説明

プローブカード用セラミック配線基板およびこれを用いたプローブカード

【課題】 熱負荷試験時において、プローブカード用セラミック配線基板に設けられた測定端子とSiウェハの表面に形成された測定パッドとの位置ずれが小さく、異物付着による外観不良の極めて少ないプローブカード用セラミック配線基板とこれを用いたプローブカードを提供する。
【解決手段】 セラミック焼結体が、該セラミック焼結体中に含まれるAlをAl換算およびSiをSiO換算した合計量を100質量部としたときに、前記MnをMn換算で2.0〜4.0質量部、前記TiをTiO換算で4.0〜8.0質量部および前記MoをMoO換算で0.4〜2.1質量部含有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体ウェハの電気特性を測定するための微細な配線を備えたプローブカード用セラミック配線基板およびこれを用いたプローブカードに関するものである。
【背景技術】
【0002】
Siウェハ等の半導体ウェハに多数個同時に形成される大規模集積回路を有する半導体素子には、異物の付着などに起因する電気不良等によって、ほぼ一定の割合で電気的接続および電気特性の不良品が含まれている。
【0003】
上記半導体素子の不良品を検出するものとして、半導体ウェハの状態のまま同時に多数の半導体素子の電気特性を一括して検査することができるプローブカードが知られている(例えば、特許文献1を参照)。
【0004】
このプローブカードは、アルミナ質焼結体からなる絶縁基体の主面および内部に微細な配線が形成されている配線基板と、この配線基板の表面に精度よく配置された複数のプローブピンと呼ばれる測定端子とを含んでおり、このプローブピンを多数の半導体素子の端子にあてて、電圧をかけたときの出力を測定して期待値と比較することで、多数の半導体素子の良否を一括して判定するものである。
【0005】
近年、半導体素子に形成された集積回路の配線微細化に伴って、プローブカードの単位面積当たりのプローブピン数を多くすることが求められ、またプローブカード用セラミック配線基板に形成される配線もより微細化することが求められている。
【0006】
ところが、配線の微細化、すなわち線幅を狭くすることにより、配線抵抗が増大して電気信号の遅延が生じ、集積回路の動作状態について正しく判断できず、検査ミスにつながるという問題があった。
【0007】
そこで、配線としてCu、Ag、Auなどの低抵抗金属を用いることが考えられるが、これらの低抵抗金属は融点が低いため、低抵抗金属のみではアルミナ質焼結体との同時焼成ができない。
【0008】
これに対し、本出願人は、アルミナ質焼結体からなる絶縁基体の内部にCu、Ag、Auなどの低抵抗金属とMo、Wなどの高融点金属との複合金属を主成分とする配線を形成したプローブカード用セラミック配線基板を提案した(例えば、特許文献2を参照)。
【0009】
このプローブカード用セラミック配線基板は、具体的には、MnおよびSiを焼結助剤として含有させることにより、従来のアルミナ質焼結体からなる絶縁基体を有する配線基板よりも200℃以上低い1500℃以下の温度で焼成できるようにしたことから、上記低抵抗金属および高融点金属の複合金属を主成分として含む配線を同時焼成により形成することを可能にしたものである。
【0010】
しかしながら、絶縁基体を特許文献2に記載のアルミナ質焼結体で形成したプローブカード用セラミック配線基板は、絶縁基体の熱膨張係数が、やはりアルミナ質焼結体の熱膨張係数(6〜7×10−6/℃)に近いことから、検査対象であるSiウェハの熱膨張係数との差が大きく、そのため、半導体素子の電気特性の測定前に行う熱負荷試験(バーンイン試験)時において、プローブカード用セラミック配線基板に設けられた測定端子(プローブピン)がSiウェハの表面に形成された測定パッドの位置からずれて電気特性の検
査を行えないという問題があった。
【0011】
これに対し、プローブカード用配線基板の絶縁基体としてアルミナ質焼結体よりも熱膨張係数の小さいムライト質焼結体を適用する試みが行われている(例えば、特許文献3を参照)。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開平11−160356号公報
