説明

半導体基板の欠陥検査装置および欠陥検査方法

【課題】カソードルミネッセンスを用いた半導体基板中の結晶欠陥の評価において、半導体基板表面のクリーニングをせずに高精度に結晶欠陥を評価することを可能にする。
【解決手段】欠陥検査装置100は、半導体基板2を支持するステージ3と、電子線照射部7と、CL検出器14と、X線検出器19と、データ処理部22とを備える。電子線照射部7は、半導体基板2に電子線を照射する。CL検出器14は、半導体基板2の検査箇所に電子線が照射されることによって検査箇所の結晶欠陥から発生したカソードルミネッセンス光を検出する。X線検出器19は、検査箇所に電子線が照射されることによって検査箇所の表面に付着する有機化合物から発生した炭素の特性X線を検出する。データ処理部22は、検出された炭素の特性X線の強度に基づいて、検出されたカソードルミネセンス光の有機化合物による減衰を補正する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、半導体基板中の結晶欠陥の量を検査する欠陥検査装置および欠陥検査方法に関する。
【背景技術】
【0002】
半導体基板中の結晶欠陥の量を検査する方法として、カソードルミネッセンス(CL:Cathode-Luminescence)を用いる方法が知られている。カソードルミネッセンスとは、電子線の照射によって試料から生じた発光のことである。
【0003】
たとえば、特開2006−73572号公報(特許文献1)に記載された技術では、次の手順によってカソードルミネッセンスを用いて結晶欠陥が検出される。まず、表面側にシリコン層を有する基板がステージに載置され、基板は温度100K〜4Kに冷却される。次に、ステージと基板表面を照射するための電子線とのいずれか一方が2次元的に走査されることによって、基板表面の所定領域内が電子線により順次照射される。このとき、基板表面から発生したカソードルミネッセンス光(CL光とも称する)のうちの波長1200nm〜1700nmの近赤外光が検出されるとともに、検出位置確認のために、基板表面から発生した二次電子が検出される。検出された二次電子により基板表面の画像である二次電子像が表示される。さらに、二次電子像に対応させて、検出された近赤外光の強度が表示されることによって、基板表面で近赤外光の強度が大きい部位が特定される。
【0004】
カソードルミネッセンスの測定では半導体基板に付着した有機化合物などによる表面汚染(contamination)が問題となる。この理由は、基板表面に付着した汚染物(contaminant)がCL光の吸収体となるからである。半導体装置の製造工程では半導体基板に有機化合物などの汚染物が付着することが頻繁に起こるので、通常、カソードルミネッセンスの測定の前に半導体基板表面のクリーニングが行なわれる。代表的なクリーニングの方法として、ウェットクリーニングやプラズマ処理などのドライクリーニングがある(たとえば、志村忠夫著、「半導体シリコン結晶工学」、丸善株式会社、1993年9月30日、p.125−128(非特許文献1)参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−73572号公報
【非特許文献】
【0006】
【非特許文献1】志村忠夫著、「半導体シリコン結晶工学」、丸善株式会社、1993年9月30日、p.125−128
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところが、半導体基板に対して上記のクリーニング処理を行なうと、半導体基板にダメージが生じることがある。このため、かえって結晶欠陥の分析精度が低下するおそれがある。また、カソードルミネッセンスの測定前に毎回クリーニング処理を行なうことは煩雑であるので、半導体装置の生産性の点でも好ましくない。
【0008】
この発明の目的は、カソードルミネッセンスを用いた半導体基板中の結晶欠陥の評価において、半導体基板表面のクリーニングをせずに高精度に結晶欠陥を評価することが可能な欠陥検査装置および欠陥検査方法を提供することである。
