。
【図8】図8は、図7のA−A断面図である。
【図9】図9は、実施形態1の電動車両駆動装置を分解して示す説明図である。
【図10】図10は、モータが出力する回転力の個体差の出現確率を示すグラフである。
【図11】図11は、実施形態2の電動車両駆動装置の構成を示す説明図である。
【図12】図12は、実施形態2の電動車両駆動装置が第1変速状態での各部の各回転速度を示す共線図である。
【発明を実施するための形態】
【0035】
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この発明を実施するための形態(以下、実施形態という)によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。
【0036】
(実施形態1)
図1は、実施形態1の電動車両駆動装置の構成と、電動車両駆動装置が第1変速状態の時に回転力が伝わる経路とを示す説明図である。図1に示すように、インホイールモータである電動車両駆動装置10は、ケーシングGと、第1モータ11と、第2モータ12と、変速機構13と、ホイール軸受50とを含む。ケーシングGは、第1モータ11と、第2モータ12と、変速機構13とを収納する。第1モータ11は、第1回転力TAを出力できる。第2モータ12は、第2回転力TBを出力できる。変速機構13は、第1モータ11と連結される。これにより、変速機構13は、第1モータ11が作動すると、第1回転力TAが伝えられる(入力される)。なお、ここでいうモータの作動とは、モータに電力が供給されて出力軸が回転することをいう。また、変速機構13は、第2モータ12と連結される。これにより、変速機構13は、第2モータ12が作動すると、第2回転力TBが伝えられる(入力される)。そして、変速機構13は、ホイール軸受50と連結され、変速された回転力をホイール軸受50に伝える(出力する)。ホイール軸受50は、電動車両のホイールHが取り付けられる。
【0037】
変速機構13は、第1遊星歯車機構20と、第2遊星歯車機構30と、クラッチ装置40とを含む。第1遊星歯車機構20は、シングルピニオン式の遊星歯車機構である。第1遊星歯車機構20は、第1サンギア21と、第1ピニオンギア22と、第1キャリア23と、第1リングギア24とを含む。第2遊星歯車機構30は、ダブルピニオン式の遊星歯車機構である。第2遊星歯車機構30は、第2サンギア31と、第2ピニオンギア32aと、第3ピニオンギア32bと、第2キャリア33と、第2リングギア34とを含む。
【0038】
第1サンギア21は、回転軸Rを中心に回転(自転)できるようにケーシングG内に支持される。第1サンギア21は、第1モータ11と連結される。よって、第1サンギア21は、第1モータ11が作動すると、第1回転力TAが伝えられる。これにより、第1サンギア21は、第1モータ11が作動すると、回転軸Rを中心に回転する。第1ピニオンギア22は、第1サンギア21と噛み合う。第1キャリア23は、第1ピニオンギア22が第1ピニオン回転軸Rp1を中心に回転(自転)できるように第1ピニオンギア22を保持する。第1ピニオン回転軸Rp1は、例えば、回転軸Rと平行である。
【0039】
第1キャリア23は、回転軸Rを中心に回転(自転)できるようにケーシングG内に支持される。これにより、第1キャリア23は、第1ピニオンギア22が第1サンギア21を中心に、すなわち回転軸Rを中心に公転できるように第1ピニオンギア22を保持することになる。第1リングギア24は、回転軸Rを中心に回転(自転)できる。第1リングギア24は、第1ピニオンギア22と噛み合う。また、第1リングギア24は、第2モータ12と連結される。よって、第1リングギア24は、第2モータ12が作動すると第2回転力TBが伝えられる。これにより、第1リングギア24は、第2モータ12が作動すると、回転軸Rを中心に回転(自転)する。
【0040】
クラッチ装置40は、第1キャリア23の回転を規制できる。具体的には、クラッチ装置40は、回転軸Rを中心とした第1キャリア23の回転を規制(制動)する場合と、前記回転を許容する場合とを切り替えできる。以下、クラッチ装置40は、前記回転を規制(制動)する状態を係合状態といい、前記回転を許容する状態を非係合状態という。クラッチ装置40の詳細については後述する。
【0041】
第2サンギア31は、回転軸Rを中心に回転(自転)できるようにケーシングG内に支持される。第2サンギア31は、第1サンギア21を介して第1モータ11と連結される。具体的には、第1サンギア21と第2サンギア31とは、同軸(回転軸R)で回転できるようにサンギアシャフト14に一体で形成される。そして、サンギアシャフト14は、第1モータ11と連結される。これにより、第2サンギア31は、第1モータ11が作動すると、回転軸Rを中心に回転する。
【0042】
第2ピニオンギア32aは、第2サンギア31と噛み合う。第3ピニオンギア32bは、第2ピニオンギア32aと噛み合う。第2キャリア33は、第2ピニオンギア32aが第2ピニオン回転軸Rp2を中心に回転(自転)できるように第2ピニオンギア32aを保持する。また、第2キャリア33は、第3ピニオンギア32bが第3ピニオン回転軸Rp3を中心に回転(自転)できるように第3ピニオンギア32bを保持する。第2ピニオン回転軸Rp2及び第3ピニオン回転軸Rp3は、例えば、回転軸Rと平行である。
【0043】
第2キャリア33は、回転軸Rを中心に回転(自転)できるようにケーシングG内に支持される。これにより、第2キャリア33は、第2ピニオンギア32a及び第3ピニオンギア32bが第2サンギア31を中心に、すなわち回転軸Rを中心に公転できるように第2ピニオンギア32a及び第3ピニオンギア32bを保持することになる。また、第2キャリア33は、第1リングギア24と連結される。これにより、第2キャリア33は、第1リングギア24が回転(自転)すると、回転軸Rを中心に回転(自転)する。第2リングギア34は、回転軸Rを中心に回転(自転)できる。第2リングギア34は、第3ピニオンギア32bと噛み合う。また、第2リングギア34は、ホイール軸受50と連結される。これにより、第2リングギア34が回転(自転)すると、ホイール軸受50は回転する。次に、電動車両駆動装置10における回転力の伝達経路について説明する。
【0044】
電動車両駆動装置10は、第1変速状態と第2変速状態との2つの変速状態を実現できる。まずは、電動車両の発進時や登坂時(坂道を登る時)に用いられる第1変速状態、いわゆるローギア状態を電動車両駆動装置10が実現する場合を説明する。第1変速状態では、第1モータ11は作動する。第1変速状態の時に、第1モータ11が出力する回転力を第1回転力T1とする。また、第1変速状態の時、第2モータ12は作動しない、すなわち空転する。また、クラッチ装置40は係合状態である。すなわち、第1変速状態では、第1ピニオンギア22は、ケーシングGに対して公転できない状態となる。なお、図1に示す第1回転力T1と、循環回転力T3と、合成回転力T4と、第1分配回転力T5と、第2分配回転力T6との各回転力は、各部位に作用するトルクを示し、単位はNmである。
