説明

内燃機関の制御装置

【課題】内燃機関の運転状態が筒内流入空気量が大幅に変化する状態にあるときに実際の筒内流入空気量に一致する筒内流入空気量を算出することにある。
【解決手段】モデル式に基づいて吸気行程中に燃焼室25内に吸入される空気の量を算出し、筒内流入空気量の算出値に基づいて内燃機関の運転を制御する内燃機関の制御装置において、筒内流入空気量の算出が開始されてから所定時間が経過したときの筒内流入空気量の実際値を筒内流入空気量の算出開始時に筒内流入空気量の予測値として算出する。この予測値と筒内流入空気量の算出開始時の筒内流入空気量の実際値との差を筒内流入空気量の算出開始時に筒内流入空気量の変化予測値として算出する。この変化予測値が所定の変化予測値よりも大きいときに筒内流入空気量の算出値を筒内流入空気量の変化予測値に応じて補正する。補正された筒内流入空気量の算出値に基づいて内燃機関の運転が制御される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は内燃機関の制御装置に関する。
【背景技術】
【0002】
内燃機関の制御装置として吸気行程中に燃焼室内に吸入される空気の量に応じて燃焼室内に供給する燃料の量を最適な量に制御するものが知られている。こうした制御装置において最適な量の燃料を燃焼室内に供給するためには吸気行程中に燃焼室内に吸入される空気の量を正確に知ることが必要である。また最適な量の燃料を燃焼室内に供給するため以外にも内燃機関の運転を制御する上で吸気行程中に燃焼室内に吸入される空気の量を正確に知ることが必要である場合もある。
【0003】
特許文献1には吸気行程中に燃焼室内に吸入される空気の量を正確に知るための手段が開示されている。特許文献1に開示されている手段によれば吸気通路を介して燃焼室内に吸入される空気に関して質量保存則およびエネルギ保存則から導き出されるモデル式を利用して吸気行程中に燃焼室内に吸入される空気の量(以下「筒内流入空気量」という)を算出するようにしている。ここで特許文献1に開示されているモデル式は離散化されたものであるのでこのモデル式によれば筒内流入空気量の算出は一定の時間間隔でもって行われることになる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001−041095号公報
【特許文献2】特開2006−070881号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで特許文献1に開示されているようにモデル式を利用して計算によって筒内流入空気量を算出する場合、筒内流入空気量を算出するのに一定の時間を要する。したがってモデル式を利用して筒内吸入空気量を算出するときには少なくとも筒内流入空気量の計算が完了する時点の筒内流入空気量または筒内流入空気量の計算が完了する時点よりも先の筒内流入空気量を算出するようにすることが好ましい。ところが上述したように離散化されたモデル式を利用して筒内流入空気量を算出する場合、筒内流入空気量の算出は一定の時間間隔でもって行われるが特許文献1に開示されている手段によればこの一定の時間間隔の間に筒内流入空気量が大幅に増加したり減少したりすること、すなわち筒内流入空気量が大幅に変化することが想定されていない。このため内燃機関の運転状態が筒内流入空気量が大幅に変化する状態にあるときには離散化されたモデル式を利用して筒内流入空気量を算出したとしても該筒内流入空気量の算出が完了したときには実際の筒内流入空気量が筒内流入空気量の算出が開始されたときの実際の筒内流入空気量に比べて大幅に変化してしまっているので算出された筒内流入空気量が実際の筒内流入空気量に一致しているとは言えなくなる。
【0006】
そこで本発明の目的は内燃機関の運転状態が筒内流入空気量が大幅に変化する状態にあるときに実際の筒内流入空気量に一致する筒内流入空気量を算出することにある。
【課題を解決するための手段】
【0007】
1番目の発明によれば、燃焼室内に吸入される空気に関して質量保存則およびエネルギ保存則を利用して導き出された筒内流入空気量算出モデル式に基づいて吸気行程中に燃焼室内に吸入される空気の量を筒内流入空気量の算出値として算出し、該筒内流入空気量の算出値に基づいて内燃機関の運転を制御する内燃機関の制御装置において、吸気行程中に実際に燃焼室内に吸入される空気の量を筒内流入空気量の実際値と称するとしたとき、筒内流入空気量の算出が開始されてから予め定められた時間が経過したときの筒内流入空気量の実際値を筒内流入空気量の算出開始時に筒内流入空気量の予測値として算出し、該筒内流入空気量の予測値と筒内流入空気量の算出開始時の筒内流入空気量の実際値との差を筒内流入空気量の算出開始時に筒内流入空気量の変化予測値として算出し、該筒内流入空気量の変化予測値が予め定められた変化予測値よりも大きいときに筒内流入空気量の算出値を前記筒内流入空気量の変化予測値に応じて補正し、該補正された筒内流入空気量の算出値に基づいて内燃機関の運転が制御される。
【0008】
2番目の発明によれば、1番目の発明において、燃焼室に接続された吸気通路内にスロットル弁が配置されており、筒内流入空気量の算出開始時の前記スロットル弁の開度と当該筒内流入空気量の算出開始時に目標とすべきスロットル弁の開度との差が予め定められた開度差よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0009】
3番目の発明によれば、2番目の発明において、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、該スロットル弁下流圧力の変化量が予め定められた圧力変化量よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0010】
4番目の発明によれば、2または3番目の発明において、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過するまでの間にスロットル弁下流圧力が前記特定の圧力を越えて高くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において高くなると判断されたとき又はスロットル弁下流圧力が前記特定の圧力を越えて低くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において低くなると判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0011】
5番目の発明によれば、2〜4番目の発明のいずれか1つにおいて、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく且つスロットル弁下流圧力が一定であればスロットル弁の開度が大きいほどスロットル弁通過空気流量が大きく、筒内流入空気量の算出開始時のスロットル弁の開度、スロットル弁下流圧力、およびスロットル弁通過空気流量をそれぞれ基準スロットル開度、基準スロットル弁下流圧力、および基準スロットル弁通過空気流量と称するとしたとき、前記予め定められた時間が経過したときにスロットル弁の開度が前記基準スロットル開度よりも大きく且つスロットル弁下流圧力が前記基準スロットル弁下流圧力よりも高く且つ前記予め定められた時間が経過したときのスロットル弁の開度においてスロットル弁通過空気流量が前記基準スロットル弁通過空気流量に等しくなるスロットル弁下流圧力よりも前記予め定められた時間が経過したときのスロットル弁下流圧力が高いと判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断され且つ筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断される。
【0012】
6番目の発明によれば、1番目の発明において、燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を筒内流入空気量の算出開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、該スロットル弁下流圧力の変化量が予め定められた圧力変化量よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0013】
7番目の発明によれば、1番目の発明において、燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過するまでの間にスロットル弁下流圧力が前記特定の圧力を越えて高くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において高くなると判断されたとき又はスロットル弁下流圧力が前記特定の圧力を越えて低くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において低くなると判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0014】
8番目の発明によれば、1番目の発明において、燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく且つスロットル弁下流圧力が一定であればスロットル弁の開度が大きいほどスロットル弁通過空気流量が大きく、筒内流入空気量の算出開始時のスロットル弁の開度、スロットル弁下流圧力、およびスロットル弁通過空気流量をそれぞれ基準スロットル開度、スロットル弁下流圧力、および基準スロットル弁通過空気流量と称するとしたとき、前記予め定められた時間が経過したときにスロットル弁の開度が前記基準スロットル開度よりも大きく且つ実スロットル下流圧力が前記基準スロットル弁下流圧力よりも高く且つ前記予め定められた時間が経過したときのスロットル弁の開度においてスロットル弁通過空気流量が前記基準スロットル弁通過空気流量に等しくなるスロットル弁下流圧力よりも前記予め定められた時間が経過したときのスロットル弁下流圧力が高いと判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断され且つ筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断される。
【0015】
9番目の発明によれば、1番目の発明において、燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記筒内流入空気量算出モデル式が前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量の算出値として算出するスロットル弁通過空気流量算出モデル式を含んでおり、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときに前記スロットル弁通過空気流量算出モデル式によって算出されるスロットル弁通過空気流量の算出値を筒内流入空気量の変化予測値に応じて補正することによって前記筒内流入空気量算出モデル式によって算出される筒内流入空気量の算出値が筒内流入空気量の変化予測値に応じて補正される。
【0016】
10番目の発明によれば、9番目の発明において、前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁通過空気流量を筒内流入空気量の算出開始時にスロットル弁通過空気流量の予測値として算出し、該スロットル弁通過空気流量の予測値と筒内流入空気量の算出開始時のスロットル弁通過空気流量との差を当該筒内流入空気量の算出開始時にスロットル弁通過空気流量の変化予測値として算出し、該筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときにスロットル弁通過空気流量の算出値をスロットル弁通過空気流量の変化予測値に応じて補正することによって該スロットル弁通過空気流量の算出値が筒内流入空気量の変化予測値に応じて補正される。
【0017】
11番目の発明によれば、10番目の発明において、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を筒内流入空気量算出処理の開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときにスロットル弁通過空気流量の算出値をスロットル弁下流圧力の変化量に応じて補正することによって該スロットル弁通過空気流量の算出値が前記スロットル弁通過空気流量の変化予測値に応じて補正される。
【0018】
12番目の発明によれば、10または11番目の発明において、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁の開度を筒内流入空気量の算出開始時にスロットル開度の予測値として算出し、該スロットル開度の予測値と筒内流入空気量の算出開始時のスロットル弁の開度との差を当該筒内流入空気量の算出開始時にスロットル開度の変化予測値として算出し、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときにスロットル弁通過空気流量の算出値をスロットル開度の変化予測値に応じて補正することによって該スロットル弁通過空気流量の算出値がスロットル弁通過空気流量の変化予測値に応じて補正される。
【0019】
13番目の発明によれば、1〜12番目の発明のいずれか1つにおいて、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときであって筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく増加すると判断されたときには筒内流入空気量の算出値が大きくなるように補正され、一方、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときであって筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断されたときには筒内流入空気量の算出値が小さくなるように補正される。
【0020】
14番目の発明によれば、9〜13番目の発明のいずれか1つにおいて、筒内流入空気量の算出開始時の前記スロットル弁の開度と当該筒内流入空気量の算出開始時に目標とすべきスロットル弁の開度との差が予め定められた開度差よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0021】
15番目の発明によれば、9〜14番目の発明のいずれか1つにおいて、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を筒内流入空気量の算出開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、該スロットル弁下流圧力の変化量が予め定められた圧力変化量よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0022】
16番目の発明によれば、9〜15番目の発明のいずれか1つにおいて、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過するまでの間にスロットル弁下流圧力が前記特定の圧力を越えて高くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において高くなると判断されたとき又はスロットル弁下流圧力が前記特定の圧力を越えて低くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において低くなると判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される。
【0023】
17番目の発明によれば、9〜16番目の発明のいずれか1つにおいて、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が少なく且つスロットル弁下流圧力が一定であればスロットル弁の開度が大きいほどスロットル弁通過空気流量が多く、筒内流入空気量の算出開始時のスロットル弁の開度、スロットル弁下流圧力、およびスロットル弁通過空気流量をそれぞれ基準スロットル開度、基準スロットル弁下流圧力、および基準スロットル弁通過空気流量と称するとしたとき、前記予め定められた時間が経過したときにスロットル弁の開度が前記基準スロットル開度よりも大きく且つスロットル弁下流圧力が前記基準スロットル弁下流圧力よりも高く且つ前記予め定められた時間が経過したときのスロットル弁の開度においてスロットル弁通過空気流量が前記基準スロットル弁通過空気流量に等しくなるスロットル弁下流圧力よりも前記予め定められた時間が経過したときのスロットル弁下流圧力が高いと判断されたときに前記筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断され且つ筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断される。
【0024】
18番目の発明によれば、1〜17番目の発明のいずれか1つにおいて、前記筒内流入空気量の算出が予め定められた時間間隔でもって実行され、前記予め定められた時間が該予め定められた時間間隔に等しい。
【0025】
19番目の発明によれば、1〜17番目の発明のいずれか1つにおいて、前記予め定められた時間が筒内流入空気量の算出が開始されてから当該筒内流入空気量の算出によって算出された筒内流入空気量の算出値が内燃機関の運転の制御に利用されるまでの時間に等しい。
【0026】
20番目の発明によれば、1〜19番目の発明のいずれか1つにおいて、内燃機関が過給機を具備し、前記筒内流入空気量算出モデル式が前記過給機のコンプレッサを通過する空気の流量をコンプレッサ通過空気流量の算出値として算出するコンプレッサ通過空気流量算出モデル式を含んでおり、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときに前記コンプレッサ通過空気流量算出モデル式によって算出されるコンプレッサ通過空気流量の算出値を筒内流入空気量の変化予測値に応じて補正することによって前記筒内流入空気量算出モデル式によって算出される筒内流入空気量の算出値が筒内流入空気量の変化予測値に応じて補正される。
【0027】
以上、1〜20番目の発明によれば筒内流入空気量の算出が開始された後における実際の筒内流入空気量の変化量が比較的大きいときに該筒内流入空気量の変化量に応じて筒内流入空気量の算出値が補正されるので実際の筒内流入空気量に一致する筒内流入空気量が算出され或いは少なくとも補正されていない筒内流入空気量の算出値に比べて実際の筒内流入空気量に近い筒内流入空気量が算出される。
【0028】
また19番目の発明によれば筒内流入空気量の算出値がそれが内燃機関の運転の制御に利用されるまでの筒内流入空気量の変化量に応じて補正されるので内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致する筒内流入空気量が算出され或いは少なくとも補正されていない筒内流入空気量の算出値に比べて実際の筒内流入空気量に近い筒内流入空気量が算出される。
【0029】
また20番目の発明によれば過給機を備えた内燃機関においても実際の筒内流入空気流量の変化量に一致する筒内流入空気量が算出され或いは少なくとも補正されていない筒内流入空気量の算出値に比べて実際の筒内流入空気量に近い筒内流入空気量が算出される。
【図面の簡単な説明】
【0030】
【図1】本発明の制御装置が適用される火花点火式内燃機関を示した図である。