【課題を解決するための手段】
【0009】
この発明は要約すれば半導体基板の欠陥検査装置であって、電子線照射部と、第1および第2の検出器と、データ処理部とを備える。電子線照射部は、半導体基板に電子線を照射する。第1の検出器は、半導体基板の検査箇所に電子線が照射されることによって検査箇所の半導体結晶の欠陥から発生したカソードルミネッセンス光を検出する。第2の検出器は、検査箇所に電子線が照射されることによって検査箇所の表面に付着する有機化合物から発生した炭素の特性X線を検出する。データ処理部は、検出された炭素の特性X線の強度に基づいて、検出されたカソードルミネセンス光の有機化合物による減衰を補正する。
【発明の効果】
【0010】
この発明によれば、検出された炭素の特性X線の強度に基づいて、検出されたカソードルミネセンス光の有機化合物による減衰を補正する。これによって、半導体基板表面のクリーニングをしなくても高精度に結晶欠陥を評価することができる。
【図面の簡単な説明】
【0011】
【図1】この発明の実施の形態1による欠陥検査装置100の構成を示すブロック図である。
【図2】図1のデータ処理部22の構成を示すブロック図である。
【図3】炭素の特性X線強度とCL光強度との関係を示す図である。
【図4】シリコン基板40における結晶欠陥および表面の汚染物の分布の一例を模式的に示す図である。
【図5】図4のシリコン基板40で検出された特性X線強度分布およびCL光強度分布を模式的に示す図である。
【図6】図1の欠陥検査装置100による検査手順を示すフローチャートである。
【図7】この発明の実施の形態2による欠陥検査装置101の構成を示すブロック図である。
【発明を実施するための形態】
【0012】
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない。
【0013】
<実施の形態1>
[欠陥検査装置100の構成]
図1は、この発明の実施の形態1による欠陥検査装置100の構成を示すブロック図である。
【0014】
図1を参照して、欠陥検査装置100は、真空容器1と、真空容器1を減圧して真空状態を作り出すための真空ポンプ5とを含む。この真空容器1の中に、欠陥検査装置100は、シリコン基板2を載置し支持するためのステージ3と、ステージ3をシリコン基板2の面方向(X方向、Y方向)に移動するための制御モータなどからなる駆動部4とを含む。駆動部4によって、ステージ3に載置されたシリコン基板2の検査箇所が、後述する電子銃7から照射する電子線の照射位置に移動される。
【0015】
ステージ3にはシリコン基板2を冷却するための冷却装置6が取付けられている。冷却装置6として、液体ヘリウムや液体窒素などの冷媒を用いて冷却する方式のものや、ヘリウムガスなどを用いたクローズドタイプの循環式のものなどを用いることができる。シリコン基板2の冷却温度は100K〜4K(Kはケルビンを表わす)が好ましい。シリコン基板2の温度が低いほど、転位などの結晶欠陥に由来する発光の強度が増加するからである。100K以上では、無輻射遷移確率が高くなるため、結晶欠陥に由来する発光の強度が低下する。一方、4Kより低い温度では冷却が容易でないばかりか温度を一定に保ち難いので好ましくない。
【0016】
欠陥検査装置100は、さらに、真空容器1の中でステージ3の上方に設けられた電子線発生器としての電子銃7、二次電子検出器17、X線検出器19、および集光ミラー10を含む。
【0017】
電子銃7は、二次電子像および反射電子像を観察可能な走査型電子顕微鏡や、二次電子像および反射電子像に加えて透過電子像も観察可能な透過型電子顕微鏡に備えられたものを利用することができる。簡便かつ非破壊に検査できる点から走査型電子顕微鏡に備えられた電子銃7を用いることが好ましい。電子銃7の方式には特に制約はなく、たとえば、熱電子放出型、電界放出型、ショットキーエミッション型、またはサーマル電界放出型などの電子銃を用いることができる。ただし、高空間分解能かつ高電流密度である点から、ショットキーエミッション型またはサーマル電界放出型の電子銃が好ましい。電子線のビーム径にも特に限定はないが、ビーム径が小さいほど空間分解能が向上するので、数十nm以下のビーム径が好ましい。また、図1では図示を省略しているが、二次電子像を得るために、ステージ3と電子銃7との間に走査コイルが設けられ、走査コイルによって電子線が走査される。