【0045】
第1モータ11から出力された第1回転力T1は、第1サンギア21に入力される。そして、第1回転力T1は、第1サンギア21で循環回転力T3と合流する。循環回転力T3は、第1リングギア24から第1サンギア21に伝えられた回転力である。循環回転力T3の詳細については後述する。これにより、第2サンギア31は、第1回転力T1と循環回転力T3とが合成された合成回転力T4が伝えられる。合成回転力T4は、第2遊星歯車機構30によって増幅される。また、合成回転力T4は、第2遊星歯車機構30によって第1分配回転力T5と第2分配回転力T6とに分配される。第1分配回転力T5は、第2リングギア34に分配された回転力である。第2分配回転力T6は、第2キャリア33に分配された回転力である。
【0046】
第1分配回転力T5は、第2リングギア34からホイール軸受50に伝えられる。これにより、ホイールHは回転し、電動車両は走行する。第2分配回転力T6は、第1遊星歯車機構20に入力される。具体的には、第2分配回転力T6は、第1リングギア24に伝えられる。第2分配回転力T6は、第1遊星歯車機構20によって減少される。具体的には、第2分配回転力T6は、第1リングギア24から第1ピニオンギア22を介して第1サンギア21に伝わる際に変速されることで減少される。また、第2分配回転力T6は、第1リングギア24から第1ピニオンギア22を介して第1サンギア21に伝わる際に、自身(第2分配回転力T6)の回転方向が逆転される。これにより、第2分配回転力T6は、循環回転力T3となって第1サンギア21に伝えられる。
【0047】
このように、第1モータ11から第1サンギア21に入力された第1回転力T1は、増幅されつつ、増幅された回転力の一部が第1分配回転力T5として出力される。そして、増幅された回転力の残りの回転力は、第2キャリア33から第1リングギア24及び第1ピニオンギア22を介して循環回転力T3として第1サンギア21に伝えられる。第1サンギア21に伝えられた循環回転力T3は、第1回転力T1と合流して合成回転力T4となり第2サンギア31に伝えられる。
【0048】
以上のように、電動車両駆動装置10は、第1遊星歯車機構20と第2遊星歯車機構30との間で、回転力の一部が循環する。これにより、電動車両駆動装置10は、より大きな変速比を実現できる。すなわち、電動車両駆動装置10は、第1変速状態の時に、より大きな回転力をホイールHに伝達できる。以下に、第1回転力T1から第2分配回転力T6の値の一例を説明する。
【0049】
第2サンギア31の歯数をZ1とし、第2リングギア34の歯数をZ4とし、第1サンギア21の歯数をZ5とし、第1リングギア24の歯数をZ7とする。以下に、電動車両駆動装置10の各部に作用する回転力(図1に示す循環回転力T3、合成回転力T4、第1分配回転力T5、第2分配回転力T6)の第1回転力T1に対する比を数式で示す。なお、下記の式(1)〜式(4)で負の値となるものは、第1回転力T1とは逆方向の回転力である。
【0050】
【数1】

【数2】

【数3】

【数4】

【0051】
一例として、歯数Z1を31、歯数Z4を71、歯数Z5を37、歯数Z7を71とする。また、第1回転力T1を75Nmとする。すると、循環回転力T3は154.0Nm、合成回転力T4は229.0Nm、第1分配回転力T5は524.4Nm、第2分配回転力T6は、−295.4Nmとなる。このように、電動車両駆動装置10は、一例として第1モータ11が出力する第1回転力T1を6.99倍に増幅してホイールHに出力できる。次に、共線図を用いて第1変速状態での各部の角速度を説明する。
【0052】
図2は、実施形態1の電動車両駆動装置が第1変速状態での各部の各回転速度を示す共線図である。以下、一例として、第1サンギア21の角速度をV[rad/s]とする。また、負の値となる角速度は、第1回転力TAとは逆方向の回転であることを示す。図2に示すように、第1サンギア21の角速度はV[rad/s]である。第1キャリア23は、クラッチ装置40により回転が規制されている。よって、第1キャリア23の角速度は0[rad/s]である。第1リングギア24の角速度は0.521V[rad/s]である。第2サンギア31は、第1サンギア21と連結されている。よって、第2サンギア31の角速度はV[rad/s]である。第2キャリア33は、第1リングギア24と連結されている。よって、第2キャリア33の角速度は0.521V[rad/s]である。
【0053】
第2遊星歯車機構30は、ピニオンギアを2つ有するダブルピニオン式の遊星歯車機構であるため、第2サンギア31から第2リングギア34に伝わる回転力は第2キャリア33で反転する。回転力は、第2キャリア33から第2リングギア34へ伝わる際、第2サンギア31から第2キャリア33へ伝わる時の変化率に−1を乗算した変化率で反転して伝わる。すなわち、図2中では、θ1とθ2とが等しくなる。これにより、第2リングギア34の角速度は0.143V[rad/s]となる。以上により、変速機構13の変速比は、V/0.143V=6.99となる。
【0054】
ここで、第1キャリア23に作用する反トルクは、−(第2分配回転力T6+(−循環回転力T3))であり、449.4Nmとなる。第1キャリア23に作用する反トルクは、すべてクラッチ機構40によって保持される。クラッチ装置40が、保持することのできるトルクには限界があり、この限界を超えたトルクがクラッチ装置40に作用すると、クラッチ装置40に滑りが生じる。ホイールHに出力される第1分配回転力T5は、第1モータ11のトルクである第1回転力T1に比例して大きくなるが、第1キャリア23に作用する反トルクの大きさも、第1回転力T1に比例して大きくなる。その結果、ホイールHに出力される第1分配回転力T5は、クラッチ装置40が保持することのできるトルクの限界に制限される。すなわち、ホイールHに出力される第1分配回転力T5の最大値を大きくするためには、第1モータ11のトルクを大きくするだけではなく、クラッチ装置40のトルク容量を大きくする必要がある。本実施形態では、クラッチ装置40は、スプラグ式ワンウェイクラッチ装置である。以下、スプラグ式ワンウェイクラッチ装置であるクラッチ装置40について説明する。
【0055】
図5−1は、実施形態1のクラッチ装置を示す分解説明図である。図5−2は、実施形態1のクラッチ装置を示す説明図である。図6は、実施形態1のクラッチ装置のスプラグを拡大して示す説明図である。図5−1および図5−2に示すように、クラッチ装置40は、第2部材としての内輪41と、第1部材としての外輪42と、複数のスプラグ43とを含む。なお、内輪41が第1部材として機能し、外輪42が第2部材として機能してもよい。内輪41及び外輪42は、筒状部材である。内輪41は、外輪42の内側に配置される。内輪41と外輪42との一方は、第1キャリア23に連結され、他方はケーシングGに連結される。本実施形態では、内輪41は第1キャリア23に連結され、外輪42はケーシングGに連結される。