【図2】本発明のモデルの機能を示した機能ブロック図である。
【図3】アクセルペダル踏込量Accpと目標スロットル開度θtとの関係を規定するマップを示した図である。
【図4】目標スロットル開度θtと予測スロットル開度θeとの差Δθと関数f(θt,θe)との関係を規定するマップを示した図である。
【図5】スロットル開度θと積C(θ)・A(θ)との関係を規定するマップを示した図である。
【図6】圧力比Pm/Paとスロットル開度θと値Φ(Pm/Pa)との関係を規定するマップを示した図である。
【図7】機関回転数NEと吸気弁開閉タイミングVTと比例係数cとの関係を規定するマップを示した図である。
【図8】機関回転数NEと吸気弁開閉タイミングVTと値dとの関係を規定するマップを示した図である。
【図9】圧力比Pm/Paとスロットル弁通過空気流量mtとの関係を示した図である。
【図10】圧力比Pm/Paとスロットル弁通過空気流量mtとの関係を示した図である。
【図11】吸気管圧力Pmと値Φ(Pm/Pa)との関係を示した図である。
【図12】吸気管圧力Pmとスロットル開度θと値Φ(Pm/Pa)との関係を規定するマップを示した図である。
【図13】電子制御スロットル弁モデルM1に従った演算を実行するフローチャートの一例を示した図である。
【図14】スロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った演算を実行するフローチャートの一例を示した図である。
【図15】スロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った演算を実行するフローチャートの一例を示した図である。
【図16】スロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った演算を実行するフローチャートの一例を示した図である。
【図17】本発明の制御装置が適用される火花点火式内燃機関であって過給機を備えた火花点火式内燃機関を示した図である。
【図18】本発明のモデルの機能を示した機能ブロック図である。
【図19】圧力比Pm/Piとスロットル開度θと値Φ(Pm/Pi)との関係を規定するマップを示した図である。
【図20】圧力比Pi/Paとコンプレッサ回転数NCとコンプレッサ流出空気流量mcmとの関係を示した図である。
【図21】圧力比Pm/Piとコンプレッサ回転数NCとコンプレッサ流出空気流量mcmとの関係を規定するマップを示した図である。
【図22】コンプレッサ流出空気流量mcmとコンプレッサ回転数NCとコンプレッサ効率ηとの関係を示した図である。
【図23】コンプレッサ流出空気流量mcmとコンプレッサ回転数NCとコンプレッサ効率ηとの関係を規定するマップを示した図である。
【図24】インタークーラ圧力Piとコンプレッサ回転数NCとコンプレッサ流出空気流量mcmとの関係を示した図である。
【図25】インタークーラ圧力Piとコンプレッサ回転数NCとコンプレッサ流出空気流量mcmとの関係を規定するマップを示した図である。
【図26】圧力比Pm/Piとスロットル弁通過空気流量mtとの関係を示した図である。
【図27】スロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、吸気弁モデルM5、コンプレッサモデルM6、およびインタークーラモデルM7に従った演算を実行するフローチャートの一例を示した図である。
【図28】スロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、吸気弁モデルM5、コンプレッサモデルM6、およびインタークーラモデルM7に従った演算を実行するフローチャートの一例を示した図である。
【図29】スロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、吸気弁モデルM5、コンプレッサモデルM6、およびインタークーラモデルM7に従った演算を実行するフローチャートの一例を示した図である。
【図30】インタークーラ圧力Piとコンプレッサ回転数NCとコンプレッサ流出空気流量mcmとの関係を示した図である。
【発明を実施するための形態】
【0031】
以下、本発明の制御装置が適用された内燃機関の実施の形態を図面を参照して説明する。図1は本発明の制御装置が適用された火花点火式内燃機関を示している。なお図1に示されている内燃機関は複数の燃焼室、すなわち複数の気筒を備えた多気筒内燃機関であり、図1には特定の1つの気筒のみの構成が示されているが残りの気筒もこれと同じ構成を備えている。
【0032】
図1に示した内燃機関10はシリンダブロック、シリンダブロックロワーケース、およびオイルパン等を含むシリンダブロック部20と、該シリンダブロック部20上に固定されたシリンダヘッド部30と、シリンダブロック部20に燃料と空気とからなる混合気を供給するための吸気系統40と、シリンダブロック部20からの排気ガスを外界に排出するための排気系統50とを具備する。
【0033】
シリンダブロック部20はシリンダ21と、ピストン22と、コンロッド23と、クランクシャフト24とを有する。ピストン22はシリンダ21内を往復動し、該ピストン22の往復動がコンロッド23を介してクランクシャフト24に伝達され、これによりクランクシャフト24が回転せしめられる。またシリンダ21の内壁面と、ピストン22の上壁面と、シリンダヘッド部30の下壁面とによって燃焼室25が形成されている。
【0034】
シリンダヘッド部30は燃焼室25に連通する吸気ポート31と、該吸気ポート31を開閉する吸気弁32と、該吸気弁32を駆動する吸気カムシャフト(図示せず)と、該吸気カムシャフトの位相角を連続的に変更することができるアクチュエータ33aを備えた可変吸気タイミング装置33とを有する。またシリンダヘッド部30は燃焼室25に連通する排気ポート34と、該排気ポート34を開閉する排気弁35と、該排気弁35を駆動する排気カムシャフト36とを有する。さらにシリンダヘッド部30は燃焼室25内の燃料に点火する点火栓37と、該点火栓37に高電圧を付与するイグニッションコイルを備えたイグナイタ38と、燃料を吸気ポート31内に噴射する燃料噴射弁39とを有する。
【0035】
吸気系統40は吸気ポート31に接続された吸気枝管41と、該吸気枝管41に接続されたサージタンク42と、該サージタンク42に接続された吸気ダクト43とを有する。これら吸気ダクト43、吸気ポート31、吸気枝管41、およびサージタンク42は吸気通路を構成する。さらに吸気系統40は吸気ダクト43の上流端から下流に向かって(すなわちサージタンク42に向かって)順にエアフィルタ44と、スロットル弁46と、該スロットル弁46を駆動するスロットル弁駆動用アクチュエータ46aとを吸気ダクト43に有する。また吸気ダクト43には該吸気ダクト43内を流れる空気の圧力を検出する圧力センサ61と、吸気ダクト43内を流れる空気の温度を検出する温度センサ62とが取り付けられている。
【0036】
スロットル弁46は吸気ダクト43に回転可能に取り付けられており、スロットル弁駆動用アクチュエータ46aによって駆動されることによりその開度が調節されるようになっている。すなわちスロットル弁46は吸気ダクト43の流路面積を調節することができる。スロットル弁駆動用アクチュエータ46aはDCモータからなり、後述する電気制御装置70によって実行される電子制御スロットル弁ロジックに従って出力される駆動信号に応じて実際のスロットル弁46の開度(以下「スロットル開度」という)が目標スロットル開度となるようにスロットル弁46を駆動する。
【0037】
排気系統50は排気ポート34に接続された排気枝管を含む排気管51と、該排気管51に配設された三元触媒装置52とを有する。これら排気管51、排気ポート34、および三元触媒装置は排気通路を構成する。
【0038】
また内燃機関10は吸気カムシャフトの位相角を検出するカムポジションセンサ64と、クランクシャフト24の位相角を検出するクランクポジションセンサ65と、アクセルペダルの踏込量を検出するアクセル開度センサ66と、電気制御装置70とを具備する。アクセル開度センサ66は内燃機関10の運転状態に関するパラメータを取得する運転状態取得手段A2として機能する。
【0039】
圧力センサ61はエアフィルタ44とスロットル弁46との間の吸気ダクト43に取り付けられており、吸気ダクト43内の空気の圧力を検出してスロットル弁46上流の吸気通路内の空気の圧力(以下「吸気圧力」という)を表す信号を出力する。一方、温度センサ62はエアフィルタ44とスロットル弁46との間の吸気ダクト43に取り付けられており、吸気ダクト43内の空気の温度を検出してスロットル弁46上流の吸気通路内の空気の温度(以下「吸気温度」という)を表す信号を出力する。カムポジションセンサ64は吸気カムシャフトが90°回転する毎に(すなわちクランクシャフト24が180°回転する毎に)パルス信号を発生する。一方、クランクポジションセンサ65はクランクシャフト24が10°回転する毎に幅狭のパルス信号を発生すると共にクランクシャフト24が360°回転する毎に幅広のパルス信号を発生する。クランクポジションセンサ65が発生するパルス信号に基づいて内燃機関の回転数(以下「機関回転数」という)が算出可能である。またアクセル開度センサ66は運転者によって操作されるアクセルペダル67の踏込量を検出して該アクセルペダルの踏込量を表す信号を出力する。
【0040】
電気制御装置70はマイクロコンピュータであり、双方向性バスによって互いに接続されたCPU(マイクロプロセッサ)71と、該CPU71が実行するプログラム、マップ(ルックアップテーブルを含む)、および定数等を予め記憶したROM(リードオンリメモリ)72と、CPU71が必要に応じてデータを一時的に記憶するRAM(ランダムアクセスメモリ)73と、電源が投入された状態でデータを記憶すると共に該記憶したデータを電源が遮断されている間も保持するバックアップRAM54と、AD変換器を含むインターフェース75とからなる。インターフェース75は圧力センサ61および温度センサ62に接続され、CPU71にこれら圧力センサ61および温度センサ62からの信号を供給すると共に該CPU71の指示に応じて可変吸気タイミング装置33のアクチュエータ33a、イグナイタ38、燃料噴射弁39、およびスロットル弁駆動用アクチュエータ46aに駆動信号を出力する。
【0041】
次に上述したように構成された内燃機関において吸気行程中に燃焼室内に吸入される空気の量(以下「筒内流入空気量」という)の算出方法についてその概要を説明する。
【0042】
内燃機関10では該内燃機関の運転状態(以下「機関運転状態」という)に応じて燃焼室25内に形成される混合気の空燃比として目標空燃比が設定される。一方、内燃機関10では燃料噴射弁39が吸気弁32上流に配置されている。したがって燃料を燃焼室25内に供給して燃焼室25内に目標空燃比の混合気を形成するためには吸気行程が終了するまでに、すなわち吸気弁32が閉弁するまでに燃料噴射弁39から噴射すべき燃料の量(以下「燃料噴射量」という)が決定され、そして燃料噴射弁39から燃料が噴射されなければならない。ここで燃焼室25内に目標空燃比の混合気を形成する燃料噴射量を決定するためには燃料噴射弁39から燃料が噴射されるまでに吸気弁32が閉弁したときの筒内流入空気量が算出されていなければならない。そこで本実施形態では筒内流入空気量算出装置によって以下のようにして燃料噴射弁39から燃料が噴射されるまでに筒内流入空気量が算出される。
【0043】
すなわち本実施形態の筒内流入空気量算出装置は吸気通路内の空気に関して質量保存則、エネルギ保存則、および運動量保存則等の物理法則を利用して導き出された複数の物理モデルを利用して筒内流入空気量を算出する。すなわち図2の機能ブロック図に示されているように本実施形態の筒内流入空気量算出装置は電子制御スロットル弁モデルM1と、スロットルモデルM2と、吸気弁モデルM3と、吸気管モデルM4と、吸気弁モデルM5とを利用して筒内流入空気量を算出する。
【0044】
各モデルの機能を簡単に説明すると電子制御スロットル弁モデルM1は電子制御スロットル弁ロジックA1と協働してアクセルペダル踏込量に基づいて目標とすべきスロットル開度(以下「目標スロットル開度」という)を設定し、スロットル開度が目標スロットル開度となるようにスロットル弁駆動用アクチュエータ46aに駆動信号を出力すると共に実際のスロットル開度の予測値を算出するモデルである。またスロットルモデルM2はスロットル弁46を通過する空気の流量(以下「スロットル弁通過空気流量」という)を算出するモデルであり、吸気弁モデルM3は吸気弁32を通過して燃焼室25内に流入する空気の流量(以下「吸気弁通過空気流量」という)を算出するモデルであり、吸気管モデルM4はスロットル弁46下流の吸気通路内の圧力(以下「吸気管圧力」という)およびスロットル弁46下流の吸気通路内の温度(以下「吸気管温度」という)を算出するモデルであり、吸気弁モデルM5は筒内流入空気量を算出するモデルである。
【0045】
なお各モデルのモデル式がy=f(x)といった一般化された数式(以下「一般式」という)で表せるとした場合、現時点よりも先の或る時点の値yを求めるためには変数xとして現時点よりも先の或る時点の値を使用する必要がある。すなわち一般式によって求めるべき値が現時点よりも先の或る時点の値である場合には一般式において使用される変数として現時点よりも先の或る時点の値を使用する必要がある。ここで上述したように本実施形態の筒内流入空気量算出装置によって求めるべき筒内流入空気量は該筒内流入空気量算出装置による算出処理が開始された時点、すなわち現時点よりも先の或る時点の筒内流入空気量である。
【0046】
したがってスロットル開度、吸気管圧力、吸気管温度、および吸気圧力を変数として使用するスロットルモデルM2に従った算出処理においては当該スロットルモデルM2に従った算出処理の実行時点、すなわち現時点よりも先の或る時点のスロットル開度、吸気管圧力、吸気管温度、および吸気圧力を使用する必要がある。ここで現時点から先の或る時点までの期間が比較的短ければ吸気圧力はこの比較的短い期間内に大幅に変化することはない。そこで本実施形態ではスロットルモデルM2に従った算出処理においては現時点の吸気圧力を使用する。一方、スロットル開度、吸気管圧力、および吸気管温度は現時点から先の或る時点までの期間が比較的短くてもこの比較的短い期間内に大幅に変化することがある。そこで本実施形態ではスロットルモデルM2に従った算出処理においては現時点よりも先の或る時点のスロットル開度、吸気管圧力、および吸気管温度をそれぞれ使用する。
【0047】
同様に吸気管圧力、吸気管温度、吸気温度、機関回転数、および吸気弁32の開閉タイミング(以下「吸気弁開閉タイミング」という)を変数として使用する吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った算出処理においてもこれらモデルに従った算出処理の実行時点、すなわち現時点よりも先の或る時点の吸気管圧力、吸気管温度、吸気温度、機関回転数、および吸気弁開閉タイミングを使用する必要がある。ここで現時点から先の或る時点までの期間が比較的短ければ吸気温度、機関回転数、および吸気弁開閉タイミングVTはこの比較的短い期間内に大幅に変化することはない。そこで本実施形態では吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った算出処理においては現時点の吸気温度、機関回転数、および吸気弁開閉タイミングをそれぞれ使用する。一方、吸気管圧力および吸気管温度は現時点から先の或る時点までの期間が比較的短くてもこの比較的短い期間内に大幅に変化することがある。そこで本実施形態では吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った算出処理においては現時点よりも先の或る時点の吸気管圧力および吸気管温度をそれぞれ使用する。
【0048】
斯くして本実施形態では各モデルM2〜M5に従った算出処理が開始される時点を現時点とした場合、現時点よりも先の或る時点のスロットル開度、吸気管圧力、吸気か温度、吸気圧力、吸気温度、機関回転数、および吸気弁開閉タイミングに基づいて筒内流入空気量が算出されるので斯くして算出された筒内流入空気量は現時点よりも先の或る時点の筒内流入空気量である。
【0049】
次に図1に示されている内燃機関の制御装置における筒内流入空気量の算出方法についてその詳細を各モデルの詳細と共に説明する。
【0050】
まず電子制御スロットル弁モデルM1について説明する。電子制御スロットル弁モデルM1は予め定められた時間間隔ΔT1(以下「所定時間間隔ΔT1」といい、例えば、2msである)毎に実行される。そして電子制御スロットル弁モデルM1は電子制御スロットル弁ロジックA1と協働してアクセルペダル踏込量に基づいて目標スロットル開度を設定し、スロットル開度が目標スロットル開度となるようにスロットル弁駆動用アクチュエータ46aに駆動信号を出力すると共に実際のスロットル開度の予測値を算出するモデルである。
【0051】
すなわちアクセルペダル踏込量Accpと目標スロットル開度θtとの間には図3に示されているような一定の関係がある。そこで本実施形態ではアクセルペダル踏込量Accpと目標スロットル開度との関係を規定するマップMaをROM72に図3に示されているような形で予め記憶させておく。そして電子制御スロットル弁ロジックA1は今回の電子制御スロットル弁モデルM1に従った演算の実行時点(以下「モデル演算時点」という)においてアクセル開度センサ66によって検出される実際のアクセルペダル踏込量Accpに基づいて上記マップMaから目標スロットル開度θtを求める。そして電子制御スロットル弁ロジックA1は斯くして求めた目標スロットル開度θtを今回のモデル演算時点から予め定められた時間(以下「所定遅延時間」といい、例えば、64msである)TD後における目標スロットル開度として設定する。さらに電子制御スロットル弁ロジックA1はスロットル開度が今回のモデル演算時点の目標スロットル開度、すなわち所定遅延時間TD前に電子制御スロットル弁ロジックA1によって設定された目標スロットル開度となるようにスロットル弁駆動用アクチュエータ46aに駆動信号を出力する。
【0052】
ところでスロットル弁駆動用アクチュエータ46aの動作には一定の遅れが伴い、またスロットル弁46には慣性がある。このため電子制御スロットル弁ロジックA1からスロットル弁駆動用アクチュエータ46aに駆動信号が出力されたとしてもスロットル開度は一定の遅れを伴って目標スロットル開度になる。そこで電子制御スロットル弁モデルM1は下式1に基づいて上記所定遅延時間TD後における実際のスロットル開度の予測値を予測スロットル開度θeとして算出してROM53に記憶させ或いは格納する。
θe(i)=θe(i-1)+ΔT1・f(θt(i),θe(i-1)) …(1)
【0053】
上式1において、θe(i)は今回の電子制御スロットル弁モデルM1に従った演算の実行(以下「モデル演算」という)によって算出されるべき所定遅延時間TD後の予測スロットル開度であり、θe(i-1)は前回のモデル演算(すなわち上記所定時間間隔ΔT1前に実行された電子制御スロットル弁モデルM1に従った演算)によって算出された予測スロットル開度であり、θt(i)は今回のモデル演算によって設定される所定遅延時間TD後の目標スロットル開度であり、ΔT1は上記所定時間間隔、すなわちモデル演算が行われる時間間隔である。また図4に示されているように関数f(θt,θe)は目標スロットル開度θtと予測スロットル開度θeとの差Δθが大きいほど大きい値をとる関数、すなわち差Δθに関して単調増加する関数である。
【0054】
