説明

フィルム光導波路及びその製造方法

【課題】フィルム光導波路の両面に光デバイスを実装でき、しかもフィルム光導波路の強度を下げることがないフィルム光導波路とその製造方法を提供する。
【解決手段】第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとが対向配置されて、光導波路コア4が狭持されている。第一のクラッドフィルム1Aを貫通し光導波路コア4の一端部に接続する入光部12と、第二のクラッドフィルム1Bを貫通し光導波路コア4の他端部に接続する出光部15と、前記一端部側に入光部12からの光を光導波路コア4に導く第一のミラー面3Aと、前記他端部側に光導波路コア4を伝播した光を出光部15に導く第二のミラー面3Bと、を有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フレキシブルなクラッドフィルムに高分子材料からなるコアが一体に形成されたフィルム光導波路の構造とその製造方法とに関する。
【背景技術】
【0002】
従来から、光情報・通信装置の光機能回路等を小型・高機能化するために、基板上に光導波路配線を形成し、VCSEL(Vertical Cavity Surface Emitting Laser),LD(Laser Diode),PD(Photo Diode)のような光電変換素子や光電子集積回路(OEIC)等を搭載した光モジュールが知られている。近年、高速大容量の光通信システムやコンピュータ等の情報機器の高ビット化等に伴い、各種光デバイスの高密度実装化が求められ、光導波路の両面に光デバイスを実装できるような構造が提案されている。
【0003】
特許文献1では、図9に示すように、光信号が伝搬する光導波路コア911が光導波路910のクラッド層内に複数形成されているフィルム光配線920を用い、複数の光デバイス915をフィルム光配線920の両面に実装している。フィルム光配線920の両面所定位置には、例えば刃先が45°のダイシングソーを用いてダイシングすることにより、45°の角度を持つ反射面912が形成されている。光デバイス915は、反射面912で反射した光導波路コア911の伝搬光を受光するそれぞれの位置もしくは光デバイス915から出射した光信号を反射面912で反射して光導波路コア911に伝搬させる位置に配置されている。この事により、フィルム光配線920の両面に光デバイス915を実装できるので、従来の実装構造に比べてデバイス実装密度を倍増でき、更に、基板が不要なため、薄型実装が可能になるといったメリットがあるとされている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000−98153号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1の従来技術では、光導波路911と光デバイス915の光接続のために、フィルム光配線920の両面を削って、反射面912を形成しているので、フィルム光配線920の強度が弱くなり、場合によっては、その切削部で折れ曲がってしまうと言う課題があった。また、光導波路911の光路にとって重要な反射面912を機械加工で作製しているので、その反射面912を所望の形状にするのが難しく、しかも、切削痕が残るので、光導波路911の光路に悪影響を与え、光損失の要因になると言う課題もあった。更に、光導波路911の数が多くなればなるほど、反射面912を切削する機械加工が増えてしまうと言う課題もあった。
【0006】
本発明は、上述した課題を解決するもので、フィルム光導波路の両面に光デバイスを実装することができ、しかも、フィルム光導波路の強度を下げることがないフィルム光導波路及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
この課題を解決するために、本発明のフィルム光導波路は、光信号が伝搬する光導波路コアが、クラッド内に少なくとも一つ形成されているフィルム光導波路において、前記クラッドが、第一の屈折率を有する材料からなる第一のクラッドフィルムと第二の屈折率を有する材料からなる第二のクラッドフィルムとを有しており、前記第一のクラッドフィルムと前記第二のクラッドフィルムとが対向配置されることにより、前記第一の屈折率及び前記第二の屈折率よりも大きい第三の屈折率を有する材料からなる前記光導波路コアが狭持されているとともに、前記第一のクラッドフィルムを貫通し前記光導波路コアの一端部に接続する前記第三の屈折率を有する材料からなる入光部と、前記第二のクラッドフィルムを貫通し前記光導波路コアの他端部に接続する前記第三の屈折率を有する材料からなる出光部とを有し、前記光導波路コアの前記一端部側に、前記入光部から入射された光を前記光導波路コアに導く第一のミラー面を有し、前記光導波路コアの前記他端部側に、前記光導波路コアを伝播した光を前記出光部に導く第二のミラー面を有することを特徴としている。
【0008】
これによれば、本発明のフィルム光導波路は、フィルム光導波路の片面側から入光部を通して入力した光信号がフィルム光導波路の反対面側の出光部から取り出せる構造になっているので、フィルム光導波路の両面に光デバイスを実装することができる。更に、第一のクラッドフィルムと第二のクラッドフィルムとで光導波路コアを狭持した構造をしているので、従来例のフィルム光配線の両面を削った構造と比較して、フィルム光導波路の強度を低下させることがない。
【0009】
本発明のフィルム光導波路は、前記第一のミラー面が前記第二のクラッドフィルムに形成されているとともに、前記第二のミラー面が前記第一のクラッドフィルムに形成されていることを特徴としている。
【0010】
これによれば、光導波路コアの所要の部分にミラー面を形成すると、入光部から入射された光を効率良く出光部に導くことができるので、フィルム光導波路における光の伝播効率を高めることができる。また、フィルム光導波路の光路を曲げるためのミラー面を、入光部及び出光部に対応する反対のクラッドフィルム側に設けたことにより、それぞれのミラー面を容易に作製することができる。また、ミラー面を最小の2箇所にしたことにより、ミラー面の反射による光損失が極力抑えられ、フィルム光導波路を伝搬する光の損失を抑えることができる。
【0011】
本発明のフィルム光導波路は、前記光導波路コアが、前記第一のクラッドフィルムと前記第二のクラッドフィルムとが接した面を延在した仮想面にある回転対称軸を有し、前記回転対称軸は、前記光導波路コアの前記一端部と前記他端部とを結ぶ方向と直交していることを特徴としている。
【0012】
これによれば、光導波路コアが回転対称になるように作製されているので、入光部が出光部に、出光部が入光部に、と置き換えることができるので、フィルム光導波路の両面に実装される光デバイスのタイプに関係なく、光デバイスを配置することができる。この事により、光配線を設計することが容易になる。また、フィルム光導波路を作製する際の第一のクラッドフィルムと前記第二のクラッドフィルムとを同じ型で製造することができる。
【0013】
本発明のフィルム光導波路は、前記第一のクラッドフィルムは前記第二のクラッドフィルム側の面に第一の凹溝を有し、前記第二のクラッドフィルムは前記第一のクラッドフィルム側の面に第二の凹溝を有し、前記第一の凹溝と前記第二の凹溝とが協働して、光導波路コア用キャビティを形成しており、前記光導波路コア用キャビティに前記第三の屈折率を有する材料が充填されて前記光導波路コアを形成しており、前記第一の凹溝の深さは、前記第二のミラー面が形成されている側の深さが前記入光部が形成されている側の深さ以上であるとともに、前記第二の凹溝の深さは、前記第一のミラー面が形成されている側の深さが前記出光部が形成されている側の深さ以上であることを特徴としている。
【0014】
これによれば、入光部から入射した光が、第一のミラー面で反射され、光導波路コアの光路の途中で反射されながら伝搬するので、第一のミラー面で反射された光が第二のミラー面に至るように光導波路コアの一部を傾斜させている。この事によって、光導波路コアを伝搬する光が確実に第二のミラー面に伝搬され、フィルム光導波路を伝搬する光の損失を抑えることができる。
【0015】
本発明のフィルム光導波路は、前記第一の凹溝が、前記第二のミラー面が形成されている側から前記入光部が形成されている側に向かって徐々に浅くなる凹溝であるとともに、
前記第二の凹溝は、前記第一のミラー面が形成されている側から前記出光部が形成されている側に向かって徐々に浅くなる凹溝であることを特徴としている。
【0016】