【0018】
二次電子検出器17は、電子線の照射によってシリコン基板2から発生した二次電子を検出する。検出された二次電子信号は二次電子信号増幅器18によって増幅される。二次電子信号は、シリコン基板2の表面を二次電子像として観察したり、結晶欠陥の検査位置などを特定したりするために用いられる。
【0019】
比例計数管などのX線検出器19は、電子線の照射によってシリコン基板2から発生したX線を検出する。この実施の形態では、X線検出器19は、炭素の特性X線を検出することによって、シリコン基板2上に付着した主たる汚染物(contaminant)である有機化合物(たとえば、炭化水素化合物)の量を検知するために用いられる。検出された炭素の特性X線強度は、X線信号としてX線信号増幅器20によって増幅される。
【0020】
集光ミラー10は、電子線の照射によってシリコン基板2から全方向に放出されるカソードルミネッセンス光(CL光)を集光する。これによって、CL光の検出効率を上げることができる。集光ミラー10は、たとえば、図1に示すように楕円ミラーや放物線ミラーなどの凹面鏡の構造を有する。集光ミラー10の中央部には、シリコン基板2の表面に垂直な方向に電子線を通過させるため、直径1mmφ程度の貫通孔10Aが形成されている。集光ミラー10によって集光されたCL光は、ガラス窓を通して真空容器1の外に取り出される。
【0021】
欠陥検査装置100は、さらに、CL光を検出するために、真空容器1の外に設けられた集光レンズ11、光ファイバ12、分光器13、およびCL検出器14を含む。真空容器1内の集光レンズ11によって集光されたCL光は、光ファイバ12および分光器13を介してCL検出器14に導かれる。CL光は光ファイバ12を介さずに直接、分光器13に導くこともできる。
【0022】
CL光のうち900nm〜1700nmの近赤外光は、1100nm付近のシリコンのバンド端以外の発光はすべて欠陥の発光である。特に、CL光のD1(1535nm)、D2(1419nm)、D3(1321nm)、D4(1244nm)付近には、転位などの結晶欠陥に起因するピークが観測される。このため、上記の集光ミラー10、窓材、集光レンズ11、および光ファイバ12は、近赤外域で吸収のない材料のものを選択する必要がある。
【0023】
CL検出器14として、近赤外域に感度のあるフォトダイオード、光電子倍増管、InGaAs(インジウム・ガリウム・砒素)マルチチャネル検出器、またはInGaAsカメラなどを用いることができる。これらのうち、InGaAsマルチチャネル検出器は、分光器で分光したCL光を一度に検出できるため検査時間を短縮することができるので好ましい。また、CL検出器14は、液体窒素などを冷媒に用いた冷却装置15によって冷却することが好ましい。CL検出器14で検出されたCL信号はCL信号増幅器16によって増幅される。
【0024】
CL光を分光しなくても結晶欠陥の総量を検知することができるが、分光器13によって分光スペクトルを検出したほうが、欠陥の種類および欠陥の種類ごとの量など、より詳細な情報を得ることができる。分光器13として、回折格子型分光器、光学フィルタ型分光器、またはダイクロイックミラー型分光器などを用いることができる。
【0025】
また、分光器13に代えて、1100nmのシリコンのバンド端の波長をカットする光学フィルタを設けることもできる。このような光学フィルタを用いると、結晶欠陥の総量をより正確に検出できる。
【0026】
欠陥検査装置100は、さらに、コントローラ21、データ処理部22、データ記憶部23、入力部24、および表示器25を含む。これらの構成要素は、たとえば、コンピュータシステム29によって構成される。
【0027】