斯くして電子制御スロットル弁モデルM1によれば電子制御スロットル弁ロジックA1によって目標スロットル開度θtを求めて該求められた目標スロットル開度が現時点よりも所定遅延時間TD先の時点の目標スロットル開度に設定され、現時点の実際のスロットル開度が所定遅延時間TD前に現時点の目標スロットル開度として設定された目標スロットル開度となるようにスロットル弁駆動用アクチュエータ46aに駆動信号が出力されると共に現時点よりも所定遅延時間TD先の時点の実際のスロットル開度が予測スロットル開度θeとして算出される。
【0055】
なおスロットル弁駆動用アクチュエータ46aの動作に遅れがなく且つスロットル弁46の慣性を無視することができる場合には上式1によって予測スロットル開度θeを算出する代わりに目標スロットル開度θtをそのまま予測スロットル開度θeとしてもよい。
【0056】
次にスロットルモデルM2について説明する。なおこのスロットルモデルM2を表すモデル式を導き出す手法は周知(例えば特開2001−041095号公報および特開2003−184613号公報参照)であるので当該スロットルモデルM2の導出手法に関する詳細な説明は省略する。また以下に説明するスロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った演算は一連の演算として上記所定時間間隔ΔT1とは異なる予め定められた時間間隔ΔT2(以下「所定時間間隔ΔT2」といい、例えば、8msである)毎に実行される。もちろん所定時間間隔ΔT2と所定時間間隔ΔT1とが等しくてもよい。
【0057】
さてスロットルモデルM2は質量保存則、エネルギ保存則、運動量保存則、および気体の状態方程式等の物理法則を利用して導き出された以下のモデル式2およびモデル式3に基づいてスロットル弁通過空気流量、すなわちスロットル弁46を通過する空気の流量を算出するモデルである。
【数1】

【数2】

【0058】
上記モデル式2およびモデル式3において、mtは今回の当該スロットルモデルM2に従った演算(以下「モデル演算」という)によって算出されるべきスロットル弁通過空気流量であり、θはスロットル開度、すなわち本実施形態では予測スロットル開度θeであり、C(θ)はスロットル開度θに対応する流量係数であり、A(θ)はスロットル開度θに対応するスロットル流路面積、すなわち吸気通路の流路のうちスロットル弁46によって塞がれておらず、空気が流れることができる流路の面積であり、Paは吸気圧力、すなわちスロットル弁46上流の吸気通路内の圧力であり、Taは吸気温度、すなわちスロットル弁46上流の吸気通路内の温度であり、Pmは吸気管モデルM4に従った演算(詳細は後述)によって算出される吸気管圧力、すなわちスロットル弁46下流の吸気通路内の圧力である。また、Rは気体定数であり、κは空気の比熱比である。なお本実施形態ではκは一定値としている。
【0059】
また上記モデル式2の流量係数C(θ)とスロットル流路面積A(θ)との積(=C(θ)・A(θ))はスロットル開度に基づいた値として実験等によって予め求めておくことができる。そこで本実施形態ではスロットル開度θと上記積C(θ)・A(θ)との関係を規定するマップMcaを求めてROM72に図5に示されているような形で予め記憶させておく。そしてスロットルモデルM2は予測スロットル開度θeに基づいて上記マップMcaから上記積C(θ)・A(θ)を求める。
【0060】
さらに上記モデル式2の値Φ(Pm/Pa)も吸気圧力Paに対する吸気管圧力Pmの比(以下「圧力比」という)Pm/Paとスロットル開度θとに基づいた値として実験等によって予め求めておくことができる。そこで本実施形態では圧力比Pm/Paとスロットル開度θと値Φ(Pm/Pa)との関係を規定するマップMΦを求めてROM72に図6に示されているような形で予め記憶させておく。そしてスロットルモデルM2は圧力比Pm/Paと予測スロットル開度θeとに基づいて上記マップMΦから上記値Φ(Pm/Pa)を求める。
【0061】
次に吸気弁モデルM3について説明する。なおこの吸気弁モデルM3を表すモデル式を導き出す手法は周知(例えば特開2001−041095号公報および特開2003−184613号公報参照)であるので当該吸気弁モデルM3の導出手法に関する詳細な説明は省略する。
【0062】
吸気弁モデルM3は経験則を利用して導き出された以下のモデル式4に基づいて筒内流入空気流量、すなわち吸気弁32を通過して燃焼室25内に流入する空気の流量を算出するモデルである。
mc=(Ta/Tm)・(c・Pm−d) …(4)
【0063】
上記モデル式4において、mcは今回の当該吸気弁モデルM3に従った演算(以下「モデル演算」という)によって算出されるべき筒内流入空気流量であり、Taは吸気温度、すなわちスロットル弁46上流の吸気通路内の温度であり、Tmは吸気管モデルM4に従った演算(詳細は後述)によって算出される吸気管温度、すなわちスロットル弁46下流の吸気通路内の温度であり、Pmは吸気管モデルM4に従った演算(詳細は後述)によって算出される吸気管圧力、すなわちスロットル弁46下流の吸気通路内の圧力であり、cは機関回転数と吸気弁開閉タイミングとに対応する比例係数であり、dは排気行程において燃焼室25から排気通路に排出されずに燃焼室25内に残る既燃ガスの量に対応する値であって機関回転数と吸気弁開閉タイミングとに対応する値である。
【0064】
なお上記モデル式4では吸気管圧力Pmを変数として使用するようになっているが本来、筒内流入空気流量を算出するためには吸気行程における燃焼室25内の圧力(以下「筒内圧力」という)を使用すべきである。しかしながら吸気行程における筒内圧力は吸気弁32上流の吸気通路内の圧力、すなわち吸気管圧力に等しいとみなすことができる。したがって本実施形態では吸気弁モデルM3において筒内圧力の代わりに吸気管圧力Pmを変数として使用している。
【0065】
また比例係数cは機関回転数と吸気弁開閉タイミングとに基づいた値として実験等によって予め求めておくことができる。そこで本実施形態では機関回転数NEと吸気弁開閉タイミングVTと比例係数cとの関係を規定するマップMcを求めてROM72に図7に示されているような形で予め記憶させておく。そして吸気弁モデルM3は機関回転数NEと吸気弁開閉タイミングVTとに基づいて上記マップMcから比例係数cを求める。
【0066】
同様に値dも機関回転数と吸気弁開閉タイミングとに基づいた値として実験等によって予め求めておくことができる。そこで本実施形態では機関回転数NEと吸気弁開閉タイミングVTと値dとの関係を規定するマップMdを求めてROM72に図8に示されているような形で予め記憶させておく。そして吸気弁モデルM3は機関回転数NEと吸気弁開閉タイミングVTとに基づいて上記マップMdから値dを求める。
【0067】
次に吸気管モデルM4について説明する。なおこの吸気管モデルM4を表すモデル式を導き出す手法は周知(例えば特開2001−041095号公報および特開2003−184613号公報参照)であるので当該吸気管モデルM4の導出手法に関する詳細な説明は省略する。
【0068】
吸気管モデルM4は質量保存則およびエネルギ保存則を利用して導き出された以下のモデル式5およびモデル式6に基づいて吸気管圧力および吸気管温度を算出するモデルである。
d(Pm/Tm)/dt=(R/Vm)・(mt−mc) …(5)
dPm/dt=κ・(R/Vm)・(mt・Ta−mc・Tm) …(6)
【0069】
上記モデル式4およびモデル式5において、Pmは今回のモデル演算によって算出されるべき吸気管圧力であり、Tmは今回のモデル演算によって算出されるべき吸気管温度であり、Rは気体定数であり、Vmはスロットル弁46と吸気弁32との間の吸気通路の容積であり、mtはスロットルモデルM2に従った演算によって算出されるスロットル弁通過空気流量であり、mcは吸気弁モデルM3に従った演算によって算出される筒内流入空気流量であり、Taは吸気温度であり、κは空気の比熱比である。
【0070】
次に吸気弁モデルM5について説明する。吸気弁モデルM5は経験則を利用して導き出されたモデル式7およびモデル式8に基づいて筒内流入空気量を算出するモデルである。
mc=(Ta/Tm)・(c・Pm−d) …(7)
KLfwd=mc・Tint …(8)
【0071】
上記モデル式7およびモデル式8において、mcは今回の当該吸気弁モデルM5に従った演算(以下「モデル演算」という)によって算出されるべき筒内流入空気流量であり、Taは吸気温度であり、Tmは吸気管温度であり、Pmは吸気管圧力であり、cは機関回転数と吸気弁開閉タイミングとに対応する比例係数であり、dは排気行程において燃焼室25から排気通路に排出されずに燃焼室25内に残る既燃ガスの量に対応する値であって機関回転数と吸気弁開閉タイミングとに対応する値であり、KLfwdは今回のモデル演算によって算出されるべき筒内流入空気量、すなわち吸気行程中に燃焼室25内に流入する空気の総量であり、Tintは吸気弁32が開弁してから閉弁するまでの時間である。
【0072】
なお上記モデル式7では上記モデル式4に関連して説明した理由と同じ理由で筒内圧力の代わりに吸気管圧力Pmを変数として使用している。また比例定数cは吸気弁モデルM3に関連して説明した比例定数cと同じものであり、吸気弁モデルM3と同様に機関回転数NEと吸気弁開閉タイミングVTとに基づいて上記マップMc(図7参照)から求められる。また値dも吸気弁モデルM3に関連して説明した値dと同じものであり、吸気弁モデルM3と同様に機関回転数NEと吸気弁開閉タイミングVTとに基づいて上記マップMd(図8参照)から求められる。
【0073】
ところで上述したようにして筒内流入空気量が算出される場合、該筒内流入空気量を算出する演算が開始されてから該演算が完了するまでには一定の時間を要する。また筒内流入空気量を算出する演算が完了してから該算出された筒内流入空気量が実際に内燃機関の運転の制御に利用されるまでに一定の時間を要する場合もある。ここで筒内流入空気量を算出する演算の開始後の短い期間における筒内流入空気量の変化量が比較的小さい場合には算出される筒内流入空気量はそれが内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致していると言える。しかしながら筒内流入空気量を算出する演算の開始後の短い期間における筒内流入空気量の変化量が比較的大きい場合には算出された筒内流入空気量が内燃機関の運転の制御に利用されるときには実際の筒内流入空気量は筒内流入空気量を算出する演算が開始されたときに比べて大きく変化していることになる。そしてこの場合、上述したように算出される筒内流入空気量はそれが内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致しているとは言えない。
【0074】
そこで本実施形態では上述したようにして算出される筒内流入空気量がそれが内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致していると言えないと筒内流入空気量を算出する演算の実行時に判断された場合には該演算によって算出される筒内流入空気量がそれが内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致するように該演算によって算出される筒内流入空気量を補正する。
【0075】
すなわち筒内流入空気量を算出する演算(以下「筒内流入空気量演算」という)の開始時における目標スロットル開度と実際のスロットル開度との差が予め定められた開度差よりも大きいときには実際のスロットル開度を目標スロットル開度にするためにスロットル開度が比較的大きく変化しているときであると言える。そこで本実施形態では筒内流入空気量演算が開始されたときに目標スロットル開度と実際のスロットル開度(本実施形態では予測スロットル開度)との差を算出し、該差が予め定められた開度差よりも大きいときには上記モデルM2〜M5に従った筒内流入空気量演算(以下「モデル演算」ともいう)によって算出される筒内流入空気量を以下のようにして補正する。
【0076】
すなわちモデル演算の開始時に予測スロットル開度と目標スロットル開度との差が比較的大きいときにはモデル演算の開始後の短い期間におけるスロットル開度の変化量が大きいと推察される。そしてスロットル開度の変化量が大きい場合には筒内流入空気量の変化量も大きいと言える。こうした理由から本実施形態では予測スロットル開度と目標スロットル開度との差が予め定められた開度差よりも大きいときには筒内流入空気量の変化量が予め定められた変化量よりも大きいと判断し、モデル演算によって算出される筒内流入空気量を補正する。
【0077】
すなわち今回のモデル演算によって算出される補正前のスロットル弁通過空気流量mt(k)と前回のモデル演算によって算出されたスロットル弁通過空気流量mt(k-1)との差Δmt(k)(=mt(k)−mt(k-1))を算出する。ここで算出される差Δmt(k)は今回のモデル演算の開始時点から次回のモデル演算の開始時点までに変化するであろうスロットル弁通過空気流量の変化量に相当する。したがってこの差Δmt(k)を、今回のモデル演算によって算出されるスロットル弁通過空気流量mt(k)に加算すれば斯くして得られるスロットル弁通過空気流量は次回のモデル演算の開始時点の実際のスロットル弁通過空気流量に一致していると言える。
【0078】
そこで本実施形態では上述したようにして算出される差Δmt(k)を今回のモデル演算によって算出されるスロットル弁通過空気流量mtに加算する補正を行う。
【0079】
これによれば前回のモデル演算によって算出されたスロットル弁通過空気流量よりも今回のモデル演算によって算出される補正前のスロットル弁通過空気流量のほうが大きければ上記差Δmtは正の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記差Δmtだけ大きくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも大きくなる。
【0080】
一方、前回のモデル演算によって算出されたスロットル弁通過空気流量よりも今回のモデル演算によって算出される補正前のスロットル弁通過空気流量のほうが小さければ上記差Δmtは負の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記差Δmtだけ小さくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に吸気弁モデルM5に従った演算の実行によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも小さくなる。
【0081】
このようにスロットル弁通過空気流量を補正すればモデル演算によって最終的に得られる筒内流入空気量はそれが内燃機関の運転の制御に使用される時点の実際の筒内流入空気量に一致しているか或いは少なくとも補正されていない場合に算出される筒内流入空気量よりも実際の筒内流入空気量に近くなる。
【0082】
なお上述した例では筒内流入空気量の変化量が予め定められた変化量よりも大きいか否かの判断を予測スロットル開度と目標スロットル開度との差に基づいて行っているがこれに代えて或いはこれに加えて吸気管圧力の変化量に基づいて行ってもよい。すなわち吸気管圧力の変化量が比較的大きいときにはモデル演算の開始後の短い期間におけるスロットル弁通過空気流量の変化量が大きいと推察される。そしてスロットル弁通過空気流量の変化量が大きい場合には筒内流入空気量の変化量も大きいと言える。そこで前回のモデル演算時点の吸気管圧力Pm(k-1)と今回のモデル演算時点の吸気管圧力Pm(k)との差ΔPm(k)が予め定められた圧力差よりも大きいときに筒内流入空気量の変化量が予め定められた変化量よりも大きいと判断するようにしてもよい。
【0083】
また上述した例ではスロットル弁通過空気流量に対する補正量として今回のモデル演算によって算出される補正前のスロットル弁通過空気流量と前回のモデル演算によって算出されたスロットル弁通過空気流量との差を使用しているがこれに代えて以下のようにして算出される値をスロットル弁通過空気流量に対する補正量として使用してもよい。すなわち今回のモデル演算時点の吸気管圧力Pm(k)と前回のモデル演算時点の吸気管圧力Pm(k-1)との差ΔPm(k)(=Pm(k)−Pm(k-1))を算出し、該差ΔPm(k)を上記モデル式2において吸気管圧力Pmの代わりに使用して上記モデル式2に従った計算を行う。この計算によって算出される値はスロットル弁通過空気流量の変化量Δmt(k)であり、これを今回のモデル演算によって算出されるスロットル弁通過空気流量mt(k)に加算する補正を行う。
【0084】
これによれば前回のモデル演算時点の吸気管圧力Pm(k-1)に比べて今回のモデル演算時点の吸気管圧力Pm(k)のほうが大きければ上記変化量Δmt(k)が正の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmt(k)だけ大きくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも大きくなる。
【0085】
一方、前回のモデル演算時点の吸気管圧力Pm(k-1)に比べて今回のモデル演算時点の吸気管圧力Pm(k)のほうが小さければ上記変化量Δmt(k)は負の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmt(k)だけ小さくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも小さくなる。
【0086】
このようにスロットル弁通過空気流量を補正してもモデル演算によって最終的に得られる筒内流入空気量は該筒内流入空気量が内燃機関の運転の制御に使用される時点の実際の筒内流入空気量に一致しているか或いは少なくとも補正されていない場合に算出される筒内流入空気量よりも実際の筒内流入空気量に近くなる。
【0087】
また筒内流入空気量の変化量が予め定められた変化量よりも大きいか否かの判断を以下のように行ってもよい。すなわち吸気圧力Paに対する吸気管圧力Pmの比、すなわち圧力比Pm/Paとスロットル弁通過空気流量mtとの関係は図9に示されているような関係にある。すなわちスロットル開度θが一定であって圧力比Pm/Paが特定の圧力比Rsよりも小さい場合、圧力比に係わらずスロットル弁通過空気流量は一定である。一方、スロットル開度が一定であって圧力比が特定の圧力比Rsよりも大きい場合、圧力比が大きいほどスロットル弁通過空気流量は小さい。また圧力比が一定である場合にはスロットル開度が大きいほどスロットル弁通過空気流量は大きい。
【0088】
このことは吸気圧力Paが大気圧に略等しく、したがって吸気圧力が略一定であると仮定すれば以下のように表現することもできる。すなわちスロットル開度θが一定であって吸気管圧力Pmが上記特定の圧力比Rsに対応する特定の圧力よりも低い場合、吸気管圧力に係わらずスロットル弁通過空気流量mtは一定であり、スロットル開度が一定であって吸気管圧力が上記特定の圧力よりも高い場合、吸気管圧力が高いほどスロットル弁通過空気流量は小さく、吸気管圧力が一定である場合、スロットル開度が大きいほどスロットル弁通過空気流量は大きいとも言える。
【0089】
いずれにしても圧力比Pm/Paが特定の圧力比Rsを越えて大きくなったときにはスロットル開度θが一定であってもスロットル弁通過空気流量mtが大きく変化することになる。また圧力比が上記特定の圧力比よりも大きい領域において大きくなったときにもスロットル開度が一定であってもスロットル弁通過空気流量が大きく変化する。逆に圧力比が上記特定の圧力比を越えて小さくなったときにもスロットル開度が一定であってもスロットル弁通過空気流量が大きく変化し、圧力比が上記特定の圧力比よりも大きい領域において小さくなったときにもスロットル開度が一定であってもスロットル弁通過空気流量が大きく変化する。