これによれば、入光部から入射した光が、第一のミラー面で反射され、光導波路コアの光路の途中で反射されながら伝搬するので、第一のミラー面で反射された光が第二のミラー面に至るように光導波路コアを徐々に傾斜させている。この事によって、光導波路コアを伝搬する光がより確実に第二のミラー面に伝搬され、フィルム光導波路を伝搬する光の損失をより抑えることができる。
【0017】
本発明のフィルム光導波路は、前記第二の凹溝が、前記第一のクラッドフィルムと前記第二のクラッドフィルムとが接した面を延在した仮想面に接する前記出光部の一端に繋がる凹溝であるとともに、前記第二のミラー面は、前記仮想面に接する前記出光部の一端に繋がっていることを特徴としている。
【0018】
これによれば、光導波路コアの一端が出光部の一端部とつながり、第二のミラー面に対向する様に光導波路コアが配置されているので、導波路コアを伝搬してきた光が、出光部を横切って第二のミラーに到達せずに系外に抜けることを防止している。この事によって、フィルム光導波路を伝搬する光がより一層確実に第二のミラー面に伝搬され、フィルム光導波路を伝搬する光の損失をより一層抑えることができる。
【0019】
本発明のフィルム光導波路は、前記光導波路コアが、第一の光導波路コアと第二の光導波路コアとからなり、前記第一のミラー面は、前記入光部から入射された光を前記第一の光導波路コアに伝搬するよう反射し、前記第二のクラッドフィルムには、前記第一の光導波路コアを伝搬した光を前記第一のクラッドフィルム側に反射する第三のミラー面が形成されており、前記第一のクラッドフィルムには、前記第三のミラー面からの光を前記第二の光導波路コアに伝搬するよう反射する第四のミラー面が形成されており、前記第二のミラー面は、前記第二の光導波路コアを伝搬した光を前記出光部に導くよう反射することを特徴としている。
【0020】
これによれば、フィルム光導波路の光路の途中に、光路を曲げるための第三のミラー面及び第四のミラー面を設けたことにより、フィルム光導波路の光路長を長くできる。この事により、光配線を設計することが容易になる。
【0021】
本発明のフィルム光導波路は、前記光導波路コアが、第三の光導波路コアと第四の光導波路コアとからなり、前記第一のミラー面は、前記入光部から入射された光を前記第三の光導波路コアに伝搬するよう反射し、前記第一のクラッドフィルムには、前記第三の光導波路コアを伝搬した光を前記第二のクラッドフィルム側に反射する第五のミラー面が形成されており、前記第二のクラッドフィルムには、前記第五のミラー面からの光を前記第四の光導波路コアに伝搬するよう反射する第六のミラー面が形成されており、前記第二のミラー面は、前記第四の光導波路コアを伝搬した光を前記出光部に導くよう反射することを特徴としている。
【0022】
これによれば、フィルム光導波路の光路の途中に、光路を曲げるための第五のミラー面及び第六のミラー面を設けたことにより、フィルム光導波路の光路長を長くできる。この事により、光配線を設計することが容易になる。
【0023】
本発明のフィルム光導波路は、前記クラッド内に、前記光導波路コアが同一方向に複数並列に配置されており、隣接する前記光導波路コアに接続された前記入光部の位置がそれぞれ前記光導波路コアの延伸方向にずれて形成されているとともに、隣接する前記光導波路コアに接続された前記出光部の位置がそれぞれ前記光導波路コアの延伸方向にずれて形成されていることを特徴としている。
【0024】
これによれば、入光部または出光部の外径が光導波路コアの幅より大きい場合、隣接する入光部または出光部と重ならないように配線できるので、光配線の光導波路コアを曲げてパターンニングすることなく、高密度で多数の光配線を設けることができる。この事により、高密度で光デバイスを実装できるフィルム光導波路を提供できる。
【0025】
この課題を解決するために、本発明のフィルム光導波路の製造方法は、第一のクラッドフィルムに第一の凹溝及び第二のミラー面を形成する第一の形成工程と、第二のクラッドフィルムに第二の凹溝及び第一のミラー面を形成する第二の形成工程と、前記第一の形成工程及び前記第二の形成工程後、前記第二のミラー面及び前記第一のミラー面に反射膜を形成する成膜工程と、前記第一のクラッドフィルムに入光部または出光部を形成するための第一の貫通孔を開設する第一の孔形成工程と、前記第二のクラッドフィルムに出光部または入光部を形成するための第二の貫通孔を開設する第二の孔形成工程と、前記第一のクラッドフィルムと前記第二のクラッドフィルムとを、前記第一の凹溝と前記第二の凹溝とが、前記第一の貫通孔と前記第一のミラー面とが、前記第二の貫通孔と前記第二のミラー面とが、それぞれ対向するよう貼り合わせる貼合せ工程と、前記第一の貫通孔内、前記第二の凹溝内、前記第一の凹溝内、及び前記第二の貫通孔内に光導波路の形成用高分子材料を充填する光導波路形成工程と、を有することを特徴としている。
【0026】
これによれば、本発明のフィルム光導波路の製造方法は、第一のクラッドフィルムと第二のクラッドフィルムを貼り合わせて、両クラッドフィルムで形成されたキャビティに高分子材料を充填するだけで、第一のクラッドフィルムの第二のミラー面、第二のクラッドフィルムの第一のミラー面を利用することによって、光導波路の片面の入光部から入光させ、光導波路の反対面側の出光部から出光させる構造を簡易に作製できる。この事により、フィルム光導波路の両面に光デバイスを実装することができる。また、光導波路の光路の変更のために、フィルム光配線の両面を削ってミラー面を形成している場合と比較して、フィルム光導波路の強度を低下させることがなくフィルム光導波路を作製することができる。
【0027】
本発明のフィルム光導波路の製造方法は、前記第一の形成工程及び前記第二の形成工程が、前記第一の凹溝及び前記第二の凹溝と前記第二のミラー面及び前記第一のミラー面とをそれぞれ同一形状となるよう加工することを特徴としている。
【0028】
これによれば、第一のクラッドフィルムと第二のクラッドフィルムの加工品が同一形状になるので、第一のクラッドフィルムと第二のクラッドフィルムとを同一の型で作製でき、同一の形状になった一種類のクラッドフィルムを用いて接合することで、フィルム光導波路を作製するこができる。この事により、異なる型で作製したクラッドフィルムを用いた時よりも、凹溝の寸法バラツキによる合わせ位置ズレ等が大幅に少なくなるので、フィルム光導波路を伝搬する光の損失を抑えることができる。
【0029】
本発明のフィルム光導波路の製造方法は、前記光導波路形成工程が、前記第二の貫通孔から、前記第二の貫通孔内、前記第一の凹溝内、前記第二の凹溝内及び前記第一の貫通孔内の気体を吸引しつつ、前記第一の貫通孔から、前記第一の貫通孔内、前記第二の凹溝内、前記第一の凹溝内及び前記第二の貫通孔内に前記光導波路の形成用の高分子材料を加圧充填することを特徴としている。
【0030】
これによれば、第一のクラッドフィルムと第二のクラッドフィルムを用いて、両クラッドフィルムで形成されたキャビティに光導波路形成用の高分子材料を充填することで、両端部に入光部及び出光部を備えたフィルム光導波路を簡易に形成することができる。また、両クラッドフィルムで形成されたキャビティ内の気体を吸引しつつ、光導波路形成用の高分子材料の充填をしているので、高能率に充填が行えると共に、光導波路内への気泡の混入を防止することができる。また、高分子材料の充填を連続処理にて行うことが可能で、第一のクラッドフィルムと第二のクラッドフィルムにて光導波路が完全に被覆保護されたフィルム光導波路を高能率に製造することができる。
【0031】
本発明のフィルム光導波路の製造方法は、前記光導波路形成工程が、前記高分子材料を加圧充填する際に、前記第二の貫通孔内、前記第一の凹溝内、前記第二の凹溝内及び前記第一の貫通孔内の気体がぬけ易いよう、前記第二の貫通孔が前記第一の貫通孔より上方に配置されることを特徴としている。
【0032】
これによれば、光導波路形成用の高分子材料の充填の際に、気体が抜け易い様に、気体の吸引側である第一の貫通孔が高分子材料の注入側である第二の貫通孔より上方(重力方向を下方とする)に配置されているので、より高能率に高分子材料の充填が行えると共に、光導波路内への気泡の混入をより防止できる。
【発明の効果】
【0033】
本発明のフィルム光導波路は、フィルム光導波路の片面から入光部を通して入力した光信号がフィルム光導波路の反対面側の出光部から取り出せる構造になっているので、フィルム光導波路の両面に光デバイスを実装することができる。更に、第一のクラッドフィルムと第二のクラッドフィルムとで光導波路コアを狭持した構造をしているので、フィルム光配線の両面を削った構造と比較して、フィルム光導波路の強度を低下させることがない。また、本発明のフィルム光導波路の製造方法は、第一のクラッドフィルムと第二のクラッドフィルムを貼り合わせて、両クラッドフィルムで形成されたキャビティに高分子材料を充填するだけで、第一のクラッドフィルムの第二のミラー面、第二のクラッドフィルムの第一のミラー面を利用することによって、光導波路の片面の入光部から入光させ、光導波路の反対面側の出光部から出光させる構造を簡易に作製できる。この事により、フィルム光導波路の両面に光デバイスを実装することができる。また、光導波路の光路の変更のために、フィルム光配線の両面を削ってミラー面を形成している場合と比較して、フィルム光導波路の強度を低下させることがなくフィルム光導波路を作製することができる。