【0056】
スプラグ43は、摩擦により内輪41と外輪42とを係合させる摩擦係合部材である。スプラグ43は、柱状の部材であり、底面が、中央がくびれた繭状の形状である。図6に示した円Cは、スプラグ43の底面により規定される図形に外接する円である。スプラグ43の側面のうち、スプラグ43が内輪41に接触する面である内輪接触面61は、円Cを底面とした円柱が有する側面の曲率よりも大きい曲率を持つ曲面である。スプラグ43の側面のうち、スプラグ43が外輪42に接触する面である外輪接触面62も、円Cを底面とした円柱が有する側面の曲率よりも大きい曲率を持つ曲面である。ただし、内輪接触面61の曲率と外輪接触面62の曲率とは異なっていてもよい。複数のスプラグ43は、内輪41の外周部と外輪42の内周部との間に、内輪41及び外輪42の周方向に沿って等間隔に配置される。
【0057】
内輪41及び外輪42の周方向におけるスプラグ43の長さは、円Cの直径よりも小さい。したがって、内輪41の外周部と外輪42の内周部との間に配置する場合に必要な周方向の長さは、円Cを底面とする円柱よりも、スプラグ43の方が短い。その結果、内輪41の外周部と外輪42の内周部との間に、円Cを底面とする円柱と比較して多くのスプラグ43を配置することができる。
【0058】
スプラグ式ワンウェイクラッチ装置、カムクラッチ装置及びローラクラッチ装置のトルク容量を決定する主な要因は、スプラグ、カム、ローラのような摩擦係合部材が、内輪と外輪とに接触する際の圧力(接触圧力)である。この接触圧力が、内輪、外輪、及び摩擦係合部材の材料によって決まる、ある一定の閾値を超えると、各クラッチ装置は、作用するトルクを保持することができなくなる。クラッチ装置を構成する摩擦係合部材が多数になるほど、クラッチ装置に作用するトルクは多くの摩擦係合部材に分散され、摩擦係合部材が、内輪および外輪と接触する際の圧力は小さくなる。したがって、摩擦係合部材が多数になるほどクラッチ装置のトルク容量は大きくなる。
【0059】
クラッチ装置40は、摩擦係合部材としてスプラグ43が用いられているので、円Cに類似した底面を持つカムの数よりも多数のスプラグ43をクラッチ装置40に配置することができる。その結果、クラッチ装置40と同一の取り付け寸法を持つカムクラッチ装置のトルク容量よりも、クラッチ装置40のトルク容量を大きくすることができる。クラッチ装置40のトルク容量を大きくすることができるので、ホイールHに出力される第1分配回転力T5の最大値を大きくすることができる。
【0060】
図6に示すように、クラッチ装置40は、リボンスプリング58(弾性部材)と、外側保持器59(第1の保持器)と、内側保持器60(第2の保持器)とを含む。リボンスプリング58は、各スプラグ43を内輪41と外輪42とに接触させる弾性部材であり、例えばステンレス薄板をプレス加工して構成される。リボンスプリング58は、梯子状部材を環にした形状であり、周方向に伸縮可能である。リボンスプリング58により、非係合状態であってもスプラグ43は内輪41及び外輪42に接触させられているため、非係合状態から係合状態に移るときのバックラッシが少なくなり、内輪41または外輪42に回転力が作用した際に、スプラグ43は迅速に内輪41及び外輪42と噛み合うことができる。よって、クラッチ装置40は、非係合状態から係合状態に切り替わる際に要する時間を低減できる。なお、非係合状態では、内輪41と外輪42との間で力は伝達されていない。また、係合状態では、内輪41と外輪42との間で力は伝達されている。
【0061】
外側保持器59及び内側保持器60の形状は、いずれも円筒形状である。外側保持器59の側面には、周方向に矩形の複数の開口部63a(第1の開口部)が、互いに等間隔に形成されている。外側保持器59は、外輪42の内側に配置される。内側保持器60の外径は、外側保持器59の内径よりも小さく、内側保持器60は、外側保持器59の内側に配置される。内側保持器60の側面には、周方向に、外側保持器59に形成された開口部63aと同数の開口部63b(第2の開口部)が、周方向に向かって互いに等間隔に形成されている。開口部63aと開口部63bとが対向するように、外側保持器59に対して内側保持器60は配置されている。外側保持器59の開口部63aとこれに対向する内側保持器60の開口部63bとにスプラグ43が挿し通されることにより、外側保持器59と内側保持器60とが、複数のスプラグ43を保持する。
【0062】
複数の開口部63aが外側保持器59の周方向に、及び複数の開口部63bが内側保持器60の周方向に、それぞれ等間隔に形成されている結果、複数のスプラグ43は、外側保持器59の周方向、すなわち内側保持器60の周方向に向かって、互いに等間隔に配置されることになる。外輪接触面62は、外側保持器59に形成された開口部63aから外側保持器59の径方向外側へ突出する。内輪接触面61は、内側保持器60に形成された開口部63bから内側保持器60の径方向内側へ突出する。
【0063】
このように外側保持器59と内側保持器60とが複数のスプラグ43を保持することにより、複数のスプラグ43は、周方向に互いに等間隔に配置されると共に、複数のスプラグ43の動きは同期する。その結果、クラッチ装置40に作用する全トルクは、均等に分割されて各スプラグ43に作用する。そのため、外側保持器59及び内側保持器60を備えていないクラッチ装置と比較して、クラッチ装置40のトルク容量を大きくすることができる。
【0064】
クラッチ装置40は、ワンウェイクラッチ装置である。ワンウェイクラッチ装置とは、第1方向の回転力のみを伝達し、第1方向とは逆方向である第2方向の回転力を伝達しない。すなわち、ワンウェイクラッチ装置は、図1及び図3に示す第1キャリア23が第1方向に回転しようとする際に係合状態となり、第1キャリア23が第2方向に回転しようとする際に非係合状態となる。クラッチ装置40は、内輪41に第1方向(図5−2及び図6における矢印方向)の回転力が作用すると、スプラグ43が内輪41及び外輪42と噛み合う。これにより、内輪41と外輪42との間で回転力が伝達され、第1キャリア23は、ケーシングGから反力を受ける。よって、クラッチ装置40は、第1キャリア23の回転を規制できる。また、クラッチ装置40は、内輪41に第2方向の回転力が作用すると、スプラグ43が内輪41及び外輪42と噛み合わない。これにより、内輪41と外輪42との間で回転力が伝達されず、第1キャリア23は、ケーシングGから反力を受けない。よって、クラッチ装置40は、第1キャリア23の回転を規制しない。このようにして、クラッチ装置40は、ワンウェイクラッチ装置としての機能を実現する。
【0065】