【特許文献2】特開2009−180518号公報
【特許文献3】特開2010−93197号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
特許文献3に記載のムライト質焼結体は、緻密であり、熱膨張係数がアルミナ質焼結体よりも半導体素子(Si)の熱膨張係数に近いことから、半導体素子の電気特性の測定前に行う熱負荷試験(バーンイン試験)でのプローブカード用セラミック配線基板に設けられた測定端子とSiウェハの表面に形成された測定パッドとの位置ずれを小さくできるものの、このムライト質焼結体は主結晶粒子であるムライト粒子の粒界に二酸化ケイ素を主成分とするガラス相を多く含んでおり、焼成時にそのガラス相が絶縁基体の表面に染み出し、焼成用のセッター材と反応し、セッター材の一部が異物としてプローブカード用セラミック配線基板の表面に付着することで外観不良が発生するとともに、後の表面配線層の形成工程において研磨を行ったときに基板表面にボイドが形成されやすくなり、ボイドを覆うように形成された表面配線層に、ボイドに起因した欠けなどの欠陥が生じやすくなるという問題があった。
【0014】
従って、本発明は、このような事情に鑑みてなされたものであり、熱負荷試験時において、プローブカード用セラミック配線基板に設けられた測定端子とSiウェハの表面に形成された測定パッドとの位置ずれが小さく、異物付着による外観不良の極めて少ないプローブカード用セラミック配線基板とこれを用いたプローブカードを提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明のプローブカード用セラミック配線基板は、ムライトを主結晶相とし、Mn、TiおよびMoを含有するセラミック焼結体からなる絶縁基体と、該絶縁基体内に設けられた導体層とを備えているプローブカード用セラミック配線基板であって、前記セラミック焼結体が、該セラミック焼結体中に含まれるAlおよびSiをAl換算およびSiO換算した合計量を100質量部としたときに、前記MnをMn換算で2.0〜4.0質量部、前記TiをTiO換算で4.0〜8.0質量部および前記MoをMoO換算で0.4〜2.1質量部含有することを特徴とする。
【0016】
上記プローブカード用セラミック配線基板では、前記Moと前記Tiとのモル比(Mo/Ti)が0.125〜0.25であることが望ましい。
【0017】
本発明のプローブカードは、上記のプローブカード用セラミック配線基板の表面に表面配線層が設けられており、該表面配線層に半導体素子の電気特性を測定するための測定端子が接続されてなることを特徴とする。
【発明の効果】
【0018】
本発明によれば、Siと同程度の熱膨張係数を有し、かつ焼成時のガラス相の染み出し
による異物付着による外観不良が極めて少ないプローブカード用セラミック配線基板とこれを用いたプローブカードを得ることができる。
【図面の簡単な説明】
【0019】
【図1】本発明のプローブカード用セラミック配線基板の一実施形態の概略断面図である。
【図2】本発明のプローブカードの一実施形態を用いた半導体素子の評価装置の説明図である。
【発明を実施するための形態】
【0020】
本発明の一実施形態を図面に基づいて説明する。
【0021】
図1は本発明のプローブカード用セラミック配線基板の一実施形態の概略断面図である。図1に示すプローブカード用セラミック配線基板1は、セラミック焼結体からなる絶縁基体11と、絶縁基体11の内部に形成された内部配線層12と、絶縁基体11の表面に形成された表面配線層13とを備えており、その絶縁基体11の内部における内部配線層12同士または内部配線層12と表面配線層13とを電気的に接続するビアホール導体14とを有している。
【0022】
絶縁基体11は複数のセラミック絶縁層11a、11b、11c、11dからなるもので、それぞれのセラミック絶縁層11a、11b、11c、11dはムライトを主成分とするセラミック焼結体により形成されている。以下、ムライトを主成分とするセラミック焼結体のことをムライト質焼結体と記す。