【0034】
したがって、本発明のフィルム光導波路及びその製造方法は、フィルム光導波路の両面に光デバイスを実装することができ、しかも、フィルム光導波路の強度を下げることがないフィルム光導波路を提供できる。
【図面の簡単な説明】
【0035】
【図1】本発明の第1実施形態のフィルム光導波路を説明する図であり、厚み方向から見た側面構成図である。
【図2】本発明の第1実施形態のフィルム光導波路を説明する図であり、図2(a)は、フィルム光導波路を第二のクラッドフィルム側から見た平面構成図で、図2(b)は、厚み方向から見た側面構成図で、回転対称軸で回転させた状態を説明する図である。
【図3】本発明の第1実施形態のフィルム光導波路の両面に光デバイスを実装した一例を示す側面構成図である。
【図4】本発明の第1実施形態のフィルム光導波路の製造方法の工程を説明する構成図である。
【図5】本発明の第1実施形態のフィルム光導波路の製造方法の工程の内、光導波路形成工程を説明する構成図である。
【図6】本発明の第2実施形態のフィルム光導波路を説明する図であり、厚み方向から見た側面構成図である。
【図7】本発明の第3実施形態のフィルム光導波路を説明する図であり、厚み方向から見た側面構成図である。
【図8】本発明の第4実施形態のフィルム光導波路を説明する図であり、第二のクラッドフィルム側から見た平面構成図である。
【図9】従来例1の構成を示す説明図である。
【発明を実施するための形態】
【0036】
以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
【0037】
[第1実施形態]
図1は、本発明の第1実施形態のフィルム光導波路101を説明する図であり、厚み方向から見た側面構成図である。図1に示すように、フィルム光導波路101は、第一の屈折率R1を有する材料からなる第一のクラッドフィルム1Aと、第二の屈折率R2を有する材料からなる第二のクラッドフィルム1Bと、第三の屈折率R3を有する材料からなる光導波路コア4と、第一のクラッドフィルム1Aを貫通し光導波路コア4の一端部に接続する入光部12と、第二のクラッドフィルム1Bを貫通し光導波路コア4の他端部に接続する出光部15と、光導波路コア4の一端部側に形成され入光部12から入射された光を光導波路コア4に導く第一のミラー面3Aと、光導波路コア4の他端部側に形成され光導波路コア4を伝播した光を出光部15に導く第二のミラー面3Bと、から構成されている。図面においては構造をわかりやすくするために長さ方向をデフォルメしているが、光導波路101は必要に十分な長さを取ってよく、たとえば10mm〜5m程度の長さとしてもよい。
【0038】
また、フィルム光導波路101は、光導波路コア4が第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとで狭持されて形成されおり、入光部12と光導波路コア4と出光部15とで光導波路66を形成している。なお、光導波路コア4のいずれの一端部を入光部とし、他端部を出光部するかは、必要に応じて適宜設定することができる。このように、フィルム光導波路101は、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとで光導波路コア4を狭持した構造をしているので、従来例のフィルム光配線の両面を削った構造と比較して、フィルム光導波路101の強度を低下させることがない。また、光導波路66は、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bにて覆ったので、光導波路66からの光漏れをより確実に抑制することができて光の伝播効率が高められると共に、物理的及び化学的な耐性を高めることができる。
【0039】
また、図1の破線OPの光路順の一例(光の光路の全てを表したものではない)に示すように、フィルム光導波路101の片面側の入光部12の端面12aから入射した光は、入光部12を伝搬し、第一のミラー面3Aによって全反射し、光導波路コア4に導かれる。そして、光導波路コア4を伝搬した光は、第二のミラー面3Bによって全反射し、出光部15を伝搬し、フィルム光導波路101の反対面側の出光部15の端面15aから出射する。このように、フィルム光導波路101の片面側から入光部12を通して入力した光信号がフィルム光導波路101の反対面側の出光部15から取り出せる構造になっているので、フィルム光導波路101の両面に光デバイスを実装することができる。
【0040】
第一のクラッドフィルム1A及び第二のクラッドフィルム1Bは、フィルム光導波路101を備えた光学装置の用途に応じ、屈折率などの光学的特性、機械的強度、耐熱性、光導波路コア4及び後に説明する金型との密着性、フレキシビリティ及び吸水性等を考慮して、その材料が選択される。例えば、光導波路コア4との屈折率差を確保するため、光導波路コア4の屈折率よりも小さい屈折率(屈折率が約1.51)で、厚みが50μm〜100μm程度の脂環式アクリル樹脂フィルムや脂環式オレフィン樹脂フィルムなどを用いることができる。第一のクラッドフィルム1A及び第二のクラッドフィルム1Bは、同じ厚みのフィルムを用いても良いが、違う厚みのフィルムを用いても良い。また、第一のクラッドフィルム1A及び第二のクラッドフィルム1Bは、光導波路コア4の第三の屈折率R3よりも小さい屈折率を持つ材料であれば良く、第一の屈折率R1と第二の屈折率R2が同じ屈折率の材料を用いても良い。また、同じ材質の材料を用いた場合、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとの密着性が良く、熱膨張差による硬化後の反り等も防止されるので、第一のクラッドフィルム1A及び第二のクラッドフィルム1Bは、同じ材質の材料を用いるのがより好ましい。
【0041】
光導波路コア4は、図1に示すように、第一のクラッドフィルム1Aの第一の凹溝6Aと第二のクラッドフィルム1Bの第二の凹溝6Bとが協働して形成した光導波路コア用キャビティに第三の屈折率R3を有する材料が充填されてことによって形成されている。また、第一の凹溝6Aは、第二のミラー面3Bが形成されている側から入光部12が形成されている側に向かって徐々に浅くなる凹溝になっている。同様にして、第二の凹溝6Bも、第一のミラー面3Aが形成されている側から出光部15が形成されている側に向かって徐々に浅くなる凹溝になっている。このように、入光部12から入射した光が、第一のミラー面3Aで反射され、光導波路コア4の光路の途中で反射されながら伝搬するので、第一のミラー面3Aで反射された光が第二のミラー面3Bに至るように光導波路コア4を徐々に傾斜させている。この事によって、光導波路コア4を伝搬する光がより確実に第二のミラー面3Bに伝搬されるようになる。なお、第一の凹溝6A及び第二の凹溝6Bの傾斜は、曲線であっても良いが、より効率良く光導波路コア4の光路の途中で反射させながら伝搬させるため、図1に示すように、直線の方がより好ましい。
【0042】
また、第二の凹溝6Bは、図1に示すように、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとが接した面を延在した仮想面IPに接する出光部15の一端15bに繋がる凹溝であるとともに、第二のミラー面3Bは、仮想面IPに接する出光部15の一端15cに繋がっている。このように、光導波路コア4の一端部が出光部15の一端15bとつながり、第二のミラー面3Bに対向する様に光導波路コア4が配置されているので、導波路コア4を伝搬してきた光が、出光部15を横切って第二のミラー面3Bに到達せずに系外に抜けることを防止している。この事によって、フィルム光導波路101を伝搬する光がより一層確実に第二のミラー面3Bに伝搬されるようになる。
【0043】