【0090】
そこで前回のモデル演算時点から今回のモデル演算時点までの間に圧力比Pm/Paが上記特定の圧力比Rsを越えて大きくなったとき或いは上記特定の圧力比よりも大きい領域において大きくなったとき或いは上記特定の圧力比を越えて小さくなったとき或いは上記特定の圧力比よりも大きい領域において小さくなったときにはスロットル開度θが一定であっても今回のモデル演算の開始後の短い期間内にスロットル弁通過空気流量mtが大きく変化し、したがって筒内流入空気量が大きく変化すると判断する。そしてこのように判断された場合には前回のモデル演算時点の圧力比Pm/Pa(k-1)と今回のモデル演算時点の圧力比Pm/Pa(k)との差ΔPm/Pa(k)(=Pm/Pa(k-1)−Pm/Pa(k))を算出し、上記モデル式2において圧力比Pm/Paの代わりに斯くして算出された差ΔPm/Pa(k)を使用して上記モデル式2に従った計算を行う。この計算によって算出される値はスロットル弁通過空気流量の変化量Δmt(k)であり、今回のモデル演算の開始時点から次回のモデル演算の開始時点までの間に変化するであろうスロットル弁通過空気流量の変化量に相当すると考えることができる。そこで斯くして算出されたスロットル弁通過空気流量の変化量Δmt(k)を今回のモデル演算によって算出されるスロットル弁通過空気流量mt(k)に加算する補正を行う。
【0091】
これによれば前回のモデル演算時点の圧力比Pm/Paに比べて今回のモデル演算時点の圧力比のほうが大きければ上記差ΔPm/Paは負の値をとり、したがって上記変化量Δmtも負の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmtだけ小さくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも小さくなる。
【0092】
一方、前回のモデル演算時点の圧力比Pm/Paに比べて今回のモデル演算時点の圧力比のほうが小さければ上記差ΔPm/Paは正の値をとり、したがって上記変化量Δmtも正の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmtだけ大きくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも大きくなる。
【0093】
このようにスロットル弁通過空気流量を補正すればモデル演算によって最終的に得られる筒内流入空気量は該筒内流入空気量が内燃機関の運転の制御に使用される時点の実際の筒内流入空気量に一致しているか或いは少なくとも補正されていない場合に算出される筒内流入空気量よりも実際の筒内流入空気量に近くなる。
【0094】
ところで多くの場合、スロットル開度が大きくなればスロットル弁通過空気流量は大きくなり、逆にスロットル開度が小さくなればスロットル弁通過空気流量は小さくなる。ところが図9を参照して説明したように圧力比Pm/Paが上記特定の圧力比Rsよりも大きい場合にはスロットル開度θが一定であっても圧力比が大きくなるとスロットル弁通過空気流量mtは小さくなる。したがってスロットル開度が大きくなったとしてもこのときに圧力比が或る一定の値以上に大きくなるとスロットル弁通過空気流量が小さくなることがあり、逆にスロットル開度が小さくなったとしてもこのときに圧力比が或る一定の値以上に小さくなるとスロットル弁通過空気流量が大きくなることがある。
【0095】
そこでモデル演算の開始後の短い期間内の筒内流入空気量の変化量が予め定められた変化量よりも大きいか否かの判断として上述した手法に加えて或いは上述した手法に代えて以下の手法を採用してもよい。
【0096】
例えば、前回のモデル演算時点のスロットル開度θが開度θ1であったとする。この場合、スロットル弁通過空気流量mtは圧力比Pm/Paに応じて図10の実線L1に沿って変化する。したがって前回のモデル演算時点の圧力比が値R1であった場合、前回のモデル演算時点のスロットル弁通過空気流量は値mt1である。ここで今回のモデル演算時点のスロットル開度が前回のモデル演算時点の開度θ1よりも大きくなって開度θ2になっていたとする。この場合、スロットル弁通過空気流量mtは圧力比に応じて図10の実線L2に沿って変化する。ここで今回のモデル演算時点のスロットル弁通過空気流量が前回のモデル演算時点のスロットル弁通過空気流量mt1と等しいとすると今回のモデル演算時点の圧力比は上記特定の圧力比Rsよりも大きい値R2になっていることになる。別の云い方をすればスロットル開度が開度θ1よりも大きくなって開度θ2に変化したとしても圧力比が値R1よりも大きくなって上記特定の圧力比Rsよりも大きい値R2に変化していれば今回のモデル演算時点のスロットル弁通過空気流量は前回のモデル演算時点のスロットル弁通過空気流量から変化していないことになる。したがってスロットル開度が開度θ1よりも大きくなって開度θ2に変化したとしても今回のモデル演算時点の圧力比が値R2よりも大きい値に変化していれば今回のモデル演算時点のスロットル弁通過空気流量は前回のモデル演算時点のスロットル弁通過空気流量よりも小さくなる。一方、スロットル開度が開度θ1よりも大きくなって開度θ2に変化したときに圧力比が値R2よりも小さい値に変化していれば今回のモデル演算時点のスロットル弁通過空気流量は前回のモデル演算時点のスロットル弁通過空気流量よりも大きくなる。
【0097】
また前回のモデル演算時点のスロットル開度θが開度θ2であり、圧力比Pm/Paが特定の圧力比Rsよりも大きい値R2であった場合、前回のモデル演算時点のスロットル弁通過空気流量は値mt1である。ここで今回のモデル演算時点のスロットル開度が前回のモデル演算時点の開度θ2よりも小さくなって開度θ1になっていたとする。ここで今回のモデル演算時点のスロットル弁通過空気流量が前回のモデル演算時点のスロットル弁通過空気流量mt1と等しいとすると今回のモデル演算時点の圧力比は値R1になっていることになる。別の云い方をすればスロットル開度が開度θ2よりも小さくなって開度θ1に変化したとしても圧力比が値R2よりも小さくなって値R1に変化していれば今回のモデル演算時点のスロットル弁通過空気流量は前回のモデル演算時点のスロットル弁通過空気流量から変化していないことになる。したがってスロットル開度が開度θ2よりも小さくなって開度θ1に変化したとしても圧力比が値R1よりも小さい値に変化していれば今回のモデル演算時点のスロットル弁通過空気流量は前回のモデル演算時点のスロットル弁通過空気流量よりも大きくなる。一方、スロットル開度が開度θ2よりも小さくなって開度θ1に変化したときに圧力比が値R1よりも大きい値に変化していれば今回のモデル演算時点のスロットル弁通過空気流量は前回のモデル演算時点のスロットル弁通過空気流量よりも小さくなる。
【0098】
このように今回のモデル演算時点の圧力比が前回のモデル演算時点の圧力比から上記特定の圧力比を越えて大きくなったとき或いは今回のモデル演算時点の圧力比が該特定の圧力比よりも大きい領域において前回のモデル演算時点の圧力比よりも大きくなったときには今回のモデル演算時点のスロットル開度が前回のモデル演算時点のスロットル開度から変化しているか否かに係わらずスロットル弁通過空気流量が大きく変化する。逆に今回のモデル演算時点の圧力比が前回のモデル演算時点の圧力比から特定の圧力比を超えて小さくなったとき或いは今回のモデル演算時点の圧力比が該特定の圧力比よりも大きい領域において前回のモデル演算時点の圧力比よりも小さくなったときにも今回のモデル演算時点のスロットル開度が前回のモデル演算時点のスロットル開度から変化しているか否かに係わらずスロットル弁通過空気流量が大きく変化する。
【0099】
そこで圧力比が前回のモデル演算時点から今回のモデル演算時点までの間に上記特定の圧力比を越えて大きくなったとき或いは上記特定の圧力比よりも大きい領域において大きくなったとき或いは上記特定の圧力比を越えて小さくなったとき或いは上記特定の圧力比よりも大きい領域において小さくなったときにはスロットル開度の変化の有無にかかわらず今回のモデル演算の開始後の短い期間内にスロットル弁通過空気流量が大きく変化し、したがって筒内流入空気量が大きく変化すると判断する。そしてこの場合、前回のモデル演算時点の圧力比Pm/Pa(k-1)と今回のモデル演算時点の圧力比Pm/Pa(k)との差ΔPm/Pa(k)(=Pm/Pa(k-1)−Pm/Pa(k))を算出し、上記モデル式2において圧力比Pm/Paの代わりにこの算出された差ΔPm/Pa(k)を使用して上記モデル式2に従った計算を行う。この計算によって算出される値はスロットル弁通過空気流量の変化量Δmt(k)であり、今回のモデル演算の開始時点から次回のモデル演算の開始時点までの間に変化するであろうスロットル弁通過空気流量の変化量に相当すると考えることができる。そこで斯くして算出されたスロットル弁通過空気流量の変化量Δmt(k)を今回のモデル演算によって算出されるスロットル弁通過空気流量mt(k)に加算する補正を行う。
【0100】
これによれば前回のモデル演算時点の圧力比Pm/Paに比べて今回のモデル演算時点の圧力比のほうが大きければ上記差ΔPm/Paは負の値をとり、したがって上記変化量Δmtも負の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmtだけ小さくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも小さくなる。
【0101】
一方、前回のモデル演算時点の圧力比Pm/Paに比べて今回のモデル演算時点の圧力比のほうが小さければ上記差ΔPm/Paは正の値をとり、したがって上記変化量Δmtも正の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmtだけ大きくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも大きくなる。
【0102】
このようにスロットル弁通過空気流量を補正すればモデル演算によって最終的に得られる筒内流入空気量は該筒内流入空気量が内燃機関の運転の制御に使用される時点の実際の筒内流入空気量に一致しているか或いは少なくとも補正されていない場合に算出される筒内流入空気量よりも実際の筒内流入空気量に近くなる。
【0103】
なおモデル演算の開始後の短い期間内の筒内流入空気量の変化量が予め定められた変化量よりも大きいと判断されたときに今回のモデル演算によって算出されるスロットル弁通過空気流量を補正する実施形態において吸気管圧力が一定である場合にはスロットル弁通過空気流量に対する補正を以下のように行ってもよい。
【0104】
すなわち吸気管圧力Pmが一定である場合、吸気管圧力はスロットルモデルM2の式2における変数とはならない。また吸気圧力Paおよび吸気温度Taはそれぞれ大気圧および大気温度に略等しく、略一定であると考えることができるのでこれら吸気圧力および吸気温度もスロットルモデルM2の式2における変数とはならない。したがってこの場合、スロットルモデルM2の式2において変数となるのはスロットル開度θに応じて変化する積C(θ)・A(θ)の部分のみである。そしてスロットル開度θと積C(θ)・A(θ)との間には図5に示されている関係がある。
【0105】
そこでスロットル開度θと積C(θ)・A(θ)との関係を規定するマップMcaを求めてROM72に図5に示されているような形で予め記憶させておく。そして予測スロットル開度と目標スロットル開度との差が予め定められた開度差よりも大きいことから今回のモデル演算の開始後の短い期間内の筒内流入空気量の変化量が予め定められた変化量よりも大きいと判断され、前回のモデル演算時点から今回のモデル演算時点まで吸気管圧力Pmが一定であるときには予測スロットル開度θeと目標スロットル開度θtとの差Δθ(=θt―θe)に基づいて上記マップMca(図5参照)から積C(θ)・A(θ)の差ΔC(θ)・A(θ)を求める。そして上記モデル式2において積C(θ)・A(θ)の代わりに斯くして求められた差ΔC(θ)・A(θ)を使用して上記モデル式2に従った計算を行う。この計算によって算出される値はスロットル弁通過空気流量の変化量Δmt(k)であり、今回のモデル演算の開始時点から次回のモデル演算の開始時点までの間に変化するであろうスロットル弁通過空気流量の変化量に相当すると考えることができる。そこで斯くして算出されたスロットル弁通過空気流量の変化量Δmt(k)を今回のモデル演算によって算出されるスロットル弁通過空気流量mt(k)に加算する補正を行う。
【0106】
これによれば目標スロットル開度に比べて予測スロットル開度のほうが小さければ上記差Δθは正の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmt(k)だけ大きくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気流量よりも大きくなる。そしてこの場合、算出された筒内流入空気量は少なくとも今回のモデル演算の開始時点から短い期間が経過した時点の実際の筒内流入空気量に一致していると言える。
【0107】
一方、目標スロットル開度に比べて予測スロットル開度のほうが大きければ上記差Δθは負の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmt(k)だけ小さくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気流量よりも小さくなる。そしてこの場合も算出された筒内流入空気量は少なくとも今回のモデル演算の開始時点から短い期間が経過した時点の実際の筒内流入空気量に一致していると言える。
【0108】
もちろん図5から判るようにスロットル開度θと積C(θ)・A(θ)との関係を示す曲線において該曲線上の点における傾きにスロットル開度θの変化量を掛ければ積C(θ)・A(θ)の変化量が求められる。そこでスロットル開度θとこれに対応する傾きとの関係を規定するマップを求めてROM72に予め記憶されておき、スロットル開度θに基づいて該マップから傾きを求め、これにスロットル開度θの変化量を掛けることによって積C(θ)・A(θ)の変化量を求め、これに基づいてスロットル弁通過空気流量に対する補正量を算出するようにしてもよい。
【0109】
またモデル演算の開始後の短い期間内の筒内流入空気量の変化量が予め定められた変化量よりも大きいと判断されたとき今回のモデル演算によって算出されるスロットル弁通過空気流量を補正する実施形態においてスロットル開度が一定である場合にはスロットル弁通過空気流量に対する補正を以下のように行ってもよい。
【0110】
すなわちスロットル開度θが一定である場合、スロットル開度はスロットルモデルM2の式2における変数とはならない。また吸気圧力Paおよび吸気温度Taはそれぞれ大気圧および大気温度に略等しく、略一定であると考えることができるのでこれら吸気圧力および吸気温度もスロットルモデルM2の式2における変数とはならない。したがってこの場合、スロットルモデルM2の式2において変数となるのは吸気管圧力Pmに応じて変化する値Φ(Pm/Pa)の部分のみである。そして吸気管圧力Pmと値Φ(Pm/Pa)との間には図11に示されている関係がある。すなわちスロットル開度θが一定であって圧力比Pm/Paが特定の圧力比Rsよりも小さい場合、圧縮比に係わらず値Φ(Pm/Pa)は一定である。一方、スロットル開度が一定であって圧力比が特定の圧力比Rsよりも大きい場合、圧力比が大きいほど値Φ(Pm/Pa)は小さい。また圧力比が一定である場合にはスロットル開度が大きいほど値Φ(Pm/Pa)は大きい。
【0111】
そこで吸気管圧力Pmとスロットル開度θと値Φ(Pm/Pa)との関係を規定するマップMΦを求めてROM72に図12に示されているような形で予め記憶させておく。そして前回のモデル演算時点の吸気管圧力Pm(k-1)と今回のモデル演算時点の吸気管圧力Pm(k)との差ΔPm(k)(=Pm(k-1)−Pm(k))が予め定められた圧力差よりも大きいことから今回のモデル演算の開始後の短い期間内の筒内流入空気量の変化量が予め定められた変化量よりも大きいと判断され、前回のモデル演算時点から今回のモデル演算時点までスロットル開度θが一定であるときには上記差ΔPm(k)に基づいて上記マップMΦから値Φ(Pm/Pa)の差ΔΦ(Pm/Pa)を求める。そして上記モデル式2において値Φ(Pm/Pa)の代わりに斯くして求められた差ΔΦ(Pm/Pa)を使用して上記モデル式2に従った計算を行う。この計算によって算出される値はスロットル弁通過空気流量の変化量Δmt(k)であり、今回のモデル演算の開始時点から次回のモデル演算の開始時点までの間に変化するであろうスロットル弁通過空気流量の変化量に相当すると考えることができる。そこで斯くして算出されたスロットル弁通過空気流量の変化量Δmt(k)を今回のモデル演算によって算出されるスロットル弁通過空気流量mt(k)に加算する補正を行う。
【0112】
これによれば前回のモデル演算時点の吸気管圧力に比べて今回のモデル演算時点の吸気管圧力のほうが小さければ上記差ΔPm(k)は正の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmt(k)だけ大きくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも大きくなる。
【0113】
一方、前回のモデル演算時点の吸気管圧力に比べて今回のモデル演算時点の吸気管圧力のほうが大きければ上記差ΔPm(k)は負の値をとるので補正後のスロットル弁通過空気流量は補正前のスロットル弁通過空気流量よりも上記変化量Δmt(k)だけ小さくなる。そして斯くして補正されたスロットル弁通過空気流量が吸気管モデルM4に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のスロットル弁通過空気流量を使用した場合に算出される筒内流入空気量よりも小さくなる。
【0114】
このようにスロットル弁通過空気流量を補正すればモデル演算によって最終的に得られる筒内流入空気量は該筒内流入空気量が内燃機関の運転の制御に使用される時点の実際の筒内流入空気量に一致しているか或いは少なくとも補正されていない場合に算出される筒内流入空気量よりも実際の筒内流入空気量に近くなる。
【0115】
もちろん図9から判るように各スロットル開度θに対応する圧力比Pm/Paと値Φ(Pm/Pa)との関係を示す曲線において或る特定の圧力比Pm/Paに対応する該曲線上の点における傾きに圧力比Pm/Paの変化量を掛ければ値Φ(Pm/Pa)の変化量が求められる。そこでスロットル開度θと圧力比Pm/Paとこれらに対応する傾きとの関係を規定するマップを求めてROM72に予め記憶させておき、スロットル開度θと圧力比Pm/Paとに基づいて該マップから傾きを求め、これに圧力比Pm/Paを掛けることによって値Φ(Pm/Pa)の変化量を求め、これに基づいてスロットル弁通過空気流量に対する補正量を算出するようにしてもよい。
【0116】
なお図11に示されている吸気管圧力Pmと値Φ(Pm/Pa)との関係を見れば判るように上記差ΔPm(k)が予め定められた圧力差よりも大きいときであっても前回のモデル演算時点の吸気管圧力も今回のモデル演算時点の吸気管圧力も特定の圧力Psよりも小さい場合にはROM72に記憶させてあるマップから求まる上記差ΔΦ(Pm/Pa)は零となる。このため上記モデル式2に従った計算によって算出されるスロットル弁通過空気流量の変化量Δmt(k)は零になる。したがってこの場合、結果的にはスロットル弁通過空気流量は補正されないことになり、筒内流入空気量も補正されないことになる。