【0023】
ここで、本実施形態のプローブカード用セラミック配線基板1では、絶縁基体11を構成するムライト質焼結体の主成分であるムライトは粒子状または柱状の結晶として存在している。ムライトは、結晶粒径が大きくなるに従い熱伝導性が向上し、結晶粒径が小さくなるに従い強度が向上することから、高熱伝導性および高強度の両立という点から好適なムライトの平均粒径の範囲を選択する必要があるが、この場合、高熱伝導性および高強度を有するという理由から、ムライトの平均粒径は1.0〜5.0μm、特に1.7〜2.5μmであることが望ましい。
【0024】
なお、ムライト結晶粒子の平均粒径は、配線基板から切り出したムライト質焼結体の部分を研磨し、エッチングした試料について走査型電子顕微鏡を用いて内部組織の写真を撮り、その写真上に約50個入る円を描き、円内および円周にかかった結晶粒子を選択し、次いで、各結晶粒子の輪郭を画像処理して、各結晶粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求める。
【0025】
絶縁基体11がムライト質焼結体であると、絶縁基体11の熱膨張係数(室温〜300℃)を3〜5×10−6/℃の範囲にできる。これにより、本実施形態のプローブカード用セラミック配線基板1は、熱負荷試験時において、プローブカード用セラミック配線基板1に設けられた測定端子とSiウェハの表面に形成された測定パッドとの位置ずれが無く、電気特性の検査に好適に使用できるものとなる。
【0026】
また、本実施形態のプローブカード用セラミック配線基板1は、絶縁基体11であるムライト質焼結体が、ムライトを主結晶相とし、Mn、TiおよびMoを含有し、このムライト質焼結体中に含まれるAlをAl換算およびSiをSiO換算した合計量を100質量部としたときに、前記MnをMn換算で2.0〜4.0質量部、前記TiをTiO換算で4.0〜8.0質量部および前記MoをMoO換算で0.4〜2.1質量部含有することを特徴とする。これにより、絶縁基体11におけるガラス相の染み
出しを抑えられるため、異物付着による外観不良が生じ難くかつ耐薬品性を高めることができる。
【0027】
通常、ムライトを主成分とする成形体材料を焼結させるには、最低でも1450℃以上の焼成温度が必要になるが、これを低温焼成しようとして、二酸化ケイ素などの添加成分を用いると、焼成時に二酸化ケイ素を主成分とするガラス相がムライト質焼結体の表面に染み出し、焼成時に成形体を挟んでいる焼成用のセッター材と反応する。その結果、セッター材の一部が異物としてムライト質焼結体の表面に付着することから、得られるムライト質焼結体からなる絶縁基体11は外観不良になるおそれがあるとともに、二酸化ケイ素を主成分とするガラス相の存在により耐薬品性が低下してしまう。
【0028】
これに対し、本実施形態のプローブカード用セラミック配線基板1は、上述のように、絶縁基体11であるムライト質焼結体が、当該ムライト質焼結体中に含まれるAlをAl換算およびSiをSiO換算した合計量を100質量部としたときに、MnをMn換算で2.0〜4.0質量部、TiをTiO換算で4.0〜8.0質量部およびMoをMoO換算で0.4〜2.1質量部含有するものであるために、後述する1380℃〜1420℃の焼成温度で緻密なムライト質焼結体を得ることが可能となり、また、ガラス相の粘度低下による染み出しを抑制できるとともに、耐薬品性を向上できるのである。
【0029】
なお、絶縁基体11中に含まれるMn、TiおよびMoの存在は、原子吸光分析またはICP(Inductivity coupled Plasma)分析により確認できる。
【0030】
また、本実施形態のプローブカード用配線基板1では、絶縁基体11中に含まれるMoとTiとのモル比(Mo/Ti)が0.125〜0.25であることが望ましい。これに
より絶縁基体11の配線近傍の白化を抑制でき、絶縁基体11と配線との色のコントラストが高められることから配線を検査するときの数値ばらつきを小さくすることが可能になる。
【0031】