コントローラ21は、駆動部4および電子銃7を含めた装置全体を制御する。さらに、コントローラ21は、CL信号増幅器16、二次電子信号増幅器18、およびX線信号増幅器20から、CL信号SG16、二次電子信号SG18、およびX線信号SG20をそれぞれ受ける。コントローラ21は、さらに、キーボードなどの入力部24を介して検査対象のシリコン基板2に形成されたデバイス情報などを受ける。
【0028】
コントローラ21に入力された二次電子信号SG18は、CRT(Cathode-Ray Tube)ディスプレイなどの表示器25に二次電子像として表示される。
【0029】
コントローラ21に入力されたCL信号SG16およびX線信号SG20はデータ処理部22に出力され、データ処理部22によってデータ処理される。データ処理後のCL信号はハードディスク装置などのデータ記憶部23に記憶される。
【0030】
[データ処理部22の構成および動作]
図2は、図1のデータ処理部22の構成を示すブロック図である。図2に示すように、データ処理部22は、X線信号記憶部30、透過率推定部31、透過率記憶部32、CL信号記憶部33、およびCL信号補正部34を含む。X線信号記憶部30、CL信号記憶部33、および透過率記憶部32は、コンピュータ29の主記憶装置に対応し、透過率推定部31およびCL信号補正部34は、コンピュータ29のCPU(Central Processing Unit)によってプログラムが実行されることによって実現される。
【0031】
X線信号記憶部30およびCL信号記憶部33は、検出されたX線信号SG20およびCL信号SG16をそれぞれ記憶する。透過率推定部31は、シリコン基板2の表面に有機化合物(汚染物)が付着していないときのCL光の透過率を100%として、検出されたX線信号SG20に対応したCL光の透過率(または減衰率)を推定する。推定されたCL光の透過率は、透過率記憶部32に記憶される。CL信号補正部34は、推定された透過率を用いて、有機化合物によるCL信号の減衰(透過率の低下)を補正する。
【0032】
CL光の透過率を推定するために、キャリブレーション時に、予め検査対象のシリコン基板2上で、有機化合物(汚染物)が付着している複数箇所(通常、10箇所程度)の炭素の特性X線およびCL光が測定される。有機化合物が付着している領域は、他の領域に比べて二次電子像の輝度が暗くなるので容易に判別することができる。この場合、有機化合物の付着箇所を表示器25に表示された二次電子像によって目視によって確認してもよいし、検出される二次電子量が所定値より小さくなるか否かをコンピュータによって判別してもよい。この有機化合物の付着箇所で測定されたデータを基にして、検査時に実際の結晶欠陥の検査箇所でのCL光の透過率が推定される。具体的な推定方法は図3で説明する。
【0033】
なお、キャリブレーション時と検査時とで同じシリコン基板2を用いるほうが好ましいが、キャリブレーション時に検査用のシリコン基板2と異なる参照用のシリコン基板を用いて炭素の特性X強度とCL光との対応関係を検出することもできる。この場合、同一ロットの1枚目を参照用の基板として用いるなど、検査用のシリコン基板2と参照用のシリコン基板とで製造工程中に付着する有機化合物の種類などを同一にする必要がある。
【0034】
図3は、炭素の特性X線強度とCL光強度との関係を示す図である。図3において、有機化合物が付着している領域で測定されたデータ点がP1〜P4で表わされる。
【0035】
一般に、光の吸収体を透過する光の量は、吸収体の厚みに対して指数関数的に減少すると考えられる。したがって、炭素の特性X線強度が、光の吸収体としての有機化合物(汚染物)の厚みに比例しているとすれば、炭素の特性X線強度(X)とCL光強度(Y)とは、指数関数の近似式(図3の破線39を参照):
Y=Y1×exp(−K×X) …(1)
によって関係付けられる。上式(1)の係数K,Y1は実測点P1〜P4を用いた最小2乗法によって決定することができる。係数Y1(第1の推定値)は上式(1)で特性X線強度Xを0としたときCL光強度を意味する。