【0117】
次に上述したモデルM1〜M5に従って筒内流入空気量を算出するルーチンの一例を説明する。このルーチンは図13〜図16に示されている。
【0118】
図13に示されているルーチンは電子制御スロットル弁モデルM1に従った演算を実行するルーチンであり、上記所定時間間隔ΔT1毎に実行される。このルーチンが開始されると始めにステップ101においてアクセル開度センサ65によって検出されるアクセルペダル踏込量Accpに基づいて図3に示されているマップMθから目標スロットル開度θt(i+1)が求められ、これが今回のモデル演算時点から上記所定遅延時間TD後の目標スロットル開度θt(i)としてROM72に格納される。次いでステップ102において上式1に従って予測スロットル開度θe(i+1)が算出され、これが今回のモデル演算時点から所定遅延時間TD後の予測スロットル開度θe(i)としてROM72に格納される。次いでステップ103においてスロットル開度が今回のモデル演算時点の目標スロットル開度として所定遅延時間TD前にROM72に格納された目標スロットル開度になるようにスロットル弁駆動用アクチュエータ46aに駆動信号が出力され、ルーチンが終了する。
【0119】
図14〜図16に示されているルーチンはスロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、および吸気弁モデルM5に従った演算を実行するルーチンであり、上記所定時間間隔ΔT2毎に実行される。このルーチンが開始されると始めにステップ201において図13のルーチンの実行によってROM72に格納されている目標スロットル開度θtのうち時間的に今回のモデル演算時点よりも後の時点であって該演算時点に最も近い時点の目標スロットル開度θtが今回のモデル演算に使用する目標スロットル開度θt(k-1)として読み込まれる。次いでステップ202において同じく図13のルーチンの実行によってROM72に格納されている予測スロットル開度θeのうち時間的に今回のモデル演算時点よりも後の時点であって該演算時点に最も近い時点の予測スロットル開度θeが今回のモデル演算に使用する予測スロットル開度θe(k-1)として読み込まれる。
【0120】
次いでステップ203において上記ステップ201で読み込まれた目標スロットル開度θt(k-1)と上記ステップ202で読み込まれた予測スロットル開度θe(k-1)との差Δθ(k-1)の絶対値が予め定められた開度差Δθsよりも大きい(|Δθ(k-1)|>Δθs)か否かが判別される。ここで|Δθ(k-1)|>Δθsであると判別されたとき、すなわち今回のモデル演算時点から次回のモデル演算時点までの間に筒内流入空気量が大きく変化すると判断されたときにはルーチンはスロットルモデルM2に従った演算と該演算によって算出されるスロットル弁通過空気流量の補正とを行うステップ204〜ステップ208に進む。すなわちステップ204において上記ステップ202で読み込まれた予測スロットル開度θe(k-1)に基づいて上記マップMca(図5参照)から値C(θ)(k-1)・A(θ)(k-1)が求められる。次いでステップ205において前回のモデル演算時点の吸気圧力Pa(k-1)に対する前回のモデル演算時点の吸気管圧力Pm(k-1)の圧力比Pm(k-1)/Pa(k-1)に基づいて上記マップMΦ(図6参照)から値Φ(Pm(k-1)/Pa(k-1))が求められる。次いでステップ206において上記ステップ204において求められた値C(θ)(k-1)・A(θ)(k-1)と、上記ステップ205において求められた値Φ(Pm(k-1)/Pa(k-1))と、前回のモデル演算時点の吸気管圧力Pm(k-1)と、前回のモデル演算時点の吸気管温度Tm(k-1)とに基づいて上記モデル式2に従ってスロットル弁通過空気流量mt(k-1)が算出される。
【0121】
次いでステップ207において上記ステップ206において算出されたスロットル弁通過空気流量mt(k-1)と前回のモデル演算によって算出されたスロットル弁通過空気流量mt(k-2)との差Δmt(k-1)(=mt(k-1)−mt(k-2))が算出される。次いでステップ208において上記ステップ207において算出された差Δmt(k-1)が上記ステップ206において算出されたスロットル弁通過空気流量mt(k-1)に加算される補正が行われ、ルーチンは吸気弁モデルM3に従った演算を実行するステップ209〜ステップ211に進む。したがってこれによればステップ203において今回のモデル演算時点から次回のモデル演算時点までの間に筒内流入空気量が大きく変化すると判断されたときにはステップ209以降のモデル演算においては補正されたスロットル弁通過空気流量が使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量が補正された形となる。
【0122】
一方、ステップ203において|Δθ(k-1)|≦Δθsであると判別されたときに、すなわち今回のモデル演算時点から次回のモデル演算時点までの間に筒内流入空気量が大きくは変化しないと判断されたときにはルーチンはスロットルモデルM2に従った演算を実行する図15のステップ218〜ステップ220に進む。すなわちステップ218において上記ステップ202において読み込まれた予測スロットル開度θe(k-1)に基づいて上記マップMca(図5参照)から値C(θ)(k-1)・A(θ)(k-1)が求められる。次いでステップ219において前回のモデル演算時点の吸気圧力Pa(k-1)に対する前回のモデル演算時点の吸気管圧力Pm(k-1)の圧力比Pm(k-1)/Pa(k-1)に基づいて上記マップMΦ(図6参照)から値Φ(Pm(k-1)/Pa(k-1))が求められる。次いでステップ220において上記ステップ218において求められた値C(θ)(k-1)・A(θ)(k-1)と、上記ステップ219において求められた値Φ(Pm(k-1)/Pa(k-1))と、前回のモデル演算時点の吸気管圧力Pm(k-1)と、前回のモデル演算時点の吸気温度Tm(k-1)とに基づいて上記モデル式2に従ってスロットル弁通過空気流量mt(k-1)が算出され、ルーチンは吸気弁モデルM3に従った演算を実行するステップ209〜ステップ211に進む。したがってこれによればステップ203において今回のモデル演算時点から次回のモデル演算時点までの間に筒内流入空気量が大きくは変化しないと判断されているときにはステップ220において算出されたスロットル弁通過空気流量mt(k-1)に対する補正は行われず、ステップ209以降のモデル演算においては補正されていないスロットル弁通過空気流量が使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量が補正されていない形となる。
【0123】
ステップ209では今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて上記マップMc(図7参照)から値c(k-1)が求められる。次いで210において今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて上記マップMd(図8参照)から値d(k-1)が求められる。次いでステップ211において上記ステップ209において求められた値c(k-1)と、上記ステップ210において求められた値d(k-1)と、前回のモデル演算時点の吸気温度Ta(k-1)と、前回のモデル演算時点の吸気管温度Tm(k-1)と、前回のモデル演算時点の吸気管圧力Pm(k-1)とに基づいて上記モデル式4に従って筒内流入空気流量mc(k-1)が算出される。
【0124】
次いでルーチンは吸気管モデルM4に従った演算を実行する図16のステップ212に進む。すなわちステップ212において上記ステップ208または上記ステップ220において算出されたスロットル弁通過空気流量mt(k-1)と、上記ステップ211において算出された筒内流入空気流量mc(k-1)と、前回のモデル演算時点の吸気温度Ta(k-1)とに基づいて上記モデル式5およびモデル式6に従って吸気管圧力Pm(k)と吸気管温度Tm(k)とが算出される。
【0125】
次いでルーチンは吸気弁モデルM5に従った演算を実行するステップ213〜ステップ217に進む。すなわちステップ213において今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて上記マップMc(図7参照)から値c(k-1)が求められる。次いでステップ214において今回のモデル演算時点の機関回転数NE(k-1)および吸気開閉タイミングVT(k-1)に基づいて上記マップMd(図8参照)から値d(k-1)が求められる。次いで215において上記ステップ213において算出された値c(k-1)と、上記ステップ214において算出された値d(k-1)と、上記ステップ212において算出された吸気管圧力Pm(k)と、同じく上記ステップ212において算出された吸気管温度Tm(k)と、前回のモデル演算時点の吸気温度Ta(k-1)とに基づいて上記モデル式4に従って筒内流入空気流量mc(k)が算出される。次いでステップ216において今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて吸気弁開弁時間Tint(k)が算出される。次いでステップ217において上記ステップ215において算出された筒内流入空気流量mc(k)と、上記ステップ216において算出された吸気弁開弁時間Tint(k)とに基づいて上式8に従って筒内流入空気量KLfwd(k)が算出され、ルーチンが終了する。
【0126】
なお図14のステップ203における今回のモデル演算時点から次回のモデル演算時点までの間に筒内流入空気量が大きく変化するか否かの判断として吸気管圧力の変化量に基づいた判断を採用してもよい。この場合には図14のステップ203において前回のモデル演算時点の吸気管圧力Pm(k-1)と今回のモデル演算時点の吸気管圧力Pm(k)との差ΔPm(k)の絶対値が予め定められた圧力差ΔPmsよりも大きい(|ΔPm(k)|>ΔPms)か否かを判別するようにすればよい。この場合、|ΔPm(k)|>ΔPmsであると判別されたときには図14のステップ204に進み、一方、|ΔPm(k)|≦ΔPmsであると判別されたときには図15のステップ218に進むようにする。
【0127】
同様に筒内流入空気量の変化量が予め定められた変化量よりも大きいか否かの判断として上述したその他の判断を図14のステップ203における判断に採用してもよい。
【0128】
また図14のステップ207におけるスロットル弁通過空気流量に対する補正量として今回のモデル演算時点の吸気管圧力Pm(k)と前回のモデル演算時点の吸気管圧力Pm(k-1)との差ΔPm(k)に基づいて算出される補正量を採用してもよい。この場合、ステップ207において今回のモデル演算時点の吸気管圧力Pm(k)と前回のモデル演算時点の吸気管圧力Pm(k-1)との差ΔPm(k)(=Pm(k)−Pm(k-1))を吸気管圧力Pmの代わりに使用して上記モデル式2に従った計算を行い、この計算によって算出される値、すなわちスロットル弁通過空気流量の変化量Δmt(k)をスロットル弁通過空気流量に対する補正量としてステップ208においてスロットル弁通過空気流量mt(k-1)に加算するようにする。
【0129】
同様にスロットル弁通過空気流量に対する補正量として上述したその他の補正量を図14のステップ207における補正量に採用してもよい。
【0130】
ところで図17に示されているように過給機91を備えた内燃機関が知られている。次にこうした過給機91を備えた内燃機関に本発明を適用した場合について説明する。図17に示されている内燃機関では過給機91のコンプレッサ91aがスロットル弁46上流の吸気ダクト43内に配置されている。一方、過給機91の排気タービン91bが排気管51内に配置されている。コンプレッサ91aは排気タービン91bに連結されており、排気タービン91bが排気ガスによって回転せしめられると該排気タービン91bの回転がコンプレッサ91aに伝達され、該コンプレッサ91aが回転せしめられるようになっている。コンプレッサ91aが回転せしめられると該コンプレッサ91aはその下流へと空気を圧縮しつつ吐出する。
【0131】
またコンプレッサ91a近傍の吸気ダクト43には該コンプレッサ91aの回転数を検出するコンプレッサ回転数センサ63が取り付けられている。コンプレッサ回転数センサ63はコンプレッサ91aが360°回転する毎に信号を出力する。またコンプレッサ回転数センサ63は電気制御装置70のインターフェース75に接続されており、該コンプレッサ回転数センサ63から出力される信号はインターフェース75を介してCPU71に供給される。
【0132】
またコンプレッサ91aとスロットル弁46との間の吸気ダクト43には吸気ダクト43内を流れる空気を冷却するインタークーラ45が配置されている。インタークーラ45は内燃機関10の外部の空気によって吸気ダクト43内を流れる空気を冷却する。
【0133】
図17に示されている内燃機関の上述した構成以外の構成は図1に示されている内燃機関の構成と同じである。
【0134】
次に図17に示されている内燃機関において吸気行程中に燃焼室内に吸入される空気の量、すなわち筒内流入空気量の算出方法についてその概要を説明する。
【0135】
本実施形態の筒内流入空気量算出装置は図18の機能ブロック図に示されているように電子制御スロットル弁モデルM1と、スロットルモデルM2と、吸気弁モデルM3と、吸気管モデルM4と、吸気弁モデルM5と、コンプレッサモデルM6と、インタークーラモデルM7とを利用して筒内流入空気量を算出する。
【0136】
各モデルの機能を簡単に説明すると電子制御スロットル弁モデルM1は図1〜図16を参照して説明した実施形態(以下「第1実施形態」という)の電子制御スロットル弁モデルM1と同じモデルである。またスロットルモデルM2はスロットル弁通過空気流量を算出するモデルであって第1実施形態のスロットルモデルM2と同様のモデルであり、吸気弁モデルM3は吸気弁通過空気流量を算出するモデルであって第1実施形態の吸気弁モデルM3と同様のモデルであり、吸気管モデルM4は吸気管圧力および吸気管温度を算出するモデルであって第1実施形態の吸気管モデルM4と同様のモデルであり、吸気弁モデルM5は筒内流入空気量を算出するモデルであって第1実施形態の吸気弁モデルM5と同様のモデルである。
【0137】
さらにコンプレッサモデルM6はコンプレッサ91aから流出する空気の流量(以下「コンプレッサ流出空気流量」という)を算出するモデルであり、インタークーラモデルM7はインタークーラ45内の空気の圧力(以下「インタークーラ圧力」という)およびインタークーラ45内の空気の温度(以下「インタークーラ温度」という)を算出するモデルである。
【0138】
次に図17に示されている内燃機関における筒内流入空気量の算出方法についてその詳細を各モデルの詳細を共に説明する。なお電子制御スロットル弁モデルM1は第1実施形態の電子制御スロットル弁モデルM1と同じであるので説明は省略する。また以下に説明するスロットルモデルM2、吸気弁モデルM3、吸気管モデルM4、コンプレッサモデルM6、インタークーラモデルM7、および吸気弁モデルM5に従った演算は一連の演算として第1実施形態と同じく所定時間間隔ΔT2毎に実行される。
【0139】
まず本実施形態(以下「第2実施形態」ともいう)のスロットルモデルM2について説明する。第2実施形態のスロットルモデルM2は質量保存則、エネルギ保存則、運動量保存則、および気体の状態方程式等の物理法則を利用して導き出された以下のモデル式9およびモデル式10に基づいてスロットル弁通過空気流量を算出するモデルである。
【数3】

【数4】

【0140】
上記モデル式9およびモデル式10において、mtは今回の当該スロットルモデルM2に従った演算(以下「モデル演算」という)によって算出されるべきスロットル弁通過空気流量であり、θはスロットル開度であり、C(θ)はスロットル開度θに対応する流量係数であり、A(θ)はスロットル開度θに対応するスロットル流路面積であり、Pmは吸気管モデルM4に従った演算(詳細は後述)によって算出される吸気管圧力であり、Rは気体定数であり、κは空気の比熱比である。また、PiはインタークーラモデルM7に従った演算(詳細は後述)によって算出されるインタークーラ圧力、すなわちインタークーラ45内の空気の圧力であり、TiはインタークーラモデルM7に従った演算(詳細は後述)によって算出されるインタークーラ温度、すなわちインタークーラ45内の空気の温度である。なお本実施形態でもκは一定値としている。
【0141】
また上記モデル式9の積C(θ)・A(θ)は電子制御スロットル弁モデルM1に従った演算によって算出される予測スロットル開度θeに基づいて図5に示されているマップMcaから求められる。また値Φ(Pm/Pi)はインタークーラモデルM7に従った演算(詳細は後述)によって算出されるインタークーラ圧力Piに対する吸気管圧力Pmの比(以下「圧力比」という)Pm/Piと予測スロットル開度θeとに基づいて図19に示されているマップMΦから求められる。
【0142】
次に第2実施形態の吸気弁モデルM3について説明する。第2実施形態の吸気弁モデルM3は経験則を利用して導き出された以下のモデル式11に基づいて筒内流入空気流量を算出するモデルである。
mc=(Ti/Tm)・(c・Pm−d) …(11)
【0143】
上記モデル式11において、mcは今回の当該吸気弁モデルM3に従った演算(以下「モデル演算」という)によって算出されるべき筒内流入空気流量であり、Tmは吸気管モデルM4に従った演算(詳細は後述)によって算出される吸気管温度であり、cは機関回転数と吸気弁開閉タイミングとに対応する比例係数であり、dは排気行程において燃焼室25から排気通路に排出されずに燃焼室25内に残る既燃ガスの量に対応する値であって機関回転数と吸気弁開閉タイミングとに対応する値であり、TiはインタークーラモデルM7に従った演算(詳細は後述)によって算出されるインタークーラ温度である。
【0144】
なお比例係数cは機関回転数NEと吸気弁開閉タイミングVTとに基づいて図7に示されているマップMcから求められる。一方、値dは機関回転数NEと吸気弁開閉タイミングVTとに基づいて図8に示されているマップMdから求められる。
【0145】
次にコンプレッサモデルM6について説明する。コンプレッサモデルM6はコンプレッサ流出空気流量、すなわちコンプレッサ45から流出する空気の流量を算出するモデルである。
【0146】
ところでコンプレッサ流出空気流量はインタークーラ圧力と吸気圧力(第2実施形態における吸気圧力はコンプレッサ45上流の吸気ダクト43内の空気の圧力をいう)との比とコンプレッサ回転数とに基づいて経験的に推定することができる。すなわちコンプレッサ流出空気流量mcmとインタークーラ圧力Piを吸気圧力Paで除した値(以下「圧力比」という)Pi/Paとコンプレッサ回転数NCとの間には図20に示されているような関係があり、コンプレッサ流出空気流量mcmは値Pi/Paが大きいほど少なく、コンプレッサ回転数Ncが大きいほど多い。そしてコンプレッサ流出空気流量は圧力比とコンプレッサ回転数NCとに基づいた値として実験等によって予め求めておくことができる。そこで第2実施形態では圧力比Pi/Paと、コンプレッサ回転数NCと、コンプレッサ流出空気流量mcmとの関係を規定するマップMmcmを求めてROM72に図21に示されているような形で予め記憶させておく。そしてコンプレッサモデルM6は値Pi/Paとコンプレッサ回転数NCとに基づいて上記マップMmcmからコンプレッサ流出空気流量mcmを算出する。