また、光導波路コア4は、所要の屈折率と光透過性とを有するものであれば、公知に属する任意の高分子材料をもって形成することもできるが、樹脂硬化光の照射範囲を規制することにより、所要の部分のみを選択的に硬化させることができ、光導波路コア4ひいてはフィルム光導波路101の製造を容易化できるので、紫外線硬化性樹脂が特に好適である。例えば、屈折率が約1.51のクラッドフィルムに対して、硬化後の屈折率が約1.55の紫外線硬化性樹脂を用いるのが好適である。また、光導波路コア4の断面形状は矩形であり、その幅及び高さは、フィルム光導波路101を備えた光学装置の用途に応じて、15μm〜100μm程度に形成される。光導波路コア4と入光部12と出光部15とは、光導波路66の内部における光のロスを回避又は抑制するため、断面形状及び断面積が略同等に形成される。なお、ひと組みのクラッドフィルムに複数本の光導波路66を形成することも可能であり、実用的には、ひと組みのクラッドフィルムに複数本の光導波路66が形成されたものの方が、むしろ一般的である。
【0044】
第一のミラー面3Aは、第二のクラッドフィルム1Bに形成されて、入光部12から入射された光を全反射して、光導波路コア4に導くためのものであり、光導波路コア4及び入光部12に対して、45°以下の角度で傾斜する傾斜面をもって形成される。一方、第二のミラー面3Bは、第一のクラッドフィルム1Aに形成されて、光導波路コア4を伝播した光を全反射して出光部15に導くためのものであり、光導波路コア4及び出光部15に対して45°以下の角度で傾斜する傾斜面をもって形成される。このように、光導波路コア4の所要の部分に第一のミラー面3A及び第二のミラー面3Bを形成すると、入光部12から入射された光を効率良く出光部15に導くことができるので、光導波路66における光の伝播効率を高めることができる。また、フィルム光導波路101の光路を曲げるためのミラー面を、入光部12及び出光部15に対応する反対のクラッドフィルム側に設けたことにより、第一のミラー面3A及び第二のミラー面3Bを容易に作製することができる。また、ミラー面を最小の2箇所にしたことにより、ミラー面の反射による光損失が極力抑えられる。
【0045】
入光部12及び出光部15は、光導波路コア4と同じ第三の屈折率R3を有する材料からなり、入光部12は、第一のクラッドフィルム1Aを貫通し光導波路コア4の一端部に接続し、出光部15は、第二のクラッドフィルム1Bを貫通し光導波路コア4の他端部に接続している。このように、フィルム光導波路101の入光部12の端面12a及び出光部15の端面15aが第一のクラッドフィルム1A及び第二のクラッドフィルム1Bに開設されているので、入光部12の端面12a側からの光を直接光導波路コア4内に導くことができると共に、光導波路コア4を伝播した光を直接出光部15の端面15aに導くことができる。
【0046】
図2は、本発明の第1実施形態のフィルム光導波路101を説明する図であり、図2(a)は、フィルム光導波路101を第二のクラッドフィルム1B側から見た平面構成図で、図2(b)は、厚み方向から見た側面構成図で、回転対称軸RAで回転させた状態を説明する図である。図2(b)に示す2点鎖線の図は、図1に示した本発明のフィルム光導波路101を、回転対称軸RAを回転軸として、120°回転させた場合に想定される状態を示している。図2に示すように、回転対称軸RAは、光導波路コア4内にあって、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとが接した面を延在した仮想面IP上に存在し、光導波路コア4の一端部と他端部とを結ぶ方向DRと直交している。
【0047】
図2(b)に示す回転対称軸RAを回転軸として、180°回転させた場合、光導波路コア4が回転対称になるように作製されているので、入光部12が出光部に、出光部15が入光部に、と置き換えることができる。この事により、フィルム光導波路101の両面に実装される光デバイスのタイプに関係なく、光デバイスを配置することができる。また、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bのフィルム厚みを同じにした場合、回転対称軸RAを回転軸として180°回転させても、回転前後の光導波路66は重なり、同じ光導波路66を作製することができる。
【0048】
図3は、本発明の第1実施形態のフィルム光導波路101の両面に光デバイスを実装した一例を示す側面構成図である。図3に示すように、フィルム光導波路101は、入光部12の入光部12の端面12aを第一のクラッドフィルム1Aの表面に、出光部15の出光部15の端面15aを第二のクラッドフィルム1Bの表面に向けて配置しているので、第一のクラッドフィルム1Aの表面に発光側装置LEを、第二のクラッドフィルム1Bの表面に受光側装置PDを直接取り付けることができる。発光側装置LE及び受光側装置PDの取り付けは、熱硬化または紫外線硬化の接着剤AD等を用いる。また、入光部12の端面12aの部分に発光側装置LEからの光を集光またはコリメートする光学素子OD1を、出光部15の端面15aの部分に出光部15からの光を集光またはコリメートする光学素子OD2を配置することもできる。
【0049】
したがって、フィルム光導波路101と発光側装置LE及び受光側装置PDとの間に固定のための何らかの部品を備える場合に比べて、フィルム光導波路101を備えた光学装置の小型化及び低コスト化を図ることができる。また、第一のクラッドフィルム1A及び第二のクラッドフィルム1Bの表面に直接発光側装置LE及び受光側装置PDを取り付け可能であることから、フィルム光導波路101の入光部12の端面12a及び出光部15の端面15aに対する発光側装置LE及び受光側装置PDのアライメントを容易化することができ、フィルム光導波路101を備えた光学装置の組立を簡便なものにすることができる。
【0050】
以上により、本発明のフィルム光導波路101は、フィルム光導波路101の片面側から入光部12を通して入力した光信号がフィルム光導波路101の反対面側の出光部15から取り出せる構造になっているので、フィルム光導波路101の両面に光デバイスを実装することができる。また、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとで光導波路コア4を狭持した構造をしているので、従来例のフィルム光配線の両面を削った構造と比較して、フィルム光導波路101の強度を低下させることがない。この事により、フィルム光導波路101の両面に光デバイスを実装することができ、しかも、フィルム光導波路101の強度を下げることがないフィルム光導波路を提供できる。
【0051】
また、光導波路コア4の所要の部分に第一のミラー面3A及び第二のミラー面3Bを形成すると、入光部12から入射された光を効率良く出光部15に導くことができるので、光導波路66における光の伝播効率を高めることができる。また、フィルム光導波路101の光路を曲げるためのミラー面を、入光部12及び出光部15に対応する反対のクラッドフィルム側に設けたことにより、第一のミラー面3A及び第二のミラー面3Bを容易に作製することができる。また、ミラー面を最小の2箇所にしたことにより、ミラー面の反射による光損失が極力抑えられる。この事により、フィルム光導波路101を容易に作製でき、しかも、光導波路66における光の損失が抑えられたフィルム光導波路を提供できる。
【0052】
また、回転対称軸RAが、光導波路コア4内にあって、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとが接した面を延在した仮想面IP上に存在し、光導波路コア4の一端部と他端部とを結ぶ方向DRと直交しているので、光導波路コア4が回転対称になるように作製することができる。しかも、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bのフィルム厚みを同じにすると、回転対称軸RAを回転軸として180°回転させても、回転前後の光導波路66は重なり、同じ光導波路66を作製することもできる。この事により、入光部12が出光部に、出光部15が入光部にと置き換えられ、フィルム光導波路101の両面に実装される光デバイスのタイプに関係なく、光デバイスを配置することができ、光配線を設計することが容易になる。
【0053】
また、第一のクラッドフィルム1Aの第一の凹溝6Aは、入光部12が形成されている側に向かって徐々に浅くなる凹溝になっているとともに、第二のクラッドフィルム1Bの第二の凹溝6Bも、出光部15が形成されている側に向かって徐々に浅くなる凹溝になっているので、光導波路コア4が徐々に傾斜された形状になる。これにより、入光部12から入射した光が、第一のミラー面3Aで反射され、光導波路コア4の光路の途中で反射されながら伝搬するので、第一のミラー面3Aで反射された光がより確実に第二のミラー面3Bに伝搬されるようになる。この事により、フィルム光導波路101を伝搬する光の損失をより抑えることができる。
【0054】