【0036】
ここで、図3に示すように、シリコン基板2上の実際の結晶欠陥の検査箇所で測定された特性X線強度をX2とし、この特性X線強度X2を近似式(1)に代入したときのCL光強度をY2(第2の推定値)とする。この場合、CL光の透過率αは、係数Y1(第1の推定値)に対する強度Y2(第2の推定値)の比:
α=Y2/Y1 …(2)
で表わされる。したがって、実際の検査箇所で測定されたCL光強度をY3とすれば、有機化合物(汚染物)によるCL光の減衰を補正した後のCL光強度は、
Y3/α …(3)
と推定できる。
【0037】
[CL光の補正例]
図4は、シリコン基板40における結晶欠陥および表面の汚染物の分布の一例を模式的に示す図である。図4において、シリコン基板40上の曲線41で囲まれる領域に結晶欠陥があり、曲線42で囲まれる領域に有機化合物の汚染物が付着しているものとする。図4の直線43に沿って電子線を照射したときの炭素の特性X線強度の分布とCL光強度の分布とが次図5に示される。
【0038】
図5は、図4のシリコン基板40で検出された特性X線強度分布およびCL光強度分布を模式的に示す図である。図4、図5を参照して、点B〜Dの区間では有機化合物(汚染物)から発生した強度X2の炭素の特性X線が観測される。一方、CL光強度については、点A〜点Cの区間では結晶欠陥からのCL光の放射のために結晶欠陥のない区間に比べて強度が大きくなっている。しかしながら、点B〜Dの区間では表面に付着した有機化合物(汚染物)のためにCL光強度が弱まっている。
【0039】
図2の透過率推定部31は、検出された特性X線強度X2を用いて点B〜Dの区間のCL光の透過率αを推定する。CL信号補正部34は、推定された透過率αを用いて点B〜Dの区間で得られたCL光強度Z3,Z1を補正する。この結果、点B〜Cの区間ではCL光強度がZ4=Z3/αに補正され、点C〜Dの区間ではCL光強度がZ2=Z1/αに補正される。
【0040】
[欠陥検査装置100の検査手順]
図6は、図1の欠陥検査装置100による検査手順を示すフローチャートである。以下、図1、図6を参照して、欠陥検査装置100による結晶欠陥の検査手順を総括的に説明する。図6のステップS3〜S8がキャリブレーション時の実行されるステップであり、ステップS9〜S14が実際の検査箇所の検査時に実行されるステップである。
【0041】
ステップS1で、シリコン基板2が真空容器1内のステージ3に載置される。この後、真空容器1内は真空排気される。
【0042】
次のステップ2で、シリコン基板2は冷却装置6によって100K〜4Kの内の所定温度に冷却される。
【0043】
次のステップ3で、コントローラ21の制御によって、シリコン基板2上の汚染物(有機化合物)に電子線が照射するようにステージ3の位置が調整される。電子線の照射位置は、二次電子像の輝度を参照することによって決定される。
【0044】
次のステップ4で、コントローラ21の制御によって、電子線の照射箇所から発生する炭素の特性X線信号およびCL信号が検出される。
【0045】
次のステップS5で、ステップS4で検出された特性X線信号およびCL信号が、コンピュータ29のデータ記憶部23に記憶される。
【0046】
次のステップS6で、上記のステップS3〜S5が所定回数(10回程度)繰返されたか否かがコントローラ21によって判定される。所定回数に満たない場合(ステップS6でNO)は、処理がステップS3に戻り、上記のステップS3〜S5が繰返される。
【0047】
ステップS6でYESの場合、処理はステップS7に進む。ステップS7で、データ処理部22は、ステップS5で記憶した所定回数分の特性X線信号SG20の強度とCL信号SG16の強度との対応関係を指数関数で近似する。具体的には、最小2乗法によって前述の式(1)の係数K,Y1が求められる。
【0048】
次のステップS8では、求められた近似式の係数K,Y1が、たとえば、コンピュータ29のデータ記憶部23に記憶される。
【0049】