【0147】
次にインタークーラモデルM7について説明する。インタークーラモデルM7は質量保存則およびエネルギ保存則を利用して導き出された以下のモデル式12およびモデル式13に基づいて今回の当該インタークーラモデルM7に従った演算の実行(以下「モデル演算」という)時点のインタークーラ圧力およびインタークーラ温度を算出するモデルである。
【0148】
d(Pi/Ti)/dt=(R/Vi)・(mcm−mt) …(12)
dPi/dt=κ・(R/Vi)・(mcm・Ta−mt・Ti)
+(κ−1)/Vi・(Ec−K・(Ti−Ta)) …(13)
【0149】
上記モデル式12およびモデル式13において、Piは今回のモデル演算によって算出されるべきインタークーラ圧力であり、Tiは今回のモデル演算によって算出されるべきインタークーラ温度であり、Viはコンプレッサ91aの吐出口とスロットル弁46との間の吸気通路の容積であり、mcmはコンプレッサモデルM6に従った演算によって算出される今回のモデル演算時点のコンプレッサ流出空気流量であり、Ecはコンプレッサ91aによって圧縮されることによって空気に与えられたエネルギ(算出方法は後述)であり、mtはスロットルモデルM2に従った演算によって算出される今回のモデル演算時点のスロットル弁通過空気流量であり、Taは今回のモデル演算時点の吸気温度であり、Rは気体定数であり、κは空気の比熱比であり、Kは係数(詳細は後述)である。
【0150】
ここで上記モデル式12およびモデル式13の導出方法について説明する。コンプレッサ91aとスロットル弁46tの間の吸気通路の部分をインタークーラ部と称し、該インタークーラ部内の空気の総量を総空気量Mとしたとき、総空気量Mの単位時間当たりの変化量dM/dtはインタークーラ部に流入する空気の流量に相当するコンプレッサ流出空気流量mcmとインタークーラ部から流出する空気の流量に相当するスロットル弁通過空気流量mtとの差であるので質量保存則に基づいて以下の式14が成立する。
dM/dt=mcm−mt …(14)
【0151】
またインタークーラ部内の空気に関して状態方程式に基づいて次式15が成立する。
Pi・Vi=M・R・Ti …(15)
【0152】
ここで上式14を上式15に代入して総空気量Mを消去し、インタークーラ部の容積Viが一定であることを考慮すれば上記モデル式12が得られる。
【0153】
一方、インタークーラ部内の空気のエネルギの変化量をインタークーラ内エネルギ変化量Eiとし、コンプレッサ91aによって圧縮される前の空気のエネルギを圧縮前空気エネルギEaとし、コンプレッサ91aによって圧縮されることによって空気に与えられるエネルギをコンプレッサ付与エネルギEcとし、インタークーラ45の壁から外部に放出される空気のエネルギを放熱空気エネルギEdとし、インタークーラ部から流出する空気のエネルギを流出空気エネルギEtとしたとき、インタークーラ部内の空気に関してエネルギ保存則から次式16が成立する。
Ei=Ea+Ec−Ed−Et …(16)
【0154】
インタークーラ内エネルギ変化量Eiはインタークーラ部に流入する空気のエネルギ、すなわち圧縮前空気エネルギEaとコンプレッサ付与エネルギEcとの和から放熱空気エネルギEdと流出空気エネルギEtとを差し引いた値に等しい。
【0155】
そしてこれらエネルギのうち圧縮前空気エネルギEaおよび流出空気エネルギEtはそれぞれ次式17および次式18に従って算出可能である。
Ea=Cp・mcm・Ta …(17)
Et=Cp・mt・Ti …(18)
【0156】
上式17〜19において、Cpは空気の定圧比熱であり、mcmはコンプレッサ流出空気流量であり、Taは吸気温度であり、mtはスロットル通過空気流量であり、Tiはインタークーラ温度である。
【0157】
またコンプレッサ付与エネルギEcは次式19に従って算出可能である。
【数5】

【0158】
上式19において、Cpは空気の定圧比熱であり、mcmはコンプレッサ流出空気流量であり、Taは吸気温度であり、Piはインタークーラ圧力であり、Paは吸気圧力であり、ηはコンプレッサ効率である。
【0159】
すなわちコンプレッサ91aに流入する空気の流量をコンプレッサ流入空気流量mciとし、コンプレッサに流入する空気の温度をコンプレッサ流入空気温度Tciとし、コンプレッサから流出する空気の流量をコンプレッサ流出空気流量mcoとし、コンプレッサから流出する空気の温度をコンプレッサ流出空気温度Tcoとしたとき、コンプレッサに流入する空気のエネルギEciおよびコンプレッサから流出する空気のエネルギEcoはそれぞれ次式20および次式21で表される。
Eci=Cp・mci・Tci …(20)
Eco=Cp・mco・Tco …(21)
【0160】
ここでコンプレッサに流入するエネルギEciとコンプレッサ付与エネルギEcとの和はコンプレッサから流出する空気のエネルギEcoに等しいことからエネルギ保存則に基づいて上式20および上式21を利用して次式22が成立する。
Cp・mci・Tci+Ec=Cp・mco・Tco …(22)
【0161】
ここでコンプレッサに流入する空気の流量はコンプレッサから流出する空気の流量に等しいことを考慮して上式22を変形すれば次式23が得られる。
Ec=Cp・mco・(Tco−Tci) …(23)
【0162】
一方、コンプレッサ効率ηは次式24によって表される。
【数6】

【0163】
上式24において、Tciはコンプレッサに流入する空気の温度であり、Pioはコンプレッサから流出する空気の圧力であり、Piはインタークーラ圧力であり、Tioは
コンプレッサから流出する空気の温度であり、κは空気の比熱比である。
【0164】
上式24を上式22に代入して変形すれば次式25が得られる。
【数7】

【0165】
ここでコンプレッサに流入する空気の圧力Pciおよび温度Tciはそれぞれ吸気圧力Paおよび吸気温度Taに等しいと言える。またコンプレッサから流出する空気の圧力Pcoはインタークーラ圧力Piに等しいと言える。さらにコンプレッサから流出する空気の流量mcoはコンプレッサ流出空気流量mcmである。したがってこれらを考慮して上式25を変形すれば上式19が得られる。
【0166】
なおコンプレッサ流出空気流量とコンプレッサ回転数とコンプレッサ効率との間には図22に示されているような関係がある。すなわちコンプレッサ効率ηはコンプレッサ回転数が一定であればコンプレッサ流出空気流量が或る一定の流量になるまではコンプレッサ流出空気流量が多いほど大きく、コンプレッサ流出空気流量が或る一定の流量を超えるとコンプレッサ流出空気流量が多いほど小さい。すなわちコンプレッサ効率ηはコンプレッサ流出空気流量が或る一定の流量になるところでピークとなる。またコンプレッサ効率ηのピークはコンプレッサ流出空気流量が多いほど大きく、またコンプレッサ効率ηがピークとなるコンプレッサ流出空気流量はコンプレッサ回転数が大きくなるほど多い。そしてコンプレッサ効率はコンプレッサ流出空気流量とコンプレッサ回転数とに基づいた値として実験等によって予め求めておくことができる。そこで本実施形態ではコンプレッサ流出空気流量mcmとコンプレッサ回転数Ncとコンプレッサ効率ηとの関係を規定するマップMηを求めてROM72に図23に示されているような形で予め記憶させておく。そしてインタークーラモデルM7はコンプレッサモデルM6に従った演算によって算出されるコンプレッサ流出空気流量mcmとコンプレッサ回転数Ncとに基づいて上記マップMηからコンプレッサ効率ηを求める。
【0167】
また以上の説明ではコンプレッサから空気に与えられるエネルギはコンプレッサに流入してから流出するまでの空気の温度上昇に寄与し、空気の運動への寄与は無視している。
【0168】
さらに放出空気エネルギEdは次式26に従って算出可能である。
Ed=K・(Ti−Ta) …(26)
【0169】
上式26において、Kはインタークーラ45の表面積とインタークーラ45内の空気からインタークーラ45の壁への熱伝達率との積に応じた係数であり、Tiはインタークーラ温度であり、Taは吸気温度である。
【0170】
すなわち放出空気エネルギEdは経験則に基づいてインタークーラ温度Tiとインタークーラ45の壁の温度Twとの差に比例する。ここでインタークーラ45は内燃機関10の外部の空気によって該インタークーラ内の空気を冷却することからインタークーラ45の壁の温度Twは内燃機関10の外部の温度に等しく、結果的には吸気温度Taに等しいと言える。したがって放出空気エネルギEiはインタークーラ温度Tiと吸気温度Taとの差に比例する。このことから上式26が成立する。
【0171】
そしてインタークーラ内エネルギ変化量Eiは次式27で表される。
Ei=d(M・Cv・Ti)/dt …(27)
【0172】
上式27において、Mは総空気量であり、Cvは空気の定積比熱であり、Tiはインタークーラ温度である。
【0173】
したがって上式16〜上式27から次式28が得られる。
d(M・Cv・Ti)/dt=Cp・mcm・Ta+Ec
−K・(Ti−Ta)−Cp・mt・Ti …(28)
【0174】
そして比熱比κが次式29で表され、マイヤーの関係が次式30で表されることからこれら式29および式30を用いて上式28を変形すると上式13が得られる。
κ=Cp/Cv …(29)
Cp=Cv+R …(30)
【0175】
次に第2実施形態の吸気管モデルM4について説明する。第2実施形態の吸気管モデルM4は質量保存則およびエネルギ保存則を利用して導き出された以下のモデル式31およびモデル式32に基づいて吸気管圧力および吸気管温度を算出するモデルである。
d(Pm/Tm)/dt=(R/Vm)・(mt−mc) …(31)
dPm/dt=κ・(R/Vm)・(mt・Ti−mc・Tm) …(32)
【0176】
上記モデル式31およびモデル式32において、Pmは今回のモデル演算によって算出されるべき吸気管圧力であり、Tmは今回のモデル演算によって算出されるべき吸気管温度であり、Rは気体定数であり、Vmはスロットル弁46と吸気弁32との間の吸気通路の容積であり、mtはスロットルモデルM2に従った演算によって算出されるスロットル弁通過空気流量であり、mcは吸気弁モデルM3に従った演算によって算出される筒内流入空気流量であり、TiはインタークーラモデルM7に従った演算によって算出されるインタークーラ温度であり、κは空気の比熱比である。
【0177】
次に第2実施形態の吸気弁モデルM5について説明する。第2実施形態の吸気弁モデルM5は経験則を利用して導き出された以下のモデル式33およびモデル式34に基づいて筒内流入空気量を算出するモデルである。
mc=(Ti/Tm)・(c・Pm−d) …(33)
KLfwd=mc・Tint …(34)
【0178】
上記モデル式33およびモデル式34において、mcは今回の当該吸気弁モデルM5に従った演算(以下「モデル演算」という)によって算出されるべき筒内流入空気流量であり、Tiはインタークーラ温度であり、Tmは吸気管温度であり、cは機関回転数と吸気弁開閉タイミングとに対応する比例係数であり、dは排気行程において燃焼室25から排気通路に排出されずに燃焼室25内に残る既燃ガスの量に対応する値であって機関回転数と吸気弁開閉タイミングとに対応する値であり、KLfwdは今回のモデル演算によって算出されるべき筒内流入空気量であり、Tintは吸気弁32が開弁してから閉弁するまでの時間である。
【0179】
なお比例定数cは吸気弁モデルM3に関連して説明した比例係数cと同じものであり、吸気弁モデルM3と同様に機関回転数NEと吸気弁開閉タイミングVTとに基づいて上記マップMc(図7参照)から求められる。また値dも吸気弁モデルM3に関連して説明した値dと同じものであり、吸気弁モデルM3と同様に機関回転数NEと吸気弁開閉タイミングVTとに基づいて上記マップMd(図8参照)から求められる。
【0180】
ところで上述したようにしてコンプレッサ流出空気流量が算出される場合、該コンプレッサ流出空気流量を算出する演算が開始されてから該演算が完了するまでには一定の時間を要する。またコンプレッサ流出空気流量を算出する演算が完了してから該算出されたコンプレッサ流出空気流量を使用して算出される筒内流入空気量が実際に内燃機関の運転の制御に利用されるまでに一定の時間を要する場合もある。ここでコンプレッサ流出空気流量を算出する演算の開始後の短い期間におけるコンプレッサ流出空気流量の変化量が比較的小さい場合には算出されるコンプレッサ流出空気流量は該コンプレッサ流出空気流量を利用して算出される筒内流入空気量が内燃機関の運転の制御に利用されるときの実際のコンプレッサ流出空気流量に一致しており、この場合、該コンプレッサ流出空気流量を利用して算出される筒内流入空気量もそれが内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致していると言える。しかしながら筒内流入空気量を算出する演算の開始後の短い期間におけるコンプレッサ流出空気流量の変化量が比較的大きい場合には算出されたコンプレッサ流出空気流量を利用して算出される筒内流入空気量が内燃機関の運転の制御に利用されるときには実際のコンプレッサ流出空気流量は該コンプレッサ流出空気流量を算出する演算が開始されたときに比べて大きく変化していることになる。そしてこの場合、上述したようにして算出されるコンプレッサ流出空気流量は該コンプレッサ流出空気流量を利用して算出される筒内流入空気量が内燃機関の運転の制御に利用されるときの実際のコンプレッサ流出空気流量に一致しているとは言えず、したがって該コンプレッサ流出空気流量を利用して算出される筒内流入空気量もそれが内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致しているとは言えない。
【0181】
そこで第2実施形態では上述したようにして算出されるコンプレッサ流出空気流量が該コンプレッサ流出空気流量を利用して算出される筒内流入空気量が内燃機関の運転の制御に利用されるときの実際のコンプレッサ流出空気流量に一致していると言えないと筒内流入空気量を算出する演算の実行時に判断された場合には該演算によって算出される筒内流入空気量がそれが内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致するようにコンプレッサモデルM6に従った演算によって算出されるコンプレッサ流出空気流量を補正する。
【0182】
すなわち筒内流入空気量演算(すなわち筒内流入空気量を算出する演算)の開始時における目標スロットル開度と実際のスロットル開度との差が予め定められた開度差よりも大きいときには実際のスロットル開度を目標スロットル開度にするためにスロットル開度が比較的大きく変化しているときであると言える。そこで本実施形態では筒内流入空気量演算が開始されたときに目標スロットル開度と実際のスロットル開度(本実施形態では予測スロットル開度)との差を算出し、該差が予め定められた開度差よりも大きいときにはコンプレッサモデルM5に従った演算によって算出されるコンプレッサ流出空気流量を以下のようにして補正し、結果的に該コンプレッサ流出空気流量を利用して算出される筒内流入空気量を補正する。
【0183】
すなわち上記モデルM2〜M7に従った筒内流入空気量演算(以下「モデル演算」ともいう)の開始時に予測スロットル開度と目標スロットル開度との差が比較的大きいときにはモデル演算の開始後の短い期間におけるスロットル開度の変化量が大きいと推察される。そしてスロットル開度の変化量が大きい場合にはスロットル弁通過空気流量の変化量も大きく、したがってコンプレッサ流出空気流量の変化量も大きいと言える。こうした理由から本実施形態では予測スロットル開度と目標スロットル開度との差が予め定められた開度差よりも大きいときにはコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きく、したがって筒内流入空気量の変化量も予め定められた変化量よりも大きいと判断し、コンプレッサモデルM6に従った演算によって算出されるコンプレッサ流出空気流量を補正する。
【0184】
すなわちインタークーラ圧力Piとコンプレッサ回転数NCとコンプレッサ流出空気流量mcmとの間には図24に示されているような関係がある。すなわちコンプレッサ回転数NCが一定であればインタークーラ圧力Piが大きいほどコンプレッサ流出空気流量mcmが少なく、インタークーラ圧力Piが一定であればコンプレッサ回転数NCが大きいほどコンプレッサ流出空気流量は多い。ここで図24から判るように各コンプレッサ回転数に対応するインタークーラ圧力とコンプレッサ流出空気流量との関係を示す曲線において或る特定のインタークーラ圧力に対応する該曲線上の点における傾きにインタークーラ圧力の変化量を掛ければコンプレッサ流出空気流量の変化量が求められる。そこで本実施形態ではコンプレッサ回転数NCとインタークーラ圧力Piとこれらに対応する傾きdmcmとの関係を規定するマップMdmcmを求めてROM72に図25に示されているような形で予め記憶させておく。そしてコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きいと判断されたときにはコンプレッサ回転数NCとインタークーラ圧力Piとに基づいて上記マップMdmcmから傾きdmcmを求める。そして今回のモデル演算時点のインタークーラ圧力Pi(k)と前回のモデル演算時点のインタークーラ圧力Pi(k-1)との差ΔPi(k)(=Pi(k)−Pi(k-1))を算出し、該算出された差ΔPi(k)を上記傾きdmcmに掛けることによってコンプレッサ流出空気流量に対する補正量Δmcm(k)を算出する。ここで算出される差Δmcm(k)は今回のモデル演算の開始時点から次回のモデル演算の開始時点までに変化するであろうコンプレッサ流出空気流量の変化量に相当する。したがってこの差Δmcm(k)を、今回のモデル演算によって算出されるコンプレッサ流出空気流量mcm(k)に加算すれば斯くして得られるコンプレッサ流出空気流量は次回のモデル演算の開始時点の実際のコンプレッサ流出空気流量に一致しているか或いはそれに近いと言える。
【0185】
そこで本実施形態では上述したようにして算出される補正量Δmcmを今回のモデル演算によって算出されるコンプレッサ流出空気流量mcmに加算する補正を行う。
【0186】
これによれば前回のモデル演算によって算出されたインタークーラ圧力よりも今回のモデル演算によって算出されるインタークーラ圧力のほうが高ければ上記差ΔPiは正の値をとり、上記傾きdmcmが負の値であることから上記補正量Δmcmが負の値をとるので補正後のコンプレッサ流出空気流量は補正前のコンプレッサ流出空気流量よりも上記補正量Δmcmだけ小さくなる。そして斯くして補正されたコンプレッサ流出空気流量がインタークーラモデルM7に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のコンプレッサ流出空気流量を使用した場合に算出される筒内流入空気量よりも小さくなる。
【0187】
一方、前回のモデル演算によって算出されたインタークーラ圧力よりも今回のモデル演算によって算出されるインタークーラ圧力のほうが低ければ上記差ΔPiは負の値をとり、上記傾きが負の値であることから上記補正量Δmcmが正の値をとるので補正後のコンプレッサ流出空気流量は補正前のコンプレッサ流出空気流量よりも上記補正量Δmcmだけ大きくなる。そして斯くして補正されたコンプレッサ流出空気流量がインタークーラモデルM7に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のコンプレッサ流出空気流量を使用した場合に算出される筒内流入空気量よりも大きくなる。