また、第二の凹溝6Bは、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとが接した面を延在した仮想面IPに接する出光部15の一端15bに繋がる凹溝であるとともに、第二のミラー面3Bは、仮想面IPに接する出光部15の一端15cに繋がっているので、光導波路コア4の一端部が出光部15の一端15bとつながり、第二のミラー面3Bに対向する様に光導波路コア4が配置されているようになる。これにより、導波路コア4を伝搬してきた光が、出光部15を横切って第二のミラーに到達せずに系外に抜けることを防止している。この事によって、フィルム光導波路101を伝搬する光がより一層確実に第二のミラー面3Bに伝搬されるようになり、フィルム光導波路101を伝搬する光の損失をより一層抑えることができる。
【0055】
次に、第1実施形態に係るフィルム光導波路101の製造方法について、図4及び図5を用いて説明する。
【0056】
第1実施形態に係るフィルム光導波路101の製造方法は、第一の凹溝6A及び第二のミラー面3Bを形成する第一の形成工程P11と、第二の凹溝6B及び第一のミラー面3Aを形成する第二の形成工程P12と、第二のミラー面3B及び第一のミラー面3Aに反射膜を形成する成膜工程P21と、第一の貫通孔7Aを開設する第一の孔形成工程P31と、第二の貫通孔7Bを開設する第二の孔形成工程P32と、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとを貼り合わせる貼合せ工程P41と、光導波路66の形成用高分子材料を充填する光導波路形成工程P51と、を有している。
【0057】
図4は、第1実施形態に係るフィルム光導波路101の製造方法の一例を説明する構成図である。図4(a)〜(d)は、第一の形成工程P11及び第二の形成工程P12を説明する図であり、図4(e)〜(f)は、成膜工程P21を説明する図であり、図4(g)〜(h)は、第一の孔形成工程P31及び第二の孔形成工程P32を説明する図であり、図4(i)は、貼合せ工程P41を説明する図であり、図4(j)は、光導波路形成工程P51を説明する図である。
【0058】
第一の形成工程P11は、第一のクラッドフィルム1Aに第一の凹溝6A及び第二のミラー面3Bを形成する工程であって、まず、図4(a)に示すように、光導波路コア4の一部を形成する第一の凹溝6Aに相当する凸条18aと第二のミラー面3Bに相当する傾斜部18bとを有する金型18を準備する。同様にして、第二の形成工程P12は、第二のクラッドフィルム1Bに第二の凹溝6B及び第一のミラー面3Aを形成する工程であって、図4(b)に示すように、光導波路コア4の一部を形成する第二の凹溝6Bに相当する凸条28aと第一のミラー面3Aに相当する傾斜部28bとを有する金型28を準備する。金型18及び金型28は、樹脂の剥離性が良好で、所要の光導波路コア4を高精度に形成できることから、例えば、ニッケル又はニッケル合金などをもって形成される。この金型18及び金型28は、レーザ加工や機械加工等により素材となるニッケル板又はニッケル合金板に直接凸条をカッティングすることもできるし、フォトリソグラフィ技術を用いて、ガラス基板上に光導波路66に相当するフォトレジスト製の凹部が形成された原盤を作製した後、電鋳を利用した転写技術を用いて、原盤に形成された凹部をニッケル金型又はニッケル合金金型に転写するという方法で行うこともできる。
【0059】
次に、第一の形成工程P11は、第一のクラッドフィルム1Aの元になるフィルム基材を準備し、金型18の凸条形成面にフィルム基材を過熱化で押し付けて、凸条の反転パターンをフィルム基材に転写する。図4(c)は、転写終了後、第一のクラッドフィルム1Aに第一の凹溝6A及び第二のミラー面3Bが形成され、金型18から離型した状態を示している。この場合、金型18からの第一のクラッドフィルム1Aの離型性を良くするため、金型18の表面に離型材を塗布することもできる。第二の形成工程P12も同様な方法を用いて行われ、図4(d)に示すように、第二の凹溝6B及び第一のミラー面3Aが形成された第二のクラッドフィルム1Bが得られる。このように、第1実施形態に係るフィルム光導波路101の製造方法は、所謂ファインプリント技術を応用して光導波路コア4に相当する第一の凹溝6A及び第二の凹溝6Bを形成するので、微細な凹溝を有するクラッドフィルムを高能率かつ高精度に製造することができ、高性能のフィルム光導波路101を安価に製造することができる。
【0060】
また、第一の形成工程P11及び第二の形成工程P12が、第一の凹溝6A及び第二の凹溝6Bと第二のミラー面3B及び第一のミラー面3Aとをそれぞれ同一形状となるように加工した工程の場合、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bの加工品が同一形状になるので、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとを同一の型で作製することができる。この事により、同一の形状になった一種類のクラッドフィルムを用いて接合することで、フィルム光導波路101を作製するこができる。
【0061】
次に、第一の形成工程P11及び第二の形成工程P12の終了後、第二のミラー面3B及び第一のミラー面3Aに反射膜を形成する成膜工程P21を行う。成膜工程P21は、先ず、図4(e)に示すように、第一のクラッドフィルム1Aと第二のミラー面3Bに対応する開口部8aを有するマスク材8Aとを重ね合わせる。そして、反射膜は、アルミニウムや銀などの反射率の高い金属材料又はこれらの金属材料を主成分とする合金材料を、第二のミラー面3Bに真空蒸着することによって形成される。同様にして、図4(f)に示すように、第二のクラッドフィルム1Bと第一のミラー面3Aに対応する開口部8bを有するマスク材8Bとを重ね合わせ、第一のミラー面3Aに反射膜を形成する。このように、第二のミラー面3B及び第一のミラー面3Aに反射膜を形成すると、第二のミラー面3B及び第一のミラー面3Aにおける光の反射効率を高めることができるので、光導波路66とクラッドフィルムとの屈折率差を十分に大きくできない場合にも、光の伝播効率が高い光導波路66とすることができる。
【0062】
また、反射膜は、第二のミラー面3B及び第一のミラー面3Aのみに形成するだけで足りるが、フィルム光導波路101の製造コストを抑制するため、必ずしも第二のミラー面3B及び第一のミラー面3Aのみに限定されるものではなく、第一の凹溝6Aと第二の凹溝6Bとに対応する光導波路66に形成することも許容される。フィルム光導波路101の製造コストの抑制は、マスク材8A及びマスク材8Bが不用になったり、不要部分に付着した反射膜を除去するための後処理が不用になったりすることで達成される。また、金型18及び金型28の傾斜部18b及び傾斜部28bに反射膜を真空蒸着し、金型18及び金型28から第一のクラッドフィルム1A及び第二のクラッドフィルム1Bを離型する工程で、その反射膜を第二のミラー面3B及び第一のミラー面3Aに転写するという方法をとることもできる。
【0063】
次に、第一のクラッドフィルム1Aに入光部12を形成するための第一の貫通孔7Aを開設する第一の孔形成工程P31と、第二のクラッドフィルム1Bに出光部15を形成するための第二の貫通孔7Bを開設する第二の孔形成工程P32を行う。なお、第一の貫通孔7Aを入光部とするか出光部するかは、必要に応じて適宜設定することができる。第二の貫通孔7Bも同様にして、必要に応じて適宜設定することができる。図4(g)は、第一の貫通孔7Aが開設された状態を示していて、図4(h)は、第二の貫通孔7Bが開設された状態を示している。第一のクラッドフィルム1Aの第一の貫通孔7A及び第二のクラッドフィルム1Bの第二の貫通孔7Bの開設は、レーザ加工や機械加工等により行うことができる。
【0064】
また、第一の孔形成工程P31は、第一の形成工程P11の金型18に、第一の貫通孔7Aに相当する凸条を更に設けることで、第一の形成工程P11と同時に行うこともできる。同様にして、第二の孔形成工程P32も第二の形成工程P12と同時に行うことができる。このように、凹溝加工と貫通孔加工を同じ金型で行うため、凹溝と貫通孔との位置精度が向上するので、後述する貼合せ工程P41において、位置合わせが容易になるばかりでなく、貼り合わせ精度も向上させることができる。
【0065】