また、本実施形態のプローブカード用セラミック配線基板1は、ムライト粒子の粒界にMnTiO結晶相を有するものであり、ムライト粒子の粒界に存在するガラス成分量が極めて少ないために、絶縁基体11を40質量%水酸化カリウム水溶液に5時間浸漬したとしても、ムライト質焼結体に含まれるガラス成分の溶出が殆ど溶出しないものとなる。
【0032】
ここで、絶縁基体11中に含まれるMnTiO結晶相の存在は、以下のようにして求める。まず、分析用に研磨加工した試料の表面の300μm角の領域をX線マイクロアナライザー(EPMA)を付設した走査型電子顕微鏡を用いて観察し、MnTiO結晶相の存在を確認する。
【0033】
ここで、ムライト質焼結体中に含まれるAlおよびSiをAl換算およびSiO換算した合計量100質量部に対する、Mn、Ti、Moの含有量は、まず、絶縁基体11を酸に溶解させて、ICP分析により絶縁基体11中に含まれるアルミニウム(Al)、珪素(Si)、マンガン(Mn)、チタン(Ti)、モリブデン(Mo)の含有量を求め、次いで、これらの元素をそれぞれAl、SiO、Mn、TiO、MoOに換算して求める。
【0034】
なお、本実施形態におけるムライト質焼結体では、Mnの他に、焼結性を高める助剤成分として、Ca、Sr、BおよびCrなどから選ばれる少なくとも1種が、耐薬品性、異物付着による外観不良発生率等の特性を損なわない程度含有されていても良い。
【0035】
本実施形態のプローブカード用セラミック配線基板1を構成する導体層(内部配線層12)としては、Cuが40〜60体積%、WまたはMoが40〜60体積%となる組成を有する複合導体で構成されていることが望ましい。
【0036】
ムライト質焼結体と同時焼成可能な内部配線層12の形成材料として、高融点金属であるタングステン(W)またはモリブデン(Mo)が挙げられるが、タングステン(W)またはモリブデン(Mo)からなる内部配線層12は電気抵抗値が高い。一方、銅(Cu)などの低抵抗金属はムライトを主成分とするセラミック焼結体の焼成温度よりもかなり融点が低いため、低抵抗金属である銅のみをムライトを主成分とするセラミック焼結体と同時焼成することはできない。そこで、内部配線層12を銅およびタングステンの複合導体とすることで、銅単体に比べると電気抵抗値は多少あがってしまうものの、後述する1380℃〜1420℃の焼成温度でムライトを主成分とするセラミック焼結体との同時焼成が可能となる。
【0037】
ただし、同時焼成可能といえども、銅の融点を超える温度での焼成となるため、銅の溶融を抑制して内部配線層12の形状を保つことが必要となる。そこで、内部配線層12の低抵抗化と保形性をともに達成するうえで、銅が40〜60体積%、タングステンが40〜60体積%の割合にするのがよい。
【0038】
ここで、内部配線層12の銅およびタングステンの組成は、プローブカード用配線基板1から内部配線層12が形成された部位を切り出し、これを酸に溶解させた溶液をICP分析を用いて導体材料である銅およびタングステンの含有量を質量で求める。次に、質量として求めた銅およびタングステンの量をそれぞれの密度で除して各々の体積を求め、次いで、銅およびタングステンの合計の体積を100%としたときの銅およびタングステンの割合を求める。
【0039】
なお、表面配線層13は、内部配線層13と同様の組成であっても異なっても良く、高融点金属であるタングステンまたはモリブデンのみで形成されていても良い。
【0040】
また、ビアホール導体14は、表面配線層13と同様の組成からなることが焼成時にビアホール導体14からの導体成分の脱落を防止する上で望ましい。
【0041】
上述した本実施形態のプローブカード用セラミック配線基板1は、熱負荷試験時において、プローブカード用セラミック配線基板1に設けられた測定端子(プローブピン)とSiウェハの表面に形成された測定パッドとの位置ずれを抑制でき、電気特性の検査に好適に使用できる。また、ムライト質焼結体を特定の組成としたときには、緻密なものになる。
【0042】