【0188】
このようにコンプレッサ流出空気流量を補正すればモデル演算によって最終的に得られる筒内流入空気量はそれが内燃機関の運転の制御に使用される時点の実際の筒内流入空気量に一致しているか或いは少なくとも補正されていない場合に算出される筒内流入空気量よりも実際の筒内流入空気量に近くなる。
【0189】
なお上述した例ではコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きいか否かの判断を予測スロットル開度と目標スロットル開度との差に基づいて行っているがこれに代えて或いはこれに加えて第1実施形態に関連して説明したように吸気管圧力の変化量に基づいて行ってもよい。
【0190】
またコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きいか否かの判断として上述した判断に代えて或いはこれに加えて第1実施形態に関連して説明した吸気圧力Paに対する吸気管圧力Pmの比Pm/Paを利用した判断と同様の判断を採用してもよい。すなわちインタークーラ圧力Piに対する吸気管圧力Pmの比Pm/Piとスロットル弁通過空気流量mtとの関係との関係は図26に示されているような関係にある。すなわちスロットル開度θが一定であって圧力比Pm/Piが特定の圧力比Rsよりもちいさい場合、圧力比に係わらずスロットル弁通過空気流量は一定である。一方、スロットル開度が一定であって圧力比が特定の圧力比Rsよりも大きい場合、圧力比が大きいほどスロットル弁通過空気流量はちいさい。また圧力比が一定である場合にはスロットル開度が大きいほどスロットル弁通過空気流量は大きい。
【0191】
したがって圧力比Pm/Piが特定の圧力比Rsを越えて大きくなったときにはスロットル開度θが一定であってもスロットル弁通過空気流量mtが大きく変化することになる。また圧力比が上記特定の圧力比よりも大きい領域において大きくなったときにもスロットル開度が一定であってもスロットル弁通過空気流量が大きく変化する。逆に圧力比が上記特定の圧力比を越えて小さくなったときにもスロットル開度が一定であってもスロットル弁通過空気流量が大きく変化し、圧力比が上記特定の圧力比よりも大きい領域において小さくなったときにもスロットル開度が一定であってもスロットル弁通過空気流量が大きく変化する。
【0192】
一般的にスロットル弁通過空気流量が大きく変化するときにはコンプレッサ流出空気流量も大きく変化すると言える。そこで前回のモデル演算時点から今回のモデル演算時点までの間に圧力比Pm/Piが上記特定の圧力比Rsを越えて大きくなったとき或いは上記特定の圧力比よりも大きい領域において大きくなったとき或いは上記特定の圧力比を越えて小さくなったとき或いは上記特定の圧力比よりも大きい領域において小さくなったときにはスロットル開度θが一定であっても今回のモデル演算の開始後の短い期間内にスロットル弁通過空気流量mtが大きく変化し、したがってコンプレッサ流入空気流量も大きく変化し、したがって筒内流入空気量も大きく変化すると判断するようにしてもよい。そしてコンプレッサ流入空気流量が大きく変化すると判断されたときには上述したようにしてコンプレッサ流入空気流量を補正することによって筒内流入空気流量を補正する。
【0193】
またコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きいか否かの判断として上述した判断に代えて或いはこれに加えてコンプレッサ回転数に基づいた判断を採用してもよい。すなわちコンプレッサ回転数の変化量が大きいときにはコンプレッサ流出空気流量の変化量も大きいと言える。そこで前回のモデル演算時点のコンプレッサ回転数NC(k-1)と今回のモデル演算時点のコンプレッサ回転数NC(k)との差ΔNC(k)(=NC(k)−NC(k-1))の絶対値が予め定められた回転数差ΔNCsよりも大きいときにコンプレッサ流出空気流量の変化量が大きいと判断してもよい。
【0194】
またコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きいか否かの判断として上述した判断に代えて或いはこれに加えて以下の判断を採用してもよい。すなわち前回のモデル演算時点のインタークーラ圧力に対する今回のモデル演算時点のインタークーラ圧力の差ΔPiを算出し、この差ΔPiを今回のモデル演算時点のインタークーラ圧力に加算したものを暫定インタークーラ圧力として算出する。この暫定インタークーラ圧力は次回のモデル演算時点にとりうるであろうインタークーラ圧力に相当する。さらに前回のモデル演算時点のコンプレッサ回転数に対する今回のモデル演算時点のコンプレッサ回転数の差ΔNCを算出し、この差ΔNCを今回のモデル演算時点のコンプレッサ回転数に加算したものを暫定コンプレッサ回転数として算出する。この暫定コンプレッサ回転数は次回のモデル演算時点にとりうるであろうコンプレッサ回転数に相当する。
【0195】
ここで図30を参照して説明すると今回のモデル演算時点のインタークーラ圧力が圧力Pi1であり、今回のモデル演算時点のコンプレッサ回転数がNC1であるとすればコンプレッサ流出空気流量は流量mcm1である。ここで次回のモデル演算時点のインタークーラ圧力が上記暫定インタークーラ圧力Pi2であるとした場合、コンプレッサ回転数が回転数NC2であればコンプレッサ流出空気流量は今回のモデル演算時点のコンプレッサ流出空気流量mcm1と同じ流量となる。したがって上記暫定コンプレッサ回転数が回転数NC2であれば今回のモデル演算時点から次回のモデル演算時点までの間にコンプレッサ流出空気流量は変化しないか少なくとも大きくは変化しない。一方、暫定コンプレッサ回転数が回転数NC2よりも大きい回転数NC3であればコンプレッサ流出空気流量は流量mcm2まで大きくなるので今回のモデル演算時点から次回のモデル演算時点まので間に大きく変化することになる。逆に、暫定コンプレッサ回転数が回転数NC2よりも小さい回転数であってもコンプレッサ流出空気流量は今回のモデル演算時点から次回のモデル演算時点までの間に大きく変化することになる。
【0196】
そこで上述したようにして暫定インタークーラ圧力と暫定コンプレッサ回転数とを算出し、インタークーラ圧力が暫定インタークーラ圧力になった場合であってもコンプレッサ流出空気流量が今回のモデル演算時点の流量と等しくなるコンプレッサ回転数を基準コンプレッサ回転数として求める。そしてこの基準コンプレッサ回転数と暫定コンプレッサ回転数との差が予め定められた回転数差よりも大きいときにコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きくなると判断するようにしてもよい。
【0197】
なおこの判断を採用した場合、基準コンプレッサ回転数よりも暫定コンプレッサ回転数のほうが大きければコンプレッサ流出空気流量が大きくなるように該コンプレッサ流出空気流量を補正する。一方、基準コンプレッサ回転数よりも暫定コンプレッサ回転数のほうが小さければコンプレッサ流出空気流量が小さくなるように該コンプレッサ流出空気流量を補正する。
【0198】
またコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きいか否かの判断として上述した判断に代えて或いはこれに加えて以下の判断を採用してもよい。すなわちコンプレッサ91aは排気タービン91bが排気ガスによって回転せしめられることによって回転せしめられる。したがって排気タービン91bが排気ガスから受けるエネルギとコンプレッサ91aが空気に与えるエネルギとが等しければコンプレッサ回転数は変化しない。しかしながら排気タービン91bが排気ガスから受けるエネルギよりもコンプレッサ91aが空気に与えるエネルギのほうが小さければコンプレッサ回転数は大きくなり、逆に排気タービン91bが排気ガスから受けるエネルギよりもコンプレッサ91aが空気に与えるエネルギのほうが大きければコンプレッサ回転数は小さくなる。
【0199】
そこで排気タービン91bが排気ガスから受けるエネルギとコンプレッサ91aが空気に与えるエネルギとの差の絶対値が予め定められたエネルギ差よりも大きいときにコンプレッサ流出空気流量の変化量が予め定められた変化量よりも大きいと判断するようにしてもよい。
【0200】
なおこの判断を採用した場合、排気タービン91bが排気ガスから受けるエネルギよりもコンプレッサ91aが空気に与えるエネルギのほうが小さければコンプレッサ流出空気流量が大きくなるように該コンプレッサ流出空気流量を補正する。一方、排気タービン91bが排気ガスから受けるエネルギよりもコンプレッサ91aが空気に与えるエネルギのほうが大きければコンプレッサ流出空気流量が小さくなるように該コンプレッサ流出空気流量を補正する。
【0201】
また上述した例ではコンプレッサ流出空気流量に対する補正量として前回のモデル演算によって算出されたインタークーラ圧力と今回のモデル演算によって算出されるインタークーラ圧力との差を利用しているがこれに代えて以下のように算出される値をコンプレッサ流出空気流量に対する補正量として使用してもよい。すなわち今回のモデル演算によって算出される補正前のコンプレッサ流出空気流量mcm(k)と前回のモデル演算によって算出されたコンプレッサ流出空気流量mcm(k-1)との差Δmcm(k)(=mcm(k)−mcm(k-1))を算出する。ここで算出される差Δmcm(k)は今回のモデル演算の開始時点から次回のモデル演算の開始時点までに変化するであろうコンプレッサ流出空気流量の変化量に相当すると考えられる。したがってこの差Δmcm(k)を、今回のモデル演算によって算出されるコンプレッサ流出空気流量mcm(k)に加算すれば斯くして得られるコンプレッサ流出空気流量は少なくとも次回のモデル演算の開始時点の実際のコンプレッサ流出空気流量に一致していると言える。
【0202】
そこでこの例では上述したようにして算出された差Δmcm(k)を今回のモデル演算によって算出されるコンプレッサ流出空気流量に加算する補正を行う。
【0203】
これによれば前回のモデル演算によって算出されたコンプレッサ流出空気流量に比べて今回のモデル演算によって算出される補正前のコンプレッサ流出空気流量のほうが大きければ上記差Δmcmは正の値をとるので補正後のコンプレッサ流出空気流量は補正前のコンプレッサ流出空気流量よりも上記差mcmだけ大きくなる。そして斯くして補正されたコンプレッサ流出空気流量がインタークーラモデルM7に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のコンプレッサ流出空気流量を使用した場合に算出される筒内流入空気量よりも大きくなる。
【0204】
一方、前回のモデル演算によって算出されたコンプレッサ流出空気流量に比べて今回のモデル演算によって算出される補正前のコンプレッサ流出空気流量のほうが小さければ上記差mcm(k)は負の値をとるので補正後のコンプレッサ流出空気流量は補正前のコンプレッサ流出空気流量よりも上記差mcm(k)だけ小さくなる。そして斯くして補正されたコンプレッサ流出空気流量がインタークーラモデルM7に従った演算に使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量は補正前のコンプレッサ流出空気流量を使用した場合に算出される筒内流入空気量よりも小さくなる。
【0205】
このようにコンプレッサ流出空気流量を補正してもモデル演算によって最終的に得られる筒内流入空気量は該筒内流入空気量が内燃機関の運転の制御に使用される時点の実際の筒内流入空気量に一致しているか或いは少なくとも補正されていない場合に算出される筒内流入空気量よりも実際の筒内流入空気量に近くなる。
【0206】
なお第1実施形態における筒内流入空気量に対する補正方法を第2実施形態における筒内流入空気量に対する補正に適用してもよい。この場合、第1実施形態において吸気圧力Paを使用している部分はインタークーラ圧力Piを使用し、吸気温度Taを使用している部分はインタークーラ温度Tiを使用する。
【0207】
次に第2実施形態に従って筒内流入空気量を算出するルーチンの一例を説明する。このルーチンの例は図27および図28に示されている。なお電子制御スロットル弁モデルM1に従った演算ルーチンは図13に示されているルーチンと同じであるのでその説明は省略する。
【0208】
図27および図28に示されているルーチンは上記モデルM2〜M7に従った演算を実行するルーチンであり、上記所定時間間隔ΔT2毎に実行される。このルーチンが開始されると始めにステップ301において図13のルーチンの実行によってROM72に格納されている目標スロットル開度θtのうち時間的に今回のモデル演算時点よりも後の時点であって該目標演算時点に最も近い時点の目標スロットル開度θtが今回のモデル演算に使用する目標スロットル開度θt(k-1)として読み込まれる。次いでステップ302において同じく図13のルーチンの実行によってROM72に格納されている予測スロットル開度θeのうち時間的に今回のモデル演算時点よりも後の時点であって該演算時点に最も近い時点の予測スロットル開度θeが今回のモデル演算に使用する予測スロットル開度θe(k-1)として読み込まれる。
【0209】
次いでルーチンはスロットルモデルM2に従った演算を実行するステップ303〜ステップ305に進む。ステップ303では上記ステップ302で読み込まれた予測スロットル開度θe(k-1)に基づいて上記マップMca(図5参照)から値C(θ)(k-1)・A(θ)(k-1)が求められる。次いでステップ304において前回のモデル演算時点の吸気管圧力Pm(k-1)を前回のモデル演算時点のインタークーラ圧力Pi(k-1)で除した値Pm(k-1)/Pi(k-1)に基づいて上記マップMΦ(図19参照)から値Φ(Pm(k-1)/Pi(k-1))が求められる。次いでステップ305において上記ステップ303において求められた値C(θ)(k-1)・A(θ)(k-1)と、上記ステップ304において求められた値Φ(Pm(k-1)/Pi(k-1))と、前回のモデル演算時点の吸気管圧力Pm(k-1)と、前回のモデル演算時点のインタークーラ温度Ti(k-1)とに基づいて上記モデル式9に従ってスロットル弁通過空気流量mt(k-1)が算出される。
【0210】
次いでルーチンは吸気弁モデルM3に従った演算を実行するステップ306〜ステップ308に進む。すなわちステップ306において今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて上記マップMc(図7参照)から値c(k-1)が求められる。次いでステップ307において今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて上記マップMd(図8参照)から値d(k-1)が求められる。次いでステップ308において上記ステップ306において求められた値c(k-1)と、上記ステップ307において求められた値d(k-1)と、前回のモデル演算時点のインタークーラ温度Ti(k-1)と、前回のモデル演算時点の吸気管温度Tm(k-1)と、前回のモデル演算時点の吸気管圧力Pm(k-1)とに基づいて上記モデル式11に従って筒内流入空気流量mc(k-1)が算出される。
【0211】
次いで図28のステップ309において上記ステップ301で読み込まれた目標スロットル開度θt(k-1)と上記ステップ302で読み込まれた予測スロットル開度θe(k-1)との差Δθ(k-1)の絶対値が予め定められた開度差Δθsよりも大きい(|Δθ(k-1)|>Δθs)か否かが判別される。ここで|Δθ(k-1)|>Δθsであると判別されたとき、すなわち今回のモデル演算時点から次回のモデル演算時点までの間にコンプレッサ流出空気流量が大きく変化すると判断されたときにはルーチンはコンプレッサモデルM5に従った演算と該演算によって算出されるコンプレッサ流出空気流量の補正とを行うステップ310〜ステップ312に進む。すなわちステップ310において前回のモデル演算時点のインタークーラ圧力Pi(k-1)に対する前回のモデル演算時点の吸気管圧力Pm(k-1)の圧力比Pm(k-1)/Pi(k-1)と前回のモデル演算時点のコンプレッサ回転数NC(k-1)とに基づいて上記マップMmcm(図21参照)からコンプレッサ流出空気流量mcm(k-1)が求められる。次いでステップ311において前回のモデル演算時点のコンプレッサ回転数NC(k-1)と前回のモデル演算時点のインタークーラ圧力Pi(k-1)とに基づいて上記マップMmcm(図25参照)から傾きdmcm(k-1)が求められる。次いでステップ312において今回のモデル演算時点のインタークーラ圧力Pi(k-1)と前回のモデル演算時点のインタークーラ圧力Pi(k-2)との差ΔPi(k-1)(=Pi(k-1)−Pi(k-2))が算出される。次いでステップ313において上記ステップ312において算出された差ΔPi(k-1)を上記ステップ311において求められた傾きdmcm(k-1)に掛けることによってコンプレッサ流出空気流量に対する補正量Δmcm(k-1)が算出される。次いでステップ314において上記ステップ310において算出されたコンプレッサ流出空気流量mcm(k-1)に上記ステップ313において算出された補正量Δmcm(k-1)が加算される補正が行われ、ルーチンはインタークーラモデルM7に従った演算を実行する図29のステップ315に進む。したがってこれによればステップ309において今回のモデル演算時点から次回のモデル演算時点までの間にコンプレッサ流出空気流量が大きく変化すると判断されたときにはステップ315以降のモデル演算においては補正されたコンプレッサ流出空気流量が使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量が補正された形となる。
【0212】
一方、ステップ309において|Δθ(k-1)|≦Δθsであると判別されたとき、すなわち今回のモデル演算時点から次回のモデル演算時点までの間にコンプレッサ流出空気流量が大きくは変化しないと判断されたときにはルーチンはコンプレッサモデルM5に従った演算を実行するステップ322に進む。すなわちステップ322において前回のモデル演算時点のインタークーラ圧力Pi(k-1)に対する前回のモデル演算時点の吸気管圧力Pm(k-1)の圧力比Pm(k-1)/Pi(k-1)と前回のコンプレッサ回転数NC(k-1)とに基づいて上記マップMmcm(図21参照)からコンプレッサ流出空気流量mcm(k-1)が求められ、ルーチンはインタークーラモデルM7に従った演算を実行する図29のステップ315に進む。したがってこれによればステップ309において今回のモデル演算時点から次回のモデル演算時点までの間にコンプレッサ流出空気流量が大きくは変化しないと判断されたときにはステップ315以降のモデル演算においては補正されていないコンプレッサ流出空気流量が使用されることになり、結果的に今回のモデル演算によって算出される筒内流入空気量が補正されていない形となる。
【0213】
ステップ315では上記ステップ314または上記ステップ322において算出されたコンプレッサ流出空気流量mcm(k-1)と、上記ステップ305において算出されたスロットル弁通過空気流量mt(k-1)と、前回のモデル演算時点の吸気温度Ta(k-1)と、上式19に従って算出されるコンプレッサ付与エネルギEcとに基づいて上記モデル式12およびモデル式13に従ってインタークーラ圧力Pi(k)とインタークーラ温度Ti(k)とが算出される。
【0214】