次に、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとを貼り合わせる貼合せ工程P41を行う。貼合せ工程P41は、第一の凹溝6Aと第二の凹溝6Bとが、第一の貫通孔7Aと第一のミラー面3Aとが、第二の貫通孔7Bと第二のミラー面3Bとが、それぞれ対向するように貼り合わせる。図4(i)は、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとを貼り合わせた状態を示していて、第一の凹溝6Aと第二の凹溝6Bとが協働して光導波路コア用キャビティCAが形成されている。第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとの貼り合わせは、接着を使用した接着又は熱圧着により行われる。
【0066】
次に、第一の貫通孔7A内、第二の凹溝6B内、第一の凹溝6A内、及び第二の貫通孔7B内に光導波路66の形成用高分子材料を充填する光導波路形成工程P51を行う。光導波路形成工程P51は、図4(j)に示すように、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bの貼り合わせ体を押さえ治具19及び押さえ治具29で狭持し、これら押さえ治具19と押さえ治具29とで、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bの貼り合わせ体を適度な圧力で押圧する。押さえ治具19及び押さえ治具29には、第一の貫通孔7Aに対応する樹脂注入口59及び第二の貫通孔7Bに対応する排気口69が開設されており、押圧時には、これら第一の貫通孔7Aと樹脂注入口59及び第二の貫通孔7Bと排気口69が一致するように、位置決めが行われる。
【0067】
次に、光導波路形成工程P51は、押さえ治具19側の樹脂注入口59に樹脂供給装置のヘッドを連結し(図示しない)、押さえ治具29側の排気口69に吸引装置のヘッドも連結し(図示しない)、吸引装置により、排気口69につながった第二の貫通孔7Bから、第二の貫通孔7B内、第一の凹溝6A内、第二の凹溝6B内及び第一の貫通孔7A内の気体を吸引して、光導波路66が形成されるキャビティ内を減圧する。そして、キャビティ内の圧力が所定値以下に減圧された段階で、樹脂供給装置から、樹脂注入口59につながった第一の貫通孔7Aから、第一の貫通孔7A内、第二の凹溝6B内、第一の凹溝6A内及び第二の貫通孔7B内に光導波路66の形成用の高分子材料を加圧充填する。光導波路66の形成用の高分子材料は、紫外線硬化性樹脂を好適に用いる。このように、両クラッドフィルムで形成されたキャビティ内の気体を吸引しつつ、光導波路形成用の高分子材料の充填をしているので、キャビティ内への高分子材料の充填が高能率に行われるとともに、光導波路66内への気泡の混入が防止され、良品の製造を高能率に行うことが可能になる。
【0068】
また、図5に示すように、導波路形成用の高分子材料の充填の際に、光導波路形成工程P51において、第二の貫通孔7B内、第一の凹溝6A内、第二の凹溝6B内及び第一の貫通孔7A内の気体がぬけ易いように、気体の吸引側である第二の貫通孔7Bが高分子材料の注入側である第一の貫通孔7Aより上方(重力方向を下方とする)に配置されるようにする。この事により、より高能率に高分子材料の充填が行えると共に、光導波路66内への気泡の混入をより一層防止できる。
【0069】
最後に、第一の貫通孔7A内、第二の凹溝6B内、第一の凹溝6A内及び第二の貫通孔7B内に光導波路66の形成用の高分子材料が充填された段階で、樹脂供給装置からの樹脂の供給を停止し、樹脂注入口59及び排気口69からそれぞれのヘッドを取り外す。また、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bの貼り合わせ体の表面から、押さえ治具19及び押さえ治具29を取り外す。そして、この状態で、高分子材料を硬化させると、図1に示すフィルム光導波路101が形成される。高分子材料が紫外線硬化性樹脂の場合、第一のクラッドフィルム1Aまたは第二のクラッドフィルム1Bの外面から、紫外線硬化性樹脂の樹脂硬化光を照射するだけで、容易に硬化を行うことができる。この事により、紫外線硬化性樹脂を用いるのがより好ましい。
【0070】
また、紫外線の樹脂硬化光を透過する押さえ治具19及び押さえ治具29を用いることによって、押さえ治具を装着したまま押さえ治具の外側から樹脂硬化光を全面照射することができる。この事により、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bの貼り合わせ体を押さえながら、光導波路66の形成用の紫外線硬化性樹脂を硬化させることができるので、光導波路66の正常な形状を保ちつつ、確実に光導波路66を作製することができる。
【0071】
なお、前記実施形態では、第二の貫通孔7Bを通してキャビティ内の気体を排出し、第一の貫通孔7Aを通して高分子材料の充填を行ったが、これとは逆に、第一の貫通孔7Aを通してキャビティ内の気体を排出し、第二の貫通孔7Bを通して樹脂の充填を行うことも勿論可能である。
【0072】
以上により、本発明のフィルム光導波路101の製造方法は、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bを貼り合わせて、両クラッドフィルムで形成されたキャビティに高分子材料を充填するだけで、第一のクラッドフィルム1Aの第二のミラー面3B、第二のクラッドフィルム1Bの第一のミラー面3Aを利用することによって、光導波路66の片面の入光部12から入光させ、光導波路66の反対面側の出光部15から出光させる構造を簡易に作製できる。この事により、フィルム光導波路101の両面に光デバイスを実装することができる。また、光導波路66の光路の変更のために、フィルム光配線の両面を削ってミラー面を形成している場合と比較して、フィルム光導波路の強度を低下させることがなくフィルム光導波路101を作製することができる。
【0073】
また、第一の形成工程P11及び第二の形成工程P12が、第一の凹溝6A及び第二の凹溝6Bと第二のミラー面3B及び第一のミラー面3Aとをそれぞれ同一形状となるように加工した工程の場合、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bの加工品が同一形状になるので、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとを同一の型で作製できる。これにより、同一の形状になった一種類のクラッドフィルムを用いて接合することで、フィルム光導波路101を作製するこができる。この事により、異なる型で作製したクラッドフィルムを用いた時よりも、凹溝の寸法バラツキによる合わせ位置ズレ等が大幅に少なくなるので、フィルム光導波路101を伝搬する光の損失を抑えることができる。
【0074】
また、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bを用いて、両クラッドフィルムで形成されたキャビティ内の気体を吸引しつつ、光導波路66形成用の高分子材料の充填をしているので、キャビティ内への高分子材料の充填が高能率に行われるとともに、光導波路66内への気泡の混入が防止され、良品の製造を高能率に行うことが可能になる。また、高分子材料の充填を連続処理にて行うことが可能で、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bにて光導波路66が完全に被覆保護されたフィルム光導波路101を高能率に製造することができる。
【0075】
また、導波路形成用の高分子材料の充填の際に、光導波路形成工程P51において、高分子材料を加圧充填する際に、第二の貫通孔7B内、第一の凹溝6A内、第二の凹溝6B内及び第一の貫通孔7A内の気体がぬけ易いように、気体の吸引側である第二の貫通孔7Bが高分子材料の注入側である第一の貫通孔7Aより上方(重力方向を下方とする)に配置されているので、より高能率に高分子材料の充填が行えると共に、光導波路66内への気泡の混入をより防止できる。
【0076】
[第2実施形態]
図6は、本発明の第2実施形態のフィルム光導波路102を説明する図であり、厚み方向から見た側面構成図である。本発明の第2実施形態のフィルム光導波路102は、第1実施形態のフィルム光導波路101に対し、光導波路コア4とそれに伴うミラー面の構成が異なっている。なお、第1実施形態と同じ部材は同じ符号を付しており、説明を省略する。
【0077】