本実施形態の場合、クラッチ装置40は、第1変速状態、すなわち第2モータ12が作動していない状態であって、電動車両を前進させるように第1モータ11が回転力を出力する場合に、図1に示す第1キャリア23が回転(自転)する方向に内輪41が回転すると係合状態となる。すなわち、上述の第1方向は、電動車両を前進させるように第1モータ11が回転力を出力し、かつ、第2モータが作動していない際に第2部材としての内輪41が回転する方向である。この状態で、第2モータ12が作動すると、後に述べるように、第2キャリア33の回転方向は逆転する。これにより、クラッチ装置40は、第2変速状態の時、すなわち第2モータ12が作動し、かつ、電動車両を前進させるように第1モータ11が回転力を出力する場合に非係合状態となる。以上により、クラッチ装置40は、第2モータ12が作動するか否かによって従動的に係合状態と非係合状態とを切り替えできる。
【0066】
クラッチ装置40は、ワンウェイクラッチ装置であるので、シリンダ内のピストンを作動流体によって移動させることで2つの回転部材を係合させたり、電磁アクチュエータによって2つの回転部材を係合させたりする方式のクラッチ装置と比較して、ピストンを移動させるための機構を必要とせず、電磁アクチュエータを作動させるための電力も必要としない。クラッチ装置40は、内輪41または外輪42(本実施形態では内輪41)に作用する回転力の方向が切り替えられることで、係合状態と非係合状態とを切り替えできるため、部品点数を低減でき、かつ、自身(クラッチ装置40)を小型化できる。
【0067】
次に、第2変速状態について説明する。図3は、実施形態1の電動車両駆動装置が第2変速状態の時に回転力が伝わる経路を示す説明図である。第2変速状態では、第1モータ11は作動する。第2変速状態の時に、第1モータ11が出力する回転力を第1回転力T7とする。また、第2変速状態では、第2モータ12は作動する。第2変速状態の時に、第2モータ12が出力する回転力を第2回転力T8とする。また、クラッチ装置40は非係合状態である。すなわち、第2変速状態では、第1ピニオンギア22は、ケーシングGに対して回転できる状態となる。これにより、第2変速状態では、第1遊星歯車機構20と第2遊星歯車機構30との間における回転力の循環が遮断される。また、第2変速状態では、第1キャリア23が自由に公転(回転)できるため、第1サンギア21と第1リングギア24とは相対的に自由に回転(自転)できる。なお、図3に示す合成回転力T9は、ホイール軸受50に伝えられるトルクを示し、単位はNmである。
【0068】
第2変速状態では、第1回転力T7と第2回転力T8との比は、第2サンギア31の歯数Z1と第2リングギア34の歯数Z4との比で定まる。第1回転力T7は、第2キャリア33で第2回転力T8と合流する。これにより、第2リングギア34に合成回転力T9が伝わる。第1回転力T7と、第2回転力T8と、合成回転力T9とは、下記の式(5)を満たす。
【0069】
【数5】

【0070】
ここで、第1サンギア21と第1リングギア24とは、互いに反対方向に回転(自転)するため、第2サンギア31と第2キャリア33とも、互いに反対方向に回転(自転)する。第2サンギア31の角速度を一定とした場合、第2キャリア33の角速度が速くなるほど、第2リングギア34の角速度は遅くなる。また、第2キャリア33の角速度が遅くなるほど、第2リングギア34の角速度は速くなる。このように、第2リングギア34の角速度は、第2サンギア31の角速度と、第2キャリア33の角速度とによって連続的に変化する。すなわち、電動車両駆動装置10は、第2モータ12が出力する第2回転力T8の角速度が変化することで、変速比を連続的に変更できる。
【0071】
また、電動車両駆動装置10は、第2リングギア34の角速度を一定にしようとする際に、第1モータ11が出力する第1回転力T7の角速度と、第2モータ12が出力する第2回転力T8の角速度との組み合わせを複数有する。すなわち、第2モータ12が出力する第2回転力T8の角速度が変化することで、第1モータ11が出力する第1回転力T7の角速度が変化しても、第2リングギア34の角速度を一定に維持できる。これにより、電動車両駆動装置10は、第1変速状態から第2変速状態に切り替わる際に、第2リングギア34の角速度の変化量を低減できる。結果として、電動車両駆動装置10は、変速ショックを低減できる。
【0072】
次に、第2モータ12が出力する第2回転力T8について説明する。第2モータ12は、下記の式(6)を満たす第2回転力T8以上の回転力を出力する必要がある。なお、下記の式(6)中の、1−(Z4/Z1)は、第2サンギア31と第2リングギア34との間の回転力比を示す。
【0073】
【数6】

【0074】
したがって、第1モータ11が任意に回転する際に第2リングギア34の回転力及び角速度を調節するためには、第1回転力TAと、第2回転力TBと、歯数Z1と、歯数Z4とは、下記の式(7)を満たせばよい。なお、第1回転力TAは第1モータ11の任意の角速度での回転力であり、第2回転力TBは第2モータ12の任意の角速度での回転力である。
【0075】
【数7】

【0076】
図4は、実施形態1の第1モータ及び第2モータの角速度−回転力特性の一例を示すグラフである。モータの出力軸の角速度と、その角速度で出力できる最大回転力とは、互いに関係する。この関係をモータの角速度−回転力特性(回転数−トルク特性、NT特性)という。よって、第1回転力TAと、第2回転力TBと、歯数Z1と、歯数Z4とは、第1モータ11の出力軸の角速度が0から想定される最大角速度Nmaxの範囲内で、上記の式(7)を満たす必要がある。図4に示す角速度−回転力特性は、第1モータ11の出力軸の角速度が0から想定される最大角速度Nmaxの範囲内で、第1回転力TAと、第2回転力TBと、歯数Z1と、歯数Z4とが上記の式(7)を満たす場合の第1モータ11及び第2モータ12の角速度−回転力特性の一例である。
【0077】
図7は、実施形態1の電動車両駆動装置の外観を模式的に示す説明図である。図8は、図7のA−A断面図である。図9は、実施形態1の電動車両駆動装置を分解して示す説明図である。以下、上記で説明した構成要素については、重複する説明は省略し、図中において同一の符号で示す。図8に示すように、ケーシングGは、第1ケーシングG1と、第2ケーシングG2と、第3ケーシングG3と、第4ケーシングG4とを含む。第1ケーシングG1と、第2ケーシングG2と、第4ケーシングG4とは、筒状部材である。第2ケーシングG2は、第1ケーシングG1よりもホイールH側に設けられる。第1ケーシングG1と第2ケーシングG2とは、例えば4本のボルトで締結される。
【0078】
第3ケーシングG3は、第1ケーシングG1の2つの開口端のうち第2ケーシングG2とは反対側の開口端、すなわち、第1ケーシングG1の電動車両の車体側の開口端に設けられる。第1ケーシングG1と第3ケーシングG3とは、例えば4本のボルトで締結される。これにより、第3ケーシングG3は、第1ケーシングG1の開口を塞ぐ。第4ケーシングG4は、第1ケーシングG1の内部に設けられる。第1ケーシングG1と第4ケーシングG4とは、例えば8本のボルトで締結される。
【0079】