また、図1に示すプローブカード用セラミック配線基板1を構成する絶縁基体11の主面には、焼成直後においては、元々、表面配線層13の代わりにビアホール導体14に接続されたランドパターン(図示せず)が形成されている。このランドパターンは焼成後にこのプローブカード用セラミック配線基板1の内部配線層12およびビアホール導体14の電気的接続のショートまたはオープンの検査を行うために設けられたものである。そして、プローブカード用セラミック配線基板1の内部配線層12およびビアホール導体14の電気的接続のショートまたはオープンの検査を行った後、ランドパターンは研磨により取り除かれ、ビアホール導体14を露出させたうえで、スパッタ法または蒸着法などの薄膜法により表面配線層13が形成され、さらに、この表面配線層13の表面上に測定端子(プローブピン)が形成され、図2に示すプローブカード2が作製される。
【0043】
図2は、本発明のプローブカードの一実施形態を用いた半導体素子の評価装置の説明図
である。上記したプローブカード用セラミック配線基板1は、例えば、図2に示すようなプローブカード2として用いることができる。
【0044】
図2に示すプローブカード2は、プローブカード用セラミック配線基板1の一方の主面に、内部配線層12と接続される表面配線層(図示せず)が形成され、この表面配線層に半導体素子の電気特性を測定するための探針(測定端子21)が接続されており、さらに、測定端子21が形成された面とは反対側の面に接続端子3を介して外部回路基板4が接合された構成となっている。
【0045】
ここで、外部回路基板4は、テスタ5に接続されており、ステージ6の上に載置された半導体ウェハ7の上面にプローブカード2の測定端子21を接触させて半導体素子の電気特性を測定することができる。
【0046】
なお、プローブカード2は、昇降装置8によって上下に駆動させることができ、プローブカード2の測定端子21を半導体ウェハ7の上面に接触させたり離したりするようになっている。
【0047】
このプローブカード2の配線基板として、本実施形態のプローブカード用セラミック配線基板1を適用すると、まず、熱負荷試験時において、プローブカード用セラミック配線基板1に設けられた測定端子21とSiウェハ7の表面に形成された測定パッドとの位置ずれが無く、電気特性の検査に好適に使用できるものとなる。
【0048】
次に、上記のプローブカード用セラミック配線基板1の製造方法について説明する。
【0049】
まず、絶縁基体11を形成するために、ムライト(3Al・2SiO)粉末として、純度が99%以上、平均粒径が0.5〜2.5μmのものを用いる。ムライト粉末の平均粒径を0.5μm以上とすることでシート成形性を良好なものとし、2.5μm以下とすることで1420℃以下の温度での焼成によっても緻密化を促進させることが可能となる。
【0050】
次に、ムライト粉末100質量部に対して、Mn粉末を2.0〜4.0質量部、TiO粉末を4.0〜8.0質量部およびMoO粉末を0.4〜2.1質量部添加する。この場合、添加剤として用いるMn粉末は平均粒径が0.5〜3μm、TiO粉末は0.5〜2μm、MoO粉末は0.5〜2μmであるものを用いるのがよい。。なお、Mn粉末、TiO粉末、MoO粉末の純度はともに99質量%以上であるものがよい。これにより、シート成形性を良好なものとし、Mn、Ti、Moの拡散を向上させ、1380℃〜1420℃の温度での焼結性を高めることができる。
【0051】
本実施形態のプローブカード用セラミック配線基板1を製造する場合、ムライト粉末に対して、Mn粉末およびTiO粉末とともにMoO粉末を添加すると、ガラス相の染み出しを抑えられるため、異物付着による外観不良が生じ難くなる。とりわけ、MoO粉末とTiO粉末とを所定の割合にしたときには、得られる絶縁基体11の配線近傍の白化を抑制でき、これにより絶縁基体11と配線との色のコントラストを高めることができ、その結果、配線を検査するときの数値ばらつきを小さくすることが可能になる。
【0052】
なお、Mn、Ti、Moは、上記の酸化物粉末以外に焼成によって酸化物を形成しうる炭酸塩、硝酸塩、酢酸塩等として添加しても良い。
【0053】