次のステップS9で、コントローラ21の制御によって、二次電子像を参照しながらシリコン基板2上の結晶欠陥の検査位置に電子線が照射するようにステージ3の位置が調整される。
【0050】
次のステップS10で、コントローラ21の制御によって、電子線の照射箇所から発生する炭素の特性X線信号およびCL信号が検出される。
【0051】
次のステップS11で、検出した特性X線信号およびCL信号が、図2のX線信号記憶部30およびCL信号記憶部33にそれぞれ記憶される。
【0052】
次のステップS12で、データ処理部22の透過率推定部31は、ステップS7で求めた近似式に基づいて、検出した特性X線信号SG20の強度に対応するCL光の透過率αを推定する。
【0053】
次のステップS13で、データ処理部22のCL信号補正部34は、ステップS10で検出されたCL信号SG16をステップS12で推定した透過率αで補正する。
【0054】
次のステップS14で、ステップS13で補正されたCL信号が、コンピュータ29のデータ記憶部23に記憶される。以上で、結晶欠陥の検査手順が終了する。
【0055】
[まとめ]
以上のとおり、この実施の形態の欠陥検査装置100によれば、検出された炭素の特性X線の強度に基づいて、有機化合物によるカソードルミネセンス光の減衰が補正される。したがって、検査前にシリコン基板2の表面のクリーニングをしなくても高精度に結晶欠陥を評価することができる。クリーニングによってかえってシリコン基板2の表面にダメージを与えて分析精度を低下させることやクリーニング作業の煩雑さを回避できる。
【0056】
<実施の形態2>
図7は、この発明の実施の形態2による欠陥検査装置101の構成を示すブロック図である。図7の欠陥検査装置101は、X線検出器19およびX線信号増幅器20に代えて、オージェ電子検出器26およびオージェ電子信号増幅器27が設けられる点で図1の欠陥検査装置100と異なる。その他の点については、図7の欠陥検査装置101は図1の欠陥検査装置100と同じであるので、同一または相当する部分には同一の参照符号を付して説明を繰返さない。
【0057】
図7において、オージェ電子検出器26は、電子線の照射によってシリコン基板2に付着した有機化合物から発生する炭素のオージェ電子を検出する。オージェ電子信号増幅器27は、オージェ電子検出器26によって検出されたオージェ電子信号SG27を増幅する。データ処理部22は、検出された炭素のオージェ電子の強度に基づいて、CL信号SG16の有機化合物による減衰を補正する。このような構成の欠陥検査装置101によっても、図1の欠陥検査装置100と同様に、検査前にシリコン基板2の表面のクリーニングをしなくても高精度に結晶欠陥を評価することができる。
【0058】
今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0059】
1 真空容器、2 シリコン基板(半導体基板)、3 ステージ、4 駆動部、7 電子銃(電子線照射部)、10 集光ミラー、11 集光レンズ、12 光ファイバ、13 分光器、14 CL検出器、17 二次電子検出器、19 X線検出器、21 コントローラ、22 データ処理部、23 データ記憶部、26 オージェ電子検出器、29 コンピュータ、100,101 欠陥検査装置。

【特許請求の範囲】
【請求項1】
半導体基板に電子線を照射する電子線照射部と、
前記半導体基板の検査箇所に電子線が照射されることによって前記検査箇所の半導体結晶の欠陥から発生したカソードルミネッセンス光を検出する第1の検出器と、
前記検査箇所に電子線が照射されることによって前記検査箇所の表面に付着する有機化合物から発生した炭素の特性X線を検出する第2の検出器と、
検出された炭素の特性X線の強度に基づいて、検出されたカソードルミネセンス光の前記有機化合物による減衰を補正するデータ処理部とを備えた半導体基板の欠陥検査装置。
【請求項2】
前記電子線照射部は、キャリブレーション時に、前記半導体基板と同一または異なる基板に電子線を照射し、