図8及び図9に示すように、第1モータ11は、第1ステータコア11aと、第1コイル11bと、第1インシュレータ11cと、第1ロータ11dと、第1モータ出力軸11eと、第1レゾルバ11fとを含む。第1ステータコア11aは、筒状部材である。第1ステータコア11aは、図8に示すように、第1ケーシングG1と第3ケーシングG3とに挟み込まれて位置決め(固定)される。第1コイル11bは、第1ステータコア11aの複数個所に設けられる。第1コイル11bは、第1インシュレータ11cを介して第1ステータコア11aに巻きつけられる。
【0080】
第1ロータ11dは、第1ステータコア11aの径方向内側に配置される。第1ロータ11dは、第1ロータコア11d1と、第1マグネット11d2とを含む。第1ロータコア11d1は、筒状部材である。第1マグネット11d2は、第1ロータコア11d1の外周部に複数設けられる。第1モータ出力軸11eは、棒状部材である。第1モータ出力軸11eは、第1ロータコア11d1と連結される。第1レゾルバ11fは、第1ロータコア11d1に設けられる。第1レゾルバ11fは、第1ロータコア11d1の回転角度を検出する。
【0081】
第2モータ12は、第2ステータコア12aと、第2コイル12bと、第2インシュレータ12cと、第2ロータ12dと、第2レゾルバ12fとを含む。第2ステータコア12aは、筒状部材である。第2ステータコア12aは、第1ケーシングG1と第2ケーシングG2とに挟み込まれて位置決め(固定)される。第2コイル12bは、第2ステータコア12aの複数個所に設けられる。第2コイル12bは、第2インシュレータ12cを介して第2ステータコア12aに巻きつけられる。
【0082】
第2ロータ12dは、第2ステータコア12aの径方向内側に設けられる。第2ロータ12dは、クラッチ装置40と共に第4ケーシングG4によって、回転軸Rを中心に回転できるように支持される。第2ロータ12dは、第2ロータコア12d1と、第2マグネット12d2とを含む。第2ロータコア12d1は、筒状部材である。第2マグネット12d2は、第2ロータコア12d1の外周部に複数設けられる。第2レゾルバ12fは、第2ロータコア12d1に設けられる。第2レゾルバ12fは、第2ロータコア12d1の回転角度を検出する。
【0083】
ここで、第1ステータコア11a及び第2ステータコア12aのより好ましい態様を説明する。インホイールモータは、小型化が求められると共に、より大きな回転力をホイールに伝達できることが要求される。このような、インホイールモータは、永久磁石同期モータを備える傾向がある。永久磁石同期モータは、渦電流によるエネルギーの損失を低減するために、プレス成形された薄板の電磁鋼板が積層されて、ステータコアやロータコアが形成される。
【0084】
永久磁石同期モータのステータコアとロータコアとの間、いわゆるエアギャップで発生するせん断力は、エアギャップに面する部分の表面積に比例する。なぜならば、ステータコアとロータコアとの間に作用するせん断力のエアギャップでの密度は、エアギャップの磁束密度によって定まり、また、エアギャップの有効な磁束密度は、永久磁石の残留磁束密度とコア材料の無方向性電磁鋼板の飽和磁化(飽和磁束密度)などの材料特性で定まるためである。
【0085】
また、永久磁石同期モータ用の永久磁石として用いることができる良好な特性を有する磁石としてネオジム磁石がある。しかしながら、ネオジム磁石の残留磁束密度は、1.4[T]程度である。一方、コア材料の無方向性電磁鋼板の飽和磁化(飽和磁束密度)は、1.9[T]程度である。以上により、特別に出力軸が高速で回転できるように設計されたモータや、特別に大きな回転力を出力できるように設計されたモータを除き、永久磁石同期モータのエアギャップ内でのせん断力の密度は、モータの大きさに関係なくほぼ一定となる。
【0086】
したがって、ステータコアの断面形状と、ロータコアの断面形状とが同一であれば、モータが出力できる回転力は、ステータコア及びロータコアの回転軸方向の寸法に比例する。これは、ステータコアの断面形状と、ロータコアの断面形状とが同一であれば、モータの大きさが異なっても、エアギャップの半径が等しいためである。なお、ここでいう断面形状は、モータの回転軸に直交する仮想平面における断面形状である。また、ここでいう同一には、製造誤差や寸法誤差により断面形状が異なる場合も含まれる。
【0087】
以上により、電動車両駆動装置10は、回転軸R方向での第1ステータコア11aの寸法と、回転軸R方向での第2ステータコア12aの寸法とが調節されることで、第1回転力TAと、第2回転力TBと、歯数Z1と、歯数Z4とが上記の式(7)を満たすように設計されてもよい。例えば、回転軸Rに直交する仮想平面で切った第1ステータコア11aの断面形状(以下第1ステータコア11aの断面形状という)と、回転軸Rに直交する仮想平面で切った第2ステータコア12aの断面形状(以下第2ステータコア12aの断面形状という)とが同一である場合、回転軸R方向での第1ステータコア11aの寸法と、回転軸R方向での第2ステータコア12aの寸法との比は、上記の式(7)で算出される第1回転力TAと第2回転力TBとの比と等しく設定される。これにより、電動車両駆動装置10は、第1回転力TAと、第2回転力TBと、歯数Z1と、歯数Z4とが上記の式(7)を満たすことになる。
【0088】
本実施形態では、電動車両駆動装置10は、第1ステータコア11aの断面形状と、第2ステータコア12aの断面形状とが同一である。これにより、電動車両駆動装置10は、以下に説明する効果を奏する。モータの設計では、ステータコアの断面形状がモータの磁気特性に大きく関係するため、ステータコアの断面形状を変更すると、モータの設計に要求される労力が増大する。よって、電動車両駆動装置10は、第1ステータコア11aの断面形状と、第2ステータコア12aの断面形状とが同一に形成されることで、設計に要する労力を低減できる。また、第1ステータコア11aの断面形状と、第2ステータコア12aの断面形状とが同一の場合、第1ステータコア11a及び第2ステータコア12aは、同一の金型で製造されることができる。よって、電動車両駆動装置10は、製造に要する労力を低減できる。また、電動車両駆動装置10は、製造に要するコストを低減できる。
【0089】
ここで、上述のように、電動車両駆動装置10は、小型化が求められる。また、電動車両駆動装置10は、ショックアブソーバよりも鉛直方向下側に配置される。よって、電動車両駆動装置10は、軽量化が求められる。よって、第2ステータコア12aの回転軸R方向の寸法を過剰に大きくすることは好ましくない。さらに、上記の式(5)で示されるように、第2リングギア34に作用する回転力は、第2サンギア31の歯数Z1と第2リングギア34の歯数Z4との比で決定される。よって、第2モータ12が出力する回転力が増加しても、第2リングギア34がホイールHに伝達できる回転力の大きさは変化しない。以上により、第2ステータコア12aの回転軸R方向の寸法を過剰に大きくして第2モータ12が出力する第2回転力TBを第1モータ11が出力する第1回転力TAよりも過剰に大きくすることは好ましくない。以下に、第2ステータコア12aの回転軸R方向における好ましい寸法の設定方法を説明する。