さらに、ムライト質焼結体の緻密化と内部配線層12を形成する複合金属との同時焼結
性を高めるという理由から、ムライト粉末100質量部に対して、Ca、Sr、BおよびCrの群から選ばれる1種以上の酸化物粉末(CaO粉末、SrO粉末、B粉末、Cr粉末)または焼成によって酸化物を形成しうる炭酸塩、硝酸塩、酢酸塩からなる粉末を、本実施形態のプローブカード用セラミック配線基板1の熱膨張係数を変化させず、また耐薬品性を劣化させない程度の割合で添加してもよい。
【0054】
次に、この混合粉末に対して有機バインダ、溶媒を添加してスラリーを調整した後、これをプレス法、ドクターブレード法、圧延法、射出法などの成形方法によってグリーンシートを作製する。あるいは、混合粉末に有機バインダを添加し、プレス成形、圧延成形等の方法により所定の厚みのグリーンシートを作製する。なお、グリーンシートの厚みはたとえば50〜300μmとすることができるが、特に限定されない。
【0055】
そして、適宜、このグリーンシートに対して、マイクロドリル、レーザー等により直径50〜250μmの貫通孔を形成する。
【0056】
このようにして作製されたグリーンシートに対して、銅(Cu)粉末とタングステン(W)粉末とを前述した比率(Cuが40〜60体積%、Wが40〜60体積%)となるように混合して導体ペーストを調製し、この導体ペーストを各グリーンシートの貫通孔内に充填し、またスクリーン印刷、グラビア印刷などの方法により印刷塗布して配線パターンを形成する。
【0057】
なお、この導体ペースト中には、絶縁基体11との密着性を高めるために、上記の金属粉末以外にアルミナ粉末あるいは絶縁基体11と同一組成物の混合粉末を添加してもよく、さらにはNi等の活性金属あるいはそれらの酸化物を導体ペースト全体に対して0.05〜2体積%の割合で添加してもよい。
【0058】
その後、導体ペーストを印刷塗布したグリーンシートを位置合わせして積層圧着した後、この積層体を非酸化性雰囲気(窒素雰囲気あるいは窒素と水素との混合雰囲気)中で焼成する。
【0059】
ここで、この焼成中の最高温度を1380℃〜1420℃とするのがよい。焼成中の最高温度を1380℃〜1420℃とすると、この範囲の温度において保持時間を調整することにより、ムライト質焼結体を緻密化させることができるようになる。
【0060】
また、本実施形態のプローブカード用セラミック配線基板1を構成する絶縁基体11であるムライト質焼結体では、少なくともMn、TiおよびMoを所定量含有させて焼成すると、ムライト粒子のネック成長が抑えられるためムライトの異常粒成長を抑制でき、ヤング率の高いムライト質焼結体を得ることができる。
【0061】
また、本実施形態のプローブカード用セラミック配線基板1を作製する場合、ムライト質焼結体を緻密化するという1000℃から焼成最高温度までの昇温速度は50℃/hr
〜150℃/hr、特に、75℃/hr〜100℃/hrにすることが望ましく、焼成最高
温度から1000℃までの降温速度は、50℃/hr〜300℃/hr、特に、50℃/h
r〜100℃/hrにすることが望ましい。
【0062】
またさらに、焼成時の雰囲気は、内部配線層12中のCuの拡散を抑制するという理由から、水素および窒素を含み、その露点が+30℃以下、特に+25℃以下の非酸化性雰囲気であることが望ましい。焼成時の露点が+30℃より高いと、焼成中に酸化物セラミックスと雰囲気中の水分とが反応し酸化膜を形成し、この酸化膜と銅とが反応してしまい、導体の低抵抗化の妨げとなるのみでなく、Cuの拡散を助長してしまうためである。な
お、この雰囲気には所望によりアルゴンガス等の不活性ガスを混入してもよい。
【0063】
以上述べた方法により作製されたプローブカード用セラミック配線基板1は、CuおよびWを主成分として含み、配線抵抗の低い内部配線層12を有し、熱膨張係数が検査対象であるSiウェハの熱膨張係数に近いものとなる。
【実施例】
【0064】