図6に示すように、フィルム光導波路102は、光導波路コア4が、第一の光導波路コア4Aと第二の光導波路コア4Bとからなり、第一のミラー面3Aは、入光部12から入射された光を第一の光導波路コア4Aに伝搬するよう反射し、第二のクラッドフィルム1Bには、第一の光導波路コア4Aを伝搬した光を第一のクラッドフィルム1A側に反射する第三のミラー面3Cが形成されており、第一のクラッドフィルム1Aには、第三のミラー面3Cからの光を第二の光導波路コア4Bに伝搬するよう反射する第四のミラー面3Dが形成されており、第二のミラー面3Bは、第二の光導波路コア4Bを伝搬した光を出光部15に導くよう反射するように構成されている。なお、図6の破線OPは、光路順の一例(光の光路の全てを表したものではない)を示している。このように、フィルム光導波路102の光路の途中に、光路を曲げるための第三のミラー面3C及び第四のミラー面3Dを設けたことにより、フィルム光導波路101の光路長を長くでき、光配線を設計することが容易になる。
【0078】
また、フィルム光導波路102は、第1実施形態のフィルム光導波路101と同様に、フィルム光導波路102の片面側から入光部12を通して入力した光信号がフィルム光導波路102の反対面側の出光部15から取り出せる構造になっているので、フィルム光導波路102の両面に光デバイスを実装することができる。また、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとで光導波路コア4を狭持した構造をしているので、従来例のフィルム光配線の両面を削った構造と比較して、フィルム光導波路102の強度を低下させることがない。この事により、フィルム光導波路102の両面に光デバイスを実装することができ、しかも、フィルム光導波路102の強度を下げることがないフィルム光導波路を提供できる。
【0079】
また、フィルム光導波路102は、第1実施形態のフィルム光導波路101と同様に、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとが接した面を延在した仮想面IP上に回転対称軸RAを有しているので、光導波路コア4が回転対称になるように作製することができる。しかも、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bのフィルム厚みを同じにすると、回転対称軸RAを回転軸として180°回転させても、回転前後の光導波路66は重なり、同じ光導波路66を作製することもできる。この事により、入光部12が出光部に、出光部15が入光部にと置き換えられ、フィルム光導波路102の両面に実装される光デバイスのタイプに関係なく、光デバイスを配置することができ、光配線を設計することが容易になる。
【0080】
フィルム光導波路102は、第1実施形態のフィルム光導波路101の製造方法と同様な方法を用い、第二の光導波路コア4Bを形成する第一の凹溝26Aに相当する凸条と第二のミラー面3B及び第四のミラー面3Dに相当する傾斜部とを有する金型を変えていることにより、作製されている。同様にして、第一の光導波路コア4Aを形成する第二の凹溝26Bに相当する凸条と第一のミラー面3A及び第三のミラー面3Cに相当する傾斜部とを有する金型も変えて作製されている。そして、第一の光導波路コア4Aは、第二のクラッドフィルム1Bに形成されおり、第二の光導波路コア4Bは、第一のクラッドフィルム1Aに形成されている。この事により、所謂ファインプリント技術を応用して、単純な形状の第一の凹溝26A及び第二の凹溝26Bを形成するので、微細な凹溝を有するクラッドフィルムを高能率かつ高精度に製造することができ、高性能のフィルム光導波路102を安価に製造することができる。
【0081】
[第3実施形態]
図7は、本発明の第3実施形態のフィルム光導波路103を説明する図であり、厚み方向から見た側面構成図である。本発明の第3実施形態のフィルム光導波路103は、第1実施形態のフィルム光導波路101に対し、光導波路コア4とそれに伴うミラー面の構成が異なっている。なお、第1実施形態と同じ部材は同じ符号を付しており、説明を省略する。
【0082】
図7に示すように、フィルム光導波路103は、光導波路コア4が、第三の光導波路コア4Cと第四の光導波路コア4Dとからなり、第一のミラー面3Aは、入光部12から入射された光を第三の光導波路コア4Cに伝搬するよう反射し、第一のクラッドフィルム1Aには、第三の光導波路コア4Cを伝搬した光を第二のクラッドフィルム1B側に反射する第五のミラー面3Eが形成されており、第二のクラッドフィルム1Bには、第五のミラー面3Eからの光を第四の光導波路コア4Dに伝搬するよう反射する第六のミラー面3Fが形成されており、第二のミラー面3Bは、第四の光導波路コア4Dを伝搬した光を出光部15に導くよう反射するように構成されている。このように、フィルム光導波路103の光路の途中に、光路を曲げるための第五のミラー面3E及び第六のミラー面3Fを設けたことにより、フィルム光導波路の光路長を長くできる。この事により、光配線を設計することが容易になる。
【0083】
また、フィルム光導波路103は、第1実施形態のフィルム光導波路101と同様に、フィルム光導波路103の片面側から入光部12を通して入力した光信号がフィルム光導波路103の反対面側の出光部15から取り出せる構造になっているので、フィルム光導波路103の両面に光デバイスを実装することができる。また、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとで光導波路コア4を狭持した構造をしているので、従来例のフィルム光配線の両面を削った構造と比較して、フィルム光導波路103の強度を低下させることがない。この事により、フィルム光導波路103の両面に光デバイスを実装することができ、しかも、フィルム光導波路103の強度を下げることがないフィルム光導波路を提供できる。
【0084】
また、フィルム光導波路103は、第1実施形態のフィルム光導波路101と同様に、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bとが接した面を延在した仮想面IP上に回転対称軸RAを有しているので、光導波路コア4が回転対称になるように作製することができる。しかも、第一のクラッドフィルム1Aと第二のクラッドフィルム1Bのフィルム厚みを同じにすると、回転対称軸RAを回転軸として180°回転させても、回転前後の光導波路66は重なり、同じ光導波路66を作製することもできる。この事により、入光部12が出光部に、出光部15が入光部にと置き換えられ、フィルム光導波路103の両面に実装される光デバイスのタイプに関係なく、光デバイスを配置することができ、光配線を設計することが容易になる。
【0085】
フィルム光導波路103は、第1実施形態のフィルム光導波路101の製造方法と同様な方法を用い、第三の光導波路コア4C及び第四の光導波路コア4Dを形成する第一の凹溝36Aに相当する凸条と第二のミラー面3B及び第五のミラー面3Eに相当する傾斜部とを有する金型を変えていることにより、作製されている。同様にして、第三の光導波路コア4C及び第四の光導波路コア4Dを形成する第二の凹溝36Bに相当する凸条と第一のミラー面3A及び第六のミラー面3Fに相当する傾斜部とを有する金型も変えて作製されている。このように、第一の形成工程P11及び第二の形成工程P12で使用する金型を変更するだけで、導波路コア4の形状や光の光路を変えることができる。
【0086】
[第4実施形態]
図8は、本発明の第4実施形態のフィルム光導波路104を説明する図であり、第二のクラッドフィルム側から見た平面構成図である。また、図8は、第1実施形態のフィルム光導波路101の光導波路66が、クラッド内に複数個、設けられていて、本発明の第4実施形態のフィルム光導波路104の一部を示した図である。なお、第1実施形態と同じ部材は同じ符号を付しており、説明を省略する。
【0087】
図8に示すように、フィルム光導波路104は、クラッド内に、光導波路コア4が同一方向に複数並列に配置されており、隣接する光導波路コア4に接続された入光部12の位置がそれぞれ光導波路コア4の延伸方向にずれて形成されているとともに、隣接する光導波路コア4に接続された出光部15の位置がそれぞれ光導波路コア4の延伸方向にずれて形成されるように構成されている。このように、入光部12または出光部15の外径が光導波路コア4の幅より大きい場合、隣接する入光部12または出光部15と重ならないように配線できるので、光配線の光導波路コア4を曲げてパターンニングすることなく、高密度で多数の光配線を設けることができる。この事により、高密度で光デバイスを実装できるフィルム光導波路を提供できる。
【0088】
また、図3に示すような光学素子OD1や光学素子OD2を用いた場合、それぞれの光学部材が光導波路コア4のピッチサイズより大きくなるので、それぞれ光導波路コア4の延伸方向にずれて形成されていることにより、隣接するそれぞれの光学部材が重ならないように配線できる。この事により、光配線の光導波路コア4を曲げてパターンニングすることなく、高密度で多数の光配線を設けることができる。したがって、本発明の第4実施形態のフィルム光導波路104は、光学部材を使用した際にも、好適に用いられる。