【0090】
図10は、モータが出力する回転力の個体差の出現確率を示すグラフである。図10では、モータが出力する回転力T[Nm]と設計値での回転力Tdとの比である無次元回転力がどの程度の個体差を有するかを示している。図10の縦軸は、個体差の出現確率密度を示し、横軸は無次元回転力を示す。モータが出力する回転力は、モータの寸法や、磁気特性などの要因により、図10に示すように、設計値に対して最大で18%程度の誤差が生じる。図10に示すように、無次元回転力の標準偏差σは、0.06程度である。
【0091】
そこで、第1回転力TAと第2回転力TBとの比は、第2サンギア31と第2キャリア33との間に作用する回転力比の82%以上に設定される。本実施形態では、第1ステータコア11aの断面形状と第2ステータコア12aの断面形状とが同一であるため、第1ステータコア11aの回転軸R方向の寸法と第2ステータコア12aの回転軸R方向の寸法との比は、上記の式(7)から算出される第1回転力TAと第2回転力TBとの比に対して3σすなわち18%以内に設定される。すなわち、第1ステータコア11aの回転軸R方向の寸法と第2ステータコア12aの回転軸R方向の寸法との比は、前記回転力比の82%以上118%以下に設定される。これにより、電動車両駆動装置10は、第1モータ11及び第2モータ12の個体差により第1回転力TAと、第2回転力TBと、歯数Z1と、歯数Z4とが上記の式(7)を満たさせなくなるおそれを低減できる。
【0092】
また、本実施形態では、第1ステータコア11aの断面形状と第2ステータコア12aの断面形状とが同一である場合を説明したが、さらに、第1ロータコア11d1の断面形状と第2ロータコア12d1の断面形状も同一である。これにより、電動車両駆動装置10は、第1モータ11及び第2モータ12の設計及び製造に要する労力を低減できる。また、第1モータ11及び第2モータ12を製造するために要するコストを低減できる。
【0093】
電動車両駆動装置10は、さらに、図7と図8と図9とに示すスタットボルト51と、図7及び図8に示すボルト52と、ショックアブソーバ取付部53と、第1セレーション54と、図7に示す防水パネルコネクタ55と、図8に示す第2セレーション56と、ロックナット57とを含む。図7に示すように、ホイール軸受50は、例えば8本のボルト52で第2ケーシングG2に締結される。防水パネルコネクタ55は、第1ケーシングG1に設けられる。防水パネルコネクタ55は、電力源と電気的に接続されることで、ケーシングG内に設けられる第1モータ11及び第2モータ12に電力を供給する。
【0094】
図8に示すように、ホイール軸受50は、外輪50aと、第1内輪50bと、第2内輪50cとを含む。外輪50aと、第1内輪50bと、第2内輪50cとは、筒状部材である。第1内輪50bは外輪50aよりも径方向内側(回転軸R側)に設けられ、第2内輪50cは第1内輪50bよりも径方向内側(回転軸R側)に設けられる。また、第2内輪50cは、第2遊星歯車機構30を覆うように設けられる。すなわち、第2遊星歯車機構30は、第2内輪50cよりも径方向内側(回転軸R側)に設けられる。
【0095】
第1内輪50b及び第2内輪50cは、自身(第1内輪50b及び第2内輪50c)の外周部と外輪50aの内周部との間に転動体が設けられることで、外輪50aに対して回転軸Rを中心に回転(自転)できる。また、第2内輪50cは、自身(第2内輪50c)の内周部に第2リングギア34が設けられる。第2リングギア34は、例えば、第2内輪50cと一体に形成される。スタットボルト51は、第2内輪50cのフランジ部分に例えば4本設けられる。スタットボルト51は、図示しないホイールに設けられた孔に挿入され、ホイールナットがねじ込まれる。これにより、ホイールは、ホイール軸受50に取り付けられる。ロックナット57は、ホイール軸受50に適当な予圧を与える。これにより、ホイール軸受50は、剛性が高められる。
【0096】
ショックアブソーバ取付部53は、第1ケーシングG1に設けられる。具体的には、ショックアブソーバ取付部53は、第1ケーシングG1のうち、電動車両駆動装置10が電動車両の車体に取り付けられた際に鉛直方向上側となる部分に設けられる。ショックアブソーバ取付部53は、第1ボルト孔53aと、第2ボルト孔53bとを含む。この第1ボルト孔53a及び第2ボルト孔53bにボルトが挿入され、前記ボルトにナットがねじ込まれることで、電動車両駆動装置10は、電動車両の車体に締結される。
【0097】
第1セレーション54は、第2キャリア33に形成される。具体的には、第2キャリア33の両端部のうち、電動車両の車体側の端部の外周部に形成される。第1セレーション54は、第2モータ12の第2ロータ12dに形成されたセレーションと嵌合する。これにより、第2ロータ12dの回転力は、第2キャリア33に連結される。また、第2キャリア33は、第1セレーション54が設けられる部分の内周部に第1リングギア24が形成される。第2セレーション56は、サンギアシャフト14のうち、第1モータ出力軸11e側の端部に形成される。第2セレーション56は、第1モータ出力軸11eと嵌合する。これにより、サンギアシャフト14は、第1モータ11に連結される。
【0098】
上記の構成により、電動車両駆動装置10は、ホイールを保持し、かつ、第1モータ11及び第2モータ12から出力された回転力を前記ホイールに伝えることで、電動車両を走行させることができる。なお、本実施形態では、第1モータ11と、第2モータ12と、第1サンギア21と、第1キャリア23と、第1リングギア24と、第2サンギア31と、第2キャリア33と、第2リングギア34と、ホイール軸受50とがすべて同軸上に配置されているが、電動車両駆動装置10は、必ずしもこれらの構成要素が同軸上に配置されなくてもよい。また、本実施形態の電動車両駆動装置10は、第2リングギア34がホイール軸受50に直接連結されているが、第2リングギア34が歯車や継手を介してホイール軸受50に連結されてもよい。
【0099】
(実施形態2)
図11は、実施形態2の電動車両駆動装置の構成を示す説明図である。図11に示す実施形態2の電動車両駆動装置100は、実施形態1の電動車両駆動装置10と変速機構の構成が異なる。以下、実施形態1の電動車両駆動装置10が有する構成要素と同様の構成要素は、同一の符号を付して説明を省略する。電動車両駆動装置100は、変速機構103を含む。変速機構103は、第1モータ11と連結されて第1モータ11が出力した回転力が伝えられる(入力される)。また、変速機構103は、第2モータ12と連結されて第2モータ12が出力した回転力が伝えられる(入力される)。そして、変速機構103は、ホイール軸受50と連結され、変速された回転力をホイール軸受50に伝える(出力する)。ホイール軸受50は、電動車両のホイールHが取り付けられる。
【0100】