純度が99%で平均粒子径が2.1μmのムライト粉末100質量部に対して、純度が99%で平均粒子径が1.5μmのMn粉末、純度が99%で平均粒径が1.0μmのTiO粉末、純度が99%で平均粒子径が1.0μmのMoO粉末を表1に示すような割合で混合した後、さらに成形用有機樹脂(有機バインダー)としてアクリル系バインダーと、有機溶媒としてトルエンとを混合してセラミックスラリーを調製した後、ドクターブレード法にて厚さ200μmのシート状に成形し、セラミックグリーンシートを作製した。
【0065】
得られたグリーンシートを15層積層し、室温から600℃の温度において、露点を+25℃とした窒素水素混合雰囲気にて脱脂を行なった後、引き続き焼成を行った。焼成は1380℃にて露点を+25℃とした窒素水素混合雰囲気に、1時間保持して行った後冷却して、ムライト質焼結体を得た。
【0066】
ここで、表1に示した絶縁基体の外観不良発生率は、試料数39個の検査を行い、染み出し・異物付着が生じた確率を算出したものである。
【0067】
また、耐薬品性の指標として、ムライト質焼結体の初期の質量および100℃の水酸化カリウム40質量%水溶液に5時間浸漬させた後のムライト質焼結体の質量を測定し、重量減少率(「ムライト質焼結体の初期質量」−「100℃の水酸化カリウム40質量%水溶液に5時間浸漬させた後のムライト質焼結体の質量」)/「ムライト質焼結体の初期質量」×100[%]を算出した。ここで、耐薬品性の判定は重量変化率が0.12質量%以下の場合合格とした。試料数は3個とし、平均値より求めた。
【0068】
また、作製されたグリーンシートに対して、Cu粉末とW粉末とをCuが45体積%、Wが55体積%となるように調製した導体ペーストを各グリーンシートの表面に印刷して内部配線パターンを形成するとともに貫通孔内にMoの導体ペーストを充填してビア導体が形成されたグリーンシートを作製した。
【0069】
このとき、内部配線パターンの一部に、配線幅測定用として、線幅が100μm、長さが20mmの評価パターンを形成し、この内部配線パターンをビア導体に接続するようにし、さらに、内部配線パターンの端部にはビア導体との接続用としてランドパターンを形成した。
【0070】
こうして作製した各セラミックグリーンシートを位置合わせして積層圧着して積層体を作製した。ここで作製された積層体は、最上層には抵抗測定用に測定端子を接触させるためのパッドが設けられたセラミックグリーンシートを配置し、2層目には抵抗測定用の内部配線パターンとランドパターンが印刷塗布されたセラミックグリーンシートを配置し、最上層に設けられた貫通孔(Mo導体ペーストが充填されている)と、2層目に印刷塗布されたランドが電気的に接続されるように、位置合わせしたものであり、全30層のセラミックグリーンシートが積層されたものである。
【0071】
次に、この積層体を上記と同様の脱脂および焼成の条件にて焼成してプローブカード用セラミック配線基板を作製した。基板サイズは340mm×340mm、厚みが5mmで
あった。
【0072】
次に、作製したプローブカード用セラミック配線基板の表面を研磨し、ランドパターンを取り除いた後、スパッタ法を用いて、プローブカード用セラミック配線基板の表面の全面に厚みが約2μmのチタンおよび銅の導電性薄膜を順に形成した。
【0073】
次に、フォトリソグラフィーによりチタンおよび銅の導電性薄膜をパターン加工して、この銅の表面にニッケルおよび金の電解めっき膜を順に形成して、プローブカード用セラミック配線基板の表面のビアホール導体上に表面配線層を形成した。
【0074】
次に、このプローブカード用セラミック配線基板の表面に形成した表面配線層の表面にSi製の測定端子(プローブピン)を接合してプローブカードを作製した。
【0075】
次に、ステージ上に載置したSiウェハの上面にプローブカードの測定端子であるプローブピンを接触させて90℃の温度に加熱した状態に保持し、プローブカードの側面から実体顕微鏡を用いて、プローブピンとSiウェハの表面に形成された測定パッドとの位置ずれを観察した。この場合、プローブカードおよびSiウェハの最外周に形成した測定端子(プローブピン)と測定パッドを観察したときに、測定端子(プローブピン)の先端が測定パッド上から横に位置ずれしている状態を位置ずれ有りとした。作製した試料については位置ずれの見られたものは無かった。