次いでルーチンは吸気管モデルM4に従った演算を実行する図29のステップ313に進む。すなわちステップ313において上記ステップ305において算出されたスロットル弁通過空気流量mt(k-1)と、上記ステップ308において算出された筒内流入空気流量mc(k-1)と、今回のモデル演算時点のインタークーラ温度Ti(k-1)とに基づいて上記モデル式31およびモデル式32に従って吸気管圧力Pm(k)と吸気管温度Tm(k)とが算出される。
【0215】
次いでルーチンは吸気弁モデルM5に従った演算を実行するステップ317〜ステップ321に進む。すなわちステップ317において今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて上記マップMc(図7参照)から値c(k-1)が求められる。次いでステップ318において今回のモデル演算時点の機関回転数NE(k-1)および吸気開閉タイミングVT(k-1)に基づいて上記マップMd(図8参照)から値d(k-1)が求められる。次いでステップ319において上記ステップ317において求められた値c(k-1)と、上記ステップ318において求められた値d(k-1)と、上記ステップ316において算出された吸気管圧力Pm(k)と、同じくステップ316において算出された吸気管温度Tm(k)と、上記ステップ315において算出されたインタークーラ温度Ti(k)とに基づいて上記モデル式33に従って筒内流入空気流量mc(k)が算出される。次いでステップ320において今回のモデル演算時点の機関回転数NE(k-1)および吸気弁開閉タイミングVT(k-1)に基づいて吸気弁開弁時間Tint(k)が算出される。次いでステップ321において上記ステップ319において算出された筒内流入空気流量mc(k)と、上記ステップ320において算出された吸気弁開弁時間Tintとに基づいて上式34に従って筒内流入空気量KLfwd(k)が算出され、ルーチンが終了する。
【0216】
なお上述した実施形態では前回のモデル演算時点から今回のモデル演算時点までの期間に或る特定のパラメータ値の変化量(例えば、スロットル弁通過空気流量の変化量)に応じてモデル演算によって算出される筒内流入空気量を補正している。すなわち前回のモデル演算時点から今回のモデル演算時点までの或る特定のパラメータ値の変化量に等しい量だけ今回のモデル演算時点から次回のモデル演算時点までに該パラメータ値が変化することが考慮されている。したがって上述した実施形態では補正後の筒内流入空気量は次回のモデル演算時点の筒内流入空気量に一致する値または少なくともそれに近い値となる。
【0217】
しかしながら前回のモデル演算時点から今回のモデル演算時点までの期間の或る特定のパラメータ値の変化量を筒内流入空気量に対する補正に利用するのではなく、例えば、該期間よりも短い期間の或る特定のパラメータ値の変化量を利用したり、逆に、上記期間よりも長い期間の或る特定のパラメータ値の変化量を利用したりしてもよい。この場合、補正後の筒内流入空気量はパラメータ値の変化量を算出する基準となった期間だけ今回のモデル演算時点から経過したときの筒内流入空気量に一致する値または少なくともそれに近い値となっている。一例として、パラメータ値の補正量を算出する基準となる期間として今回のモデル演算によって算出される筒内流入空気量が実際に内燃機関の運転の制御に利用されるまでの期間を採用してもよい。この場合、算出される筒内流入空気量はそれが実際に内燃機関の運転の制御に利用されるときの実際の筒内流入空気量に一致する値または少なくともそれに近い値となる。
【符号の説明】
【0218】
10…内燃機関、21…シリンダ、25…燃焼室、31…吸気ポート、32…吸気弁、34…排気ポート、35…排気弁、39…燃料噴射弁、41…吸気枝管、42…サージタンク、43…吸気ダクト、44…エアフィルタ、45…インタークーラ、46…スロットル弁、46a…スロットル弁駆動用アクチュエータ、51…排気管、61…圧力センサ、62…温度センサ、63…コンプレッサ回転数センサ、65…クランクポジションセンサ、66…アクセル開度センサ、67…アクセルペダル、70…電気制御装置、91…過給機、91a…コンプレッサ、91b…タービン

【特許請求の範囲】
【請求項1】
燃焼室内に吸入される空気に関して質量保存則およびエネルギ保存則を利用して導き出された筒内流入空気量算出モデル式に基づいて吸気行程中に燃焼室内に吸入される空気の量を筒内流入空気量の算出値として算出し、該筒内流入空気量の算出値に基づいて内燃機関の運転を制御する内燃機関の制御装置において、吸気行程中に実際に燃焼室内に吸入される空気の量を筒内流入空気量の実際値と称するとしたとき、筒内流入空気量の算出が開始されてから予め定められた時間が経過したときの筒内流入空気量の実際値を筒内流入空気量の算出開始時に筒内流入空気量の予測値として算出し、該筒内流入空気量の予測値と筒内流入空気量の算出開始時の筒内流入空気量の実際値との差を筒内流入空気量の算出開始時に筒内流入空気量の変化予測値として算出し、該筒内流入空気量の変化予測値が予め定められた変化予測値よりも大きいときに筒内流入空気量の算出値を前記筒内流入空気量の変化予測値に応じて補正し、該補正された筒内流入空気量の算出値に基づいて内燃機関の運転が制御されることを特徴とする内燃機関の制御装置。
【請求項2】
燃焼室に接続された吸気通路内にスロットル弁が配置されており、筒内流入空気量の算出開始時の前記スロットル弁の開度と当該筒内流入空気量の算出開始時に目標とすべきスロットル弁の開度との差が予め定められた開度差よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されることを特徴とする請求項1に記載の内燃機関の制御装置。
【請求項3】
前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、該スロットル弁下流圧力の変化量が予め定められた圧力変化量よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されることを特徴とする請求項2に記載の内燃機関の制御装置。
【請求項4】
前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過するまでの間にスロットル弁下流圧力が前記特定の圧力を越えて高くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において高くなると判断されたとき又はスロットル弁下流圧力が前記特定の圧力を越えて低くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において低くなると判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されることを特徴とする請求項2または3に記載の内燃機関の制御装置。
【請求項5】
前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく且つスロットル弁下流圧力が一定であればスロットル弁の開度が大きいほどスロットル弁通過空気流量が大きく、筒内流入空気量の算出開始時のスロットル弁の開度、スロットル弁下流圧力、およびスロットル弁通過空気流量をそれぞれ基準スロットル開度、基準スロットル弁下流圧力、および基準スロットル弁通過空気流量と称するとしたとき、前記予め定められた時間が経過したときにスロットル弁の開度が前記基準スロットル開度よりも大きく且つスロットル弁下流圧力が前記基準スロットル弁下流圧力よりも高く且つ前記予め定められた時間が経過したときのスロットル弁の開度においてスロットル弁通過空気流量が前記基準スロットル弁通過空気流量に等しくなるスロットル弁下流圧力よりも前記予め定められた時間が経過したときのスロットル弁下流圧力が高いと判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断され且つ筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断されることを特徴とする請求項2〜4のいずれか1つに記載の内燃機関の制御装置。
【請求項6】
燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を筒内流入空気量の算出開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、該スロットル弁下流圧力の変化量が予め定められた圧力変化量よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されることを特徴とする請求項1に記載の内燃機関の制御装置。
【請求項7】
燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過するまでの間にスロットル弁下流圧力が前記特定の圧力を越えて高くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において高くなると判断されたとき又はスロットル弁下流圧力が前記特定の圧力を越えて低くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において低くなると判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されることを特徴とする請求項1に記載の内燃機関の制御装置。
【請求項8】
燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく且つスロットル弁下流圧力が一定であればスロットル弁の開度が大きいほどスロットル弁通過空気流量が大きく、筒内流入空気量の算出開始時のスロットル弁の開度、スロットル弁下流圧力、およびスロットル弁通過空気流量をそれぞれ基準スロットル開度、スロットル弁下流圧力、および基準スロットル弁通過空気流量と称するとしたとき、前記予め定められた時間が経過したときにスロットル弁の開度が前記基準スロットル開度よりも大きく且つ実スロットル下流圧力が前記基準スロットル弁下流圧力よりも高く且つ前記予め定められた時間が経過したときのスロットル弁の開度においてスロットル弁通過空気流量が前記基準スロットル弁通過空気流量に等しくなるスロットル弁下流圧力よりも前記予め定められた時間が経過したときのスロットル弁下流圧力が高いと判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断され且つ筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断されることを特徴とする請求項1に記載の内燃機関の制御装置。
【請求項9】
燃焼室に接続された吸気通路内にスロットル弁が配置されており、前記筒内流入空気量算出モデル式が前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量の算出値として算出するスロットル弁通過空気流量算出モデル式を含んでおり、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときに前記スロットル弁通過空気流量算出モデル式によって算出されるスロットル弁通過空気流量の算出値を筒内流入空気量の変化予測値に応じて補正することによって前記筒内流入空気量算出モデル式によって算出される筒内流入空気量の算出値が筒内流入空気量の変化予測値に応じて補正されることを特徴とする請求項1に記載の内燃機関の制御装置。
【請求項10】
前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁通過空気流量を筒内流入空気量の算出開始時にスロットル弁通過空気流量の予測値として算出し、該スロットル弁通過空気流量の予測値と筒内流入空気量の算出開始時のスロットル弁通過空気流量との差を当該筒内流入空気量の算出開始時にスロットル弁通過空気流量の変化予測値として算出し、該筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときにスロットル弁通過空気流量の算出値をスロットル弁通過空気流量の変化予測値に応じて補正することによって該スロットル弁通過空気流量の算出値が筒内流入空気量の変化予測値に応じて補正されることを特徴とする請求項9に記載の内燃機関の制御装置。
【請求項11】
前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を筒内流入空気量算出処理の開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときにスロットル弁通過空気流量の算出値をスロットル弁下流圧力の変化量に応じて補正することによって該スロットル弁通過空気流量の算出値が前記スロットル弁通過空気流量の変化予測値に応じて補正されることを特徴とする請求項10に記載の内燃機関の制御装置。
【請求項12】
筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁の開度を筒内流入空気量の算出開始時にスロットル開度の予測値として算出し、該スロットル開度の予測値と筒内流入空気量の算出開始時のスロットル弁の開度との差を当該筒内流入空気量の算出開始時にスロットル開度の変化予測値として算出し、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときにスロットル弁通過空気流量の算出値をスロットル開度の変化予測値に応じて補正することによって該スロットル弁通過空気流量の算出値がスロットル弁通過空気流量の変化予測値に応じて補正されることを特徴とする請求項10または11に記載の内燃機関の制御装置。
【請求項13】
筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときであって筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく増加すると判断されたときには筒内流入空気量の算出値が大きくなるように補正され、一方、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときであって筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断されたときには筒内流入空気量の算出値が小さくなるように補正されることを特徴とする請求項1〜12のいずれか1つに記載の内燃機関の制御装置。
【請求項14】
筒内流入空気量の算出開始時の前記スロットル弁の開度と当該筒内流入空気量の算出開始時に目標とすべきスロットル弁の開度との差が予め定められた開度差よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されることを特徴とする請求項9〜13のいずれか1つに記載の内燃機関の制御装置。
【請求項15】
前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称するとしたとき、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過したときのスロットル弁下流圧力を筒内流入空気量の算出開始時にスロットル弁下流圧力の予測値として算出し、該スロットル弁下流圧力の予測値と筒内流入空気量の算出開始時のスロットル弁下流圧力との差を当該筒内流入空気量の算出開始時にスロットル弁下流圧力の変化量として算出し、該スロットル弁下流圧力の変化量が予め定められた圧力変化量よりも大きいときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断される請求項9〜14のいずれか1つに記載の内燃機関の制御装置。
【請求項16】
前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が小さく、筒内流入空気量の算出が開始されてから前記予め定められた時間が経過するまでの間にスロットル弁下流圧力が前記特定の圧力を越えて高くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において高くなると判断されたとき又はスロットル弁下流圧力が前記特定の圧力を越えて低くなり或いはスロットル弁下流圧力が前記特定の圧力よりも高い領域において低くなると判断されたときに筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されることを特徴とする請求項9〜15のいずれか1つに記載の内燃機関の制御装置。
【請求項17】
前記スロットル弁下流の吸気通路内の圧力をスロットル弁下流圧力と称し且つ前記スロットル弁を通過する空気の流量をスロットル弁通過空気流量と称するとしたとき、スロットル弁下流圧力が特定の圧力よりも高いときにはスロットル弁の開度が一定であってもスロットル弁下流圧力が高いほどスロットル弁通過空気流量が少なく且つスロットル弁下流圧力が一定であればスロットル弁の開度が大きいほどスロットル弁通過空気流量が多く、筒内流入空気量の算出開始時のスロットル弁の開度、スロットル弁下流圧力、およびスロットル弁通過空気流量をそれぞれ基準スロットル開度、基準スロットル弁下流圧力、および基準スロットル弁通過空気流量と称するとしたとき、前記予め定められた時間が経過したときにスロットル弁の開度が前記基準スロットル開度よりも大きく且つスロットル弁下流圧力が前記基準スロットル弁下流圧力よりも高く且つ前記予め定められた時間が経過したときのスロットル弁の開度においてスロットル弁通過空気流量が前記基準スロットル弁通過空気流量に等しくなるスロットル弁下流圧力よりも前記予め定められた時間が経過したときのスロットル弁下流圧力が高いと判断されたときに前記筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断され且つ筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きく減少すると判断されることを特徴とする請求項9〜16のいずれか1つに記載の内燃機関の制御装置。
【請求項18】
前記筒内流入空気量の算出が予め定められた時間間隔でもって実行され、前記予め定められた時間が該予め定められた時間間隔に等しいことを特徴とする請求項1〜17のいずれか1つに記載の内燃機関の制御装置。
【請求項19】
前記予め定められた時間が筒内流入空気量の算出が開始されてから当該筒内流入空気量の算出によって算出された筒内流入空気量の算出値が内燃機関の運転の制御に利用されるまでの時間に等しいことを特徴とする請求項1〜17のいずれか1つに記載の内燃機関の制御装置。
【請求項20】
内燃機関が過給機を具備し、前記筒内流入空気量算出モデル式が前記過給機のコンプレッサを通過する空気の流量をコンプレッサ通過空気流量の算出値として算出するコンプレッサ通過空気流量算出モデル式を含んでおり、筒内流入空気量の変化予測値が前記予め定められた変化予測値よりも大きいと判断されたときに前記コンプレッサ通過空気流量算出モデル式によって算出されるコンプレッサ通過空気流量の算出値を筒内流入空気量の変化予測値に応じて補正することによって前記筒内流入空気量算出モデル式によって算出される筒内流入空気量の算出値が筒内流入空気量の変化予測値に応じて補正されることを特徴とする請求項1〜19のいずれか1つに記載の内燃機関の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公開番号】特開2010−242693(P2010−242693A)
【公開日】平成22年10月28日(2010.10.28)
【国際特許分類】
【出願番号】特願2009−94525(P2009−94525)
【出願日】平成21年4月9日(2009.4.9)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】