前記第1および第2の検出器は、前記キャリブレーション時に、前記半導体基板と同一または異なる基板の複数箇所に電子線が照射されることによって前記複数箇所ごとに発生したカソードルミネッセンス光および炭素の特性X線をそれぞれ検出し、
前記データ処理部は、
前記キャリブレーション時に前記複数箇所で検出された炭素の特性X線強度とカソードルミネセンス光の強度との対応関係を用いて、前記検査箇所から検出された炭素の特性X線強度に対応するカソードルミネセンス光の透過率を推定する透過率推定部と、
推定された透過率を用いて前記検査箇所から検出されたカソードルミネセンス光の強度を補正する補正部とを含む、請求項1に記載の半導体基板の欠陥検査装置。
【請求項3】
前記半導体基板の欠陥検査装置は、前記キャリブレーション時に前記半導体基板と同一または異なる基板に電子が照射されることによって発生した二次電子を検出する二次電子検出器をさらに備え、
前記複数箇所は、前記二次電子検出器によって検出される二次電子量が所定値より低い箇所である、請求項2に記載の半導体基板の欠陥検査装置。
【請求項4】
前記対応関係は、炭素の特性X線強度の対するカソードルミネセンス光の強度変化を指数関数で表した近似式であり、
前記近似式において炭素の特性X線強度を0にしたときのカソードルミネセンス光強度を第1の推定値とし、前記近似式において前記検査箇所から検出された炭素の特性X線強度に対応するカソードルミネセンス光強度を第2の推定値としたとき、前記透過率は前記第1の推定値に対する前記第2の推定値の比によって与えられる、請求項2に記載の半導体基板の欠陥検査装置。
【請求項5】
半導体基板に電子線を照射する電子線照射部と、
前記半導体基板の検査箇所に電子線が照射されることによって前記検査箇所の半導体結晶の欠陥から発生したカソードルミネッセンス光を検出する第1の検出器と、
前記検査箇所に電子線が照射されることによって前記検査箇所の表面に付着した有機化合物から発生した炭素のオージェ電子を検出する第2の検出器と、
検出された炭素のオージェ電子の強度に基づいて、検出されたカソードルミネセンス光の前記有機化合物による減衰を補正するデータ処理部とを備えた半導体基板の欠陥検査装置。
【請求項6】
半導体基板に電子線を照射するステップと、
前記半導体基板の検査箇所に電子線が照射されることによって前記検査箇所の半導体結晶の欠陥から発生したカソードルミネッセンス光を検出するステップと、
前記検査箇所に電子線が照射されることによって前記検査箇所の表面に付着する有機化合物から発生した炭素の特性X線を検出するステップと、
検出された炭素の特性X線の強度に基づいて、検出されたカソードルミネセンス光の前記有機化合物による減衰を補正するステップとを備えた半導体基板の欠陥検査方法。
【請求項7】
前記半導体基板の欠陥検査方法は、
キャリブレーション時に、前記半導体基板と同一または異なる基板に電子線を照射するステップと、
前記キャリブレーション時に、前記半導体基板と同一または異なる基板の複数箇所に電子線が照射されることによって前記複数箇所ごとに発生したカソードルミネッセンス光および炭素の特性X線をそれぞれ検出するステップとをさらに備え、
前記減衰を補正するステップは、
前記キャリブレーション時に前記複数箇所で検出された炭素の特性X線強度とカソードルミネセンス光の強度との対応関係を用いて、前記検査箇所から検出された炭素の特性X線強度に対応するカソードルミネセンス光の透過率を推定するステップと、
推定された透過率を用いて前記検査箇所から検出されたカソードルミネセンス光の強度を補正するステップとを含む、請求項6に記載の半導体基板の欠陥検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−133446(P2011−133446A)
【公開日】平成23年7月7日(2011.7.7)
【国際特許分類】
【出願番号】特願2009−295720(P2009−295720)
【出願日】平成21年12月25日(2009.12.25)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】