【0076】
また、作製したプローブカード用セラミック配線基板について配線幅の測定パターンを9ヶ所切り出し、内部配線の配線幅を測定し、配線幅のばらつきを求めた。
【0077】
また、絶縁基体11中に含まれるAl、Si、Mn、Ti、Moの含有量は、プローブカード用配線基板から切り出した絶縁基体を一旦、酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。この場合、ICP分析により絶縁基体中に含まれるアルミニウム(Al)、珪素(Si)、マンガン(Mn)、チタン(Ti)、モリブデン(Mo)の含有量を求め、これらの分析値のうちアルミニウム(Al)および珪素(Si)からムライト(3Al・2SiO)量を求め、さらにムライト量に対するMn、Ti、Moの量を酸化物換算で求めたところ表1に示す量にそれぞれ一致していた。
【0078】
また、内部配線層の銅およびタングステンの組成は、まず、プローブカード用配線基板から内部配線層が形成された部位を切り出し、これを酸に溶解させた溶液をICP分析を用いて導体材料である銅およびタングステンの含有量を質量で求めた。次に、質量として求めた銅およびタングステンの量をそれぞれの密度で除して各々の体積を求め、次いで、銅およびタングステンの合計の体積を100%としたときの銅およびタングステンの割合を求めた。なお、作製したプローブカード用配線基板に形成された内部配線層は銅が45体積%、タングステンが55体積%であることを確認した。これらの結果を表1に示す。
【0079】
【表1】

【0080】
表1の結果から明らかなように、本発明の試料(試料No.3〜6、9〜11および15)では、耐薬品性試験での重量変化率が0.09質量%以下であり耐薬品性を満足し、絶縁基体の表面に異物の付着が無く外観不良率がゼロ%であった。
【0081】
特に、Mo/Ti比を0.125〜0.25とした試料(試料No.4、6、9、10
および15)では、配線を検査した時の配線幅のばらつきが3.7μmであり、絶縁基体と配線との色のコントラストが高く、配線を検査するときの数値ばらつきを小さくできた。
【0082】
これに対し、本発明の範囲外の試料(試料No.1、2、7、8、12〜14および16)では、絶縁基体が緻密化していないか、耐薬品性試験での重量変化率が大きいかまたは外観不良率が大きかった。
【符号の説明】
【0083】
1:プローブカード用セラミック配線基板
11:絶縁基体
12:内部配線層
13:表面配線層
14:ビアホール導体
2:プローブカード
21:測定端子

【特許請求の範囲】
【請求項1】
ムライトを主結晶相とし、Mn、TiおよびMoを含有するセラミック焼結体からなる絶縁基体と、該絶縁基体内に設けられた導体層とを備えているプローブカード用セラミック配線基板であって、前記セラミック焼結体が、該セラミック焼結体中に含まれるAlおよびSiをAl換算およびSiO換算した合計量を100質量部としたときに、前記MnをMn換算で2.0〜4.0質量部、前記TiをTiO換算で4.0〜8.0質量部および前記MoをMoO換算で0.4〜2.1質量部含有することを特徴とするプローブカード用セラミック配線基板。
【請求項2】
前記Moと前記Tiとのモル比(Mo/Ti)が0.125〜0.25であることを特
徴とする請求項1に記載のプローブカード用セラミック配線基板。
【請求項3】
請求項1または2に記載のプローブカード用セラミック配線基板の表面に表面配線層が設けられており、該表面配線層に半導体素子の電気特性を測定するための測定端子が接続されてなることを特徴とするプローブカード。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−73162(P2012−73162A)
【公開日】平成24年4月12日(2012.4.12)
【国際特許分類】
【出願番号】特願2010−219063(P2010−219063)
【出願日】平成22年9月29日(2010.9.29)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】