【0089】
本発明は上記実施の形態に限定されず、本発明の目的の範囲を逸脱しない限りにおいて適宜変更することが可能である。
【符号の説明】
【0090】
1A 第一のクラッドフィルム
1B 第二のクラッドフィルム
12 入光部
3A 第一のミラー面
3B 第二のミラー面
3C 第三のミラー面
3D 第四のミラー面
3E 第五のミラー面
3F 第六のミラー面
4 光導波路コア
4A 第一の光導波路コア
4B 第二の光導波路コア
4C 第三の光導波路コア
4D 第四の光導波路コア
15 出光部
15b、15c 出光部の一端
6A、26A、36A 第一の凹溝
6B、26B、36B 第二の凹溝
7A 第一の貫通孔
7B 第二の貫通孔
101、102、103、104 フィルム光導波路
P11 第一の形成工程
P12 第二の形成工程
P21 成膜工程
P31 第一の孔形成工程
P32 第一の孔形成工程
P41 貼合せ工程
P51 光導波路形成工程
R1 第一の屈折率
R2 第二の屈折率
R3 第三の屈折率
CA 光導波路コア用キャビティ
DR 結ぶ方向
IP 仮想面
RA 回転対称軸


【特許請求の範囲】
【請求項1】
光信号が伝搬する光導波路コアが、クラッド内に少なくとも一つ形成されているフィルム光導波路において、
前記クラッドが、第一の屈折率を有する材料からなる第一のクラッドフィルムと第二の屈折率を有する材料からなる第二のクラッドフィルムとを有しており、
前記第一のクラッドフィルムと前記第二のクラッドフィルムとが対向配置されることにより、前記第一の屈折率及び前記第二の屈折率よりも大きい第三の屈折率を有する材料からなる前記光導波路コアが狭持されているとともに、前記第一のクラッドフィルムを貫通し前記光導波路コアの一端部に接続する前記第三の屈折率を有する材料からなる入光部と、前記第二のクラッドフィルムを貫通し前記光導波路コアの他端部に接続する前記第三の屈折率を有する材料からなる出光部と、を有し、
前記光導波路コアの前記一端部側に、前記入光部から入射された光を前記光導波路コアに導く第一のミラー面を有し、前記光導波路コアの前記他端部側に、前記光導波路コアを伝播した光を前記出光部に導く第二のミラー面を有することを特徴とするフィルム光導波路。
【請求項2】
前記第一のミラー面が前記第二のクラッドフィルムに形成されているとともに、前記第二のミラー面が前記第一のクラッドフィルムに形成されていることを特徴とする請求項1に記載のフィルム光導波路。
【請求項3】
前記光導波路コアは、前記第一のクラッドフィルムと前記第二のクラッドフィルムとが接した面を延在した仮想面にある回転対称軸を有し、
前記回転対称軸は、前記光導波路コアの前記一端部と前記他端部とを結ぶ方向と直交していることを特徴とする請求項2に記載のフィルム光導波路。
【請求項4】
前記第一のクラッドフィルムは前記第二のクラッドフィルム側の面に第一の凹溝を有し、前記第二のクラッドフィルムは前記第一のクラッドフィルム側の面に第二の凹溝を有し、
前記第一の凹溝と前記第二の凹溝とが協働して、光導波路コア用キャビティを形成しており、前記光導波路コア用キャビティに前記第三の屈折率を有する材料が充填されて前記光導波路コアを形成しており、
前記第一の凹溝の深さは、前記第二のミラー面が形成されている側の深さが前記入光部が形成されている側の深さ以上であるとともに、
前記第二の凹溝の深さは、前記第一のミラー面が形成されている側の深さが前記出光部が形成されている側の深さ以上であることを特徴とする請求項3に記載のフィルム光導波路。
【請求項5】
前記第一の凹溝は、前記第二のミラー面が形成されている側から前記入光部が形成されている側に向かって徐々に浅くなる凹溝であるとともに、
前記第二の凹溝は、前記第一のミラー面が形成されている側から前記出光部が形成されている側に向かって徐々に浅くなる凹溝であることを特徴とする請求項4に記載のフィルム光導波路。
【請求項6】
前記第二の凹溝は、前記第一のクラッドフィルムと前記第二のクラッドフィルムとが接した面を延在した仮想面に接する前記出光部の一端に繋がる凹溝であるとともに、
前記第二のミラー面は、前記仮想面に接する前記出光部の一端に繋がっていることを特徴とする請求項5に記載のフィルム光導波路。
【請求項7】
前記光導波路コアは、第一の光導波路コアと第二の光導波路コアとからなり、
前記第一のミラー面は、前記入光部から入射された光を前記第一の光導波路コアに伝搬するよう反射し、
前記第二のクラッドフィルムには、前記第一の光導波路コアを伝搬した光を前記第一のクラッドフィルム側に反射する第三のミラー面が形成されており、
前記第一のクラッドフィルムには、前記第三のミラー面からの光を前記第二の光導波路コアに伝搬するよう反射する第四のミラー面が形成されており、
前記第二のミラー面は、前記第二の光導波路コアを伝搬した光を前記出光部に導くよう反射することを特徴とする請求項2または請求項3に記載のフィルム光導波路。
【請求項8】
前記光導波路コアは、第三の光導波路コアと第四の光導波路コアとからなり、
前記第一のミラー面は、前記入光部から入射された光を前記第三の光導波路コアに伝搬するよう反射し、
前記第一のクラッドフィルムには、前記第三の光導波路コアを伝搬した光を前記第二のクラッドフィルム側に反射する第五のミラー面が形成されており、
前記第二のクラッドフィルムには、前記第五のミラー面からの光を前記第四の光導波路コアに伝搬するよう反射する第六のミラー面が形成されており、
前記第二のミラー面は、前記第四の光導波路コアを伝搬した光を前記出光部に導くよう反射することを特徴とする請求項2または請求項3に記載のフィルム光導波路。
【請求項9】
前記クラッド内に、前記光導波路コアが同一方向に複数並列に配置されており、隣接する前記光導波路コアに接続された前記入光部の位置がそれぞれ前記光導波路コアの延伸方向にずれて形成されているとともに、隣接する前記光導波路コアに接続された前記出光部の位置がそれぞれ前記光導波路コアの延伸方向にずれて形成されていることを特徴とする請求項1ないし請求項8のいずれか一項に記載のフィルム光導波路。
【請求項10】
第一のクラッドフィルムに第一の凹溝及び第二のミラー面を形成する第一の形成工程と、
第二のクラッドフィルムに第二の凹溝及び第一のミラー面を形成する第二の形成工程と、
前記第一の形成工程及び前記第二の形成工程後、前記第二のミラー面及び前記第一のミラー面に反射膜を形成する成膜工程と、
前記第一のクラッドフィルムに入光部または出光部を形成するための第一の貫通孔を開設する第一の孔形成工程と、
前記第二のクラッドフィルムに出光部または入光部を形成するための第二の貫通孔を開設する第二の孔形成工程と、
前記第一のクラッドフィルムと前記第二のクラッドフィルムとを、前記第一の凹溝と前記第二の凹溝とが、前記第一の貫通孔と前記第一のミラー面とが、前記第二の貫通孔と前記第二のミラー面とが、それぞれ対向するよう貼り合わせる貼合せ工程と、
前記第一の貫通孔内、前記第二の凹溝内、前記第一の凹溝内、及び前記第二の貫通孔内に光導波路の形成用高分子材料を充填する光導波路形成工程と、を有することを特徴とするフィルム光導波路の製造方法
【請求項11】
前記第一の形成工程及び前記第二の形成工程は、前記第一の凹溝及び前記第二の凹溝と前記第二のミラー面及び前記第一のミラー面とをそれぞれ同一形状となるよう加工することを特徴とする請求項10に記載のフィルム光導波路の製造方法。
【請求項12】
前記光導波路形成工程は、
前記第二の貫通孔から、前記第二の貫通孔内、前記第一の凹溝内、前記第二の凹溝内及び前記第一の貫通孔内の気体を吸引しつつ、前記第一の貫通孔から、前記第一の貫通孔内、前記第二の凹溝内、前記第一の凹溝内及び前記第二の貫通孔内に前記光導波路の形成用の高分子材料を加圧充填することを特徴とする請求項10または請求項11に記載のフィルム光導波路の製造方法。
【請求項13】
前記光導波路形成工程は、前記高分子材料を加圧充填する際に、
前記第二の貫通孔内、前記第一の凹溝内、前記第二の凹溝内及び前記第一の貫通孔内の気体がぬけ易いよう、前記第二の貫通孔が前記第一の貫通孔より上方に配置されることを特徴とする請求項12に記載のフィルム光導波路の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−58683(P2012−58683A)
【公開日】平成24年3月22日(2012.3.22)
【国際特許分類】
【出願番号】特願2010−204614(P2010−204614)
【出願日】平成22年9月13日(2010.9.13)
【出願人】(000010098)アルプス電気株式会社 (4,263)
【Fターム(参考)】