変速機構103は、第1遊星歯車機構70と、第2遊星歯車機構80と、クラッチ装置90とを含む。第1遊星歯車機構70は、シングルピニオン式の遊星歯車機構である。第1遊星歯車機構70は、第1サンギア71と、第1ピニオンギア72と、第1キャリア73と、第1リングギア74とを含む。第2遊星歯車機構80は、ダブルピニオン式の遊星歯車機構である。第2遊星歯車機構80は、第2サンギア81と、第2ピニオンギア82aと、第3ピニオンギア82bと、第2キャリア83と、第2リングギア84とを含む。第2遊星歯車機構80は、第1遊星歯車機構70よりも第1モータ11及び第2モータ12側に配置される。
【0101】
第2サンギア81は、回転軸Rを中心に回転(自転)できるようにケーシングG内に支持される。第2サンギア81は、第1モータ11と連結される。よって、第1モータ11が作動すると、第2サンギア81は、第1回転力TAが伝えられる。これにより、第2サンギア81は、第1モータ11が作動すると、回転軸Rを中心に回転する。第2ピニオンギア82aは、第2サンギア81と噛み合う。第3ピニオンギア82bは、第2ピニオンギア82aと噛み合う。第2キャリア83は、第2ピニオンギア82aが第2ピニオン回転軸Rp2を中心に回転(自転)できるように第2ピニオンギア82aを保持する。第2キャリア83は、第3ピニオンギア82bが第3ピニオン回転軸Rp3を中心に回転(自転)できるように第3ピニオンギア82bを保持する。第2ピニオン回転軸Rp2は、例えば、回転軸Rと平行である。第3ピニオン回転軸Rp3は、例えば、回転軸Rと平行である。
【0102】
第2キャリア83は、回転軸Rを中心に回転できるようにケーシングG内に支持される。これにより、第2キャリア83は、第2ピニオンギア82a及び第3ピニオンギア82bが第2サンギア81を中心に、すなわち回転軸Rを中心に公転できるように第2ピニオンギア82a及び第3ピニオンギア82bを保持することになる。第2リングギア84は、回転軸Rを中心に回転(自転)できる。第2リングギア84は、第3ピニオンギア82bと噛み合う。また、第2リングギア84は、第2モータ12と連結される。よって、第2モータ12が作動すると、第2リングギア84は、第2回転力TBが伝えられる。これにより、第2リングギア84は、第1モータ11が作動すると、回転軸Rを中心に回転(自転)する。
【0103】
第1サンギア71は、回転軸Rを中心に回転(自転)できるようにケーシングG内に支持される。第1サンギア71は、第2サンギア81を介して第1モータ11と連結される。具体的には、第1サンギア71と第2サンギア81とは、同軸(回転軸R)で回転できるようにサンギアシャフト64に一体で形成される。そして、サンギアシャフト64は、第1モータ11と連結される。これにより、第1サンギア71は、第2モータ12が作動すると、回転軸Rを中心に回転する。
【0104】
第1ピニオンギア72は、第1サンギア71と噛み合う。第1キャリア73は、第1ピニオンギア72が第1ピニオン回転軸Rp1を中心に回転(自転)できるように第1ピニオンギア72を保持する。第1ピニオン回転軸Rp1は、例えば、回転軸Rと平行である。第1キャリア73は、回転軸Rを中心に回転できるようにケーシングG内に支持される。これにより、第1キャリア73は、第1ピニオンギア72が第1サンギア71を中心に、すなわち回転軸Rを中心に公転できるように第1ピニオンギア72を保持することになる。
【0105】
また、第1キャリア73は、第2リングギア84と連結される。これにより、第1キャリア73は、第2リングギア84が回転(自転)すると、回転軸Rを中心に回転(自転)する。第1リングギア74は、第1ピニオンギア72と噛み合う。また、第1リングギア74は、ホイールHと連結される。これにより、第1リングギア74が回転(自転)すると、ホイールHは回転する。クラッチ装置90は、第2キャリア83の回転を規制できる。具体的には、クラッチ装置90は、回転軸Rを中心とした第2キャリア83の回転を規制(制動)する場合と、前記回転を許容する場合とを切り替えできる。クラッチ装置90は、クラッチ装置40と同様に、摩擦係合部材としてスプラグ43が配置された、スプラグ式ワンウェイクラッチ装置である。クラッチ装置90では、内輪に第2キャリア83が接続されている。その他の構成については、クラッチ装置90はクラッチ装置40と同様である。クラッチ装置90が、このような構成であることで、ホイールHに出力される最大の回転力を大きくすることができる。次に、参考として、共線図を用いて第1変速状態での各部の角速度を説明する。
【0106】
図12は、実施形態2の電動車両駆動装置が第1変速状態での各部の各回転速度を示す共線図である。以下、一例として、第2サンギア81の角速度をV[rad/s]とする。また、Z1と、Z4と、Z5と、Z7とは、実施形態1のものと同一である。図12に示すように、第2サンギア81の角速度はV[rad/s]である。第2キャリア83は、クラッチ装置90により回転が規制されている。よって、第2キャリア83の角速度は0[rad/s]である。第2遊星歯車機構80は、ピニオンギアを2つ有するダブルピニオン式の遊星歯車機構であるため、第2サンギア81から第2リングギア84に伝わる回転力は第2キャリア83で反転する。回転力は、第2キャリア83から第2リングギア84へ伝わる際、第2サンギア81から第2キャリア83へ伝わる時の変化率に−1を乗算した変化率で反転して伝わる。すなわち、図12中では、θ3とθ4とが等しくなる。これにより、第2リングギア84の角速度は0.437V[rad/s]である。
【0107】
第1サンギア71は、第2サンギア81と連結されている。よって、第1サンギア71の角速度はV[rad/s]である。第1キャリア73は、第2リングギア84と連結されている。よって、第1キャリア73の角速度は0.437V[rad/s]である。また、第1リングギア74の角速度は0.143V[rad/s]となる。以上により、変速機構63の変速比は、V/0.143V=6.99となる。このように、電動車両駆動装置100は、実施形態1の電動車両駆動装置10と同様の原理により、実施形態1の電動車両駆動装置10が奏する効果と同様の効果を奏する。
【0108】
ただし、実施形態1の電動車両駆動装置10と同様の原理により、電動車両駆動装置100は、上式(7)を満たす代わりに、第1サンギア71の歯数Z5とし、第1リングギアの歯数をZ7とすると、第1回転力TAと、第2回転力TBと、歯数Z5と、歯数Z7とが、下記の式(8)を満たすことになる。また、電動車両駆動装置100の第1回転力TAと第2回転力TBとの比は、第1サンギア71と第1キャリア73との間に作用する回転力比の82%以上に設定される。
【0109】
【数8】

【産業上の利用可能性】
【0110】
以上のように、本発明に係るインホイールモータは、電動車両を駆動するために十分な回転力を確保し、かつ、エネルギーの損失を低減する技術に有用である。
【符号の説明】
【0111】
10、100 電動車両駆動装置
11 第1モータ
11a 第1ステータコア
11b 第1コイル
11c 第1インシュレータ
11d 第1ロータ
11d1 第1ロータコア
11d2 第1マグネット
11e 第1モータ出力軸
11f 第1レゾルバ
12 第2モータ
12a 第2ステータコア
12b 第2コイル
12c 第2インシュレータ
12d 第2ロータ
12d1 第2ロータコア
12d2 第2マグネット
12f 第2レゾルバ
13、103 変速機構
14、64 サンギアシャフト
20、70 第1遊星歯車機構
21、71 第1サンギア
22、72 第1ピニオンギア
23、73 第1キャリア
24、74 第1リングギア
30、80 第2遊星歯車機構
31、81 第2サンギア
32a、82a 第2ピニオンギア
32b、82b 第3ピニオンギア
33、83 第2キャリア
34、84 第2リングギア
40、90 クラッチ装置
41 内輪(第2部材)
42 外輪(第1部材)
43 スプラグ
50 ホイール軸受
50a 外輪
50b 第1内輪
50c 第2内輪
51 スタットボルト
52 ボルト
53 ショックアブソーバ取付部
53a 第1ボルト孔
53b 第2ボルト孔
54 第1セレーション
55 防水パネルコネクタ
56 第2セレーション
57 ロックナット
58 リボンスプリング
59 外側保持器(第1の保持器)
60 内側保持器(第2の保持器)
61 内輪接触面
62 外輪接触面
63a 開口部(第1の開口部)
63b 開口部(第2の開口部)
G ケーシング
G1 第1ケーシング
G2 第2ケーシング
G3 第3ケーシング
G4 第4ケーシング
H ホイール
R 回転軸
Rp1 第1ピニオン回転軸
Rp2 第2ピニオン回転軸
Rp3 第3ピニオン回転軸
T1、T7、TA 第1回転力
T2、T8、TB 第2回転力
T3 循環回転力
T4 合成回転力
T5 第1分配回転力
T6 第2分配回転力
T9 合成回転力
Z1、Z4、Z5、Z7 歯数

【特許請求の範囲】
【請求項1】
第1モータと、
第2モータと、
前記第1モータと連結される第1サンギアと、
前記第1サンギアと噛み合う第1ピニオンギアと、
前記第1ピニオンギアが自転できるように、かつ、前記第1ピニオンギアが前記第1サンギアを中心に公転できるように前記第1ピニオンギアを保持する第1キャリアと、
第1部材と、前記第1部材に対して回転できる第2部材と、前記第2部材に第1方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達し、前記第2部材に前記第1方向とは逆の第2方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達しない複数のスプラグとを含み、前記第1キャリアの回転を規制できるクラッチ装置と、
前記第1ピニオンギアと噛み合い、かつ、前記第2モータと連結される第1リングギアと、
前記第1モータと連結される第2サンギアと、
前記第2サンギアと噛み合う第2ピニオンギアと、
前記第2ピニオンギアと噛み合う第3ピニオンギアと、
前記第2ピニオンギア及び前記第3ピニオンギアがそれぞれ自転できるように、かつ、前記第2ピニオンギア及び前記第3ピニオンギアが前記第2サンギアを中心に公転できるように前記第2ピニオンギア及び前記第3ピニオンギアを保持すると共に、前記第1リングギアと連結される第2キャリアと、
前記第3ピニオンギアと噛み合い、かつ、電動車両のホイールと連結される第2リングギアと、
を含み、
前記第1方向は、前記電動車両を前進させるように前記第1モータが回転力を出力し、かつ、前記第2モータが作動していない際に前記第2部材が回転する方向であることを特徴とするインホイールモータ。
【請求項2】
第1モータと、
第2モータと、
前記第1モータと連結される第1サンギアと、
前記第1サンギアと噛み合う第1ピニオンギアと、
前記第1ピニオンギアが自転できるように、かつ、前記第1ピニオンギアが前記第1サンギアを中心に公転できるように前記第1ピニオンギアを保持する第1キャリアと、
前記第1ピニオンギアと噛み合い、かつ、電動車両のホイールと連結される第1リングギアと、
前記第1モータと連結される第2サンギアと、
前記第2サンギアと噛み合う第2ピニオンギアと、
前記第2ピニオンギアと噛み合う第3ピニオンギアと、
前記第2ピニオンギア及び前記第3ピニオンギアがそれぞれ自転できるように、かつ、前記第2ピニオンギア及び前記第3ピニオンギアが前記第2サンギアを中心に公転できるように前記第2ピニオンギア及び前記第3ピニオンギアを保持する第2キャリアと、
第1部材と、前記第1部材に対して回転できる第2部材と、前記第2部材に第1方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達し、前記第2部材に前記第1方向とは逆の第2方向の回転力が作用すると前記第1部材と前記第2部材との間で回転力を伝達しない複数のスプラグとを含み、前記第2キャリアの回転を規制できるクラッチ装置と、
前記第3ピニオンギアと噛み合い、かつ、前記第1キャリアと連結され、かつ、前記第2モータと連結される第2リングギアと、
を含み、
前記第1方向は、前記電動車両を前進させるように前記第1モータが回転力を出力し、かつ、前記第2モータが作動していない際に前記第2部材が回転する方向であることを特徴とするインホイールモータ。
【請求項3】
前記クラッチ装置は、前記スプラグを前記第1部材と前記第2部材とに接触させる弾性部材を含むことを特徴とする請求項1または2に記載のインホイールモータ。
【請求項4】
前記クラッチ装置は、前記複数のスプラグを互いに等間隔に保持する、第1の保持器と第2の保持器とを含むことを特徴とする請求項1〜3のいずれか1項に記載のインホイールモータ。
【請求項5】
前記第1の保持器は、互いに等間隔に配置された複数の第1の開口部を側面に有する円筒であり、
前記第2の保持器は、互いに等間隔に配置された、前記第1の保持器と同数の第2の開口部を側面に有し、前記第1の保持器の内径よりも外径が小さい円筒であり、
前記第1の開口部と前記第2の開口部とが対向するように、かつ前記第1の保持器の内側に前記第2の保持器が配置され、対向する前記第1の開口部と前記第2の開口部とに前記スプラグが挿し通されることを特徴とする請求項4に記載のインホイールモータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5−1】
image rotate

【図5−2】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−51540(P2012−51540A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2010−198107(P2010−198107)
【出願日】平成22年9月3日(2010.9.3)
【出願人】(000004204)日本精工株式会社 (8,378)
【Fターム(参考)】