説明

回転電機の冷却構造

【課題】回転電機の低回転時における冷却媒体の飛散量の増加を図る。
【解決手段】 エンドプレート22に設けられた油溜まり部38と、ロータシャフト12内の流路30から貫通孔32を介して流れてくる冷却液を油溜まり部38へ供給する供給路36と、油溜まり部38からエンドプレート22の外周まで連通する流路40の先端部分であって油溜まり部38内の冷却液をステータ16へ向けて吐出する吐出口48と、を備える。供給路36の数は、吐出口48の数より多く形成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機の冷却構造、特に回転電機の低回転時における冷却に関する。
【背景技術】
【0002】
電気エネルギを回転の運動エネルギに変換する電動機、回転の運動エネルギを電気エネルギに変換する発電機、さらに電動機と発電機どちらにも機能する電気機器が知られている。以下の説明において、これらの電気機器を回転電機と称することにする。
【0003】
これらの回転電機は、ロータシャフトとロータシャフトに固定されたコアとを有するロータと、ロータの周囲に配置されるステータとを有する。ステータは、コイルを有し、このコイルに電流が流れることにより回転磁界が発生する。この回転磁界とロータとの間に働く電磁的作用により、ロータが回転する。一般的に、回転電機は、この回転電機の駆動により発熱する。回転電機が永久磁石型回転電機である場合、ロータに設けられる永久磁石またはステータのコイルエンドが発熱する。これらが発熱して温度が上昇すると、回転電機の運転効率が低下してしまう。
【0004】
そこで、例えば、軸芯冷却方式において、ロータシャフトとロータのコアとの間、更にコアの両端に配設されたエンドプレートに冷却媒体である油が流れる油路を形成し、ステータ、特にエンドコイルへ向けてエンドプレートから油を飛散させて冷却する冷却構造が種々提案されている(例えば、特許文献1〜3)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平9−182375号公報
【特許文献2】特開2007−20337号公報
【特許文献3】特開2009−232557号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、このような冷却構造は、回転電機の回転に伴う遠心力を利用して冷却媒体を飛散させる構造を有しているので、回転電機の低回転時においては、冷却媒体の飛散量が減少し、この結果、冷却効率が低下してしまう可能性があった。
【0007】
本発明は、従来に比して、回転電機の低回転時における冷却媒体の飛散量の増加を図ることを目的とする。
【課題を解決するための手段】
【0008】
本発明に係る回転電機の冷却構造は、冷却媒体が流れる流路を有するロータシャフトと前記ロータシャフトに固定されたコアとを有するロータと、前記ロータの外側に配置されたステータと、前記コアの軸線方向の両端に配設されたエンドプレートと、を有する回転電機の冷却構造において、前記エンドプレートに設けられた冷却媒体溜まり部と、前記流路を流れる冷却媒体を前記冷却媒体溜まり部へ供給する供給路と、前記エンドプレートの外周面に設けられ、前記冷却媒体溜まり部内の冷却媒体を前記ステータへ向けて吐出する吐出口と、を備え、前記供給路の数を、前記吐出口の数より多くしたことを特徴とする。
【0009】
また、前記供給路は、前記ロータシャフトと前記コアとの間に前記ロータシャフトの軸方向に沿って設けられ、前記ロータシャフトに設けられた貫通孔を介して前記流路から流入されてくる冷却媒体を前記冷却媒体溜まり部へ供給することを特徴とする。
【0010】
また、前記エンドプレートの内径を前記コアの内径より大きくし、前記冷却媒体溜まり部は、前記ロータシャフトの外周面と前記エンドプレートの内周面との間に形成されることを特徴とする。
【発明の効果】
【0011】
本発明によれば、供給路の数を吐出口の数より多くするよう構成したので、回転電機の低回転時における冷却媒体の飛散量を増大することができる。
【0012】
また、エンドプレートの内径をコアの内径より大きくするという簡素な形状にてエンドプレートを形成することによって冷却媒体溜まり部を形成することができる。
【図面の簡単な説明】
【0013】
【図1】本発明に係る回転電機の冷却構造の一実施の形態を示した回転電機の概略構成を示す断面図である。
【図2】図1のA−A’線に沿った断面図である。
【図3】図1においてB部の拡大図である。
【図4】本実施の形態において特徴的な構造を説明するために用いるエンドプレート部分の断面図である。
【図5】本実施の形態において特徴的な構造を説明するために用いる他のエンドプレート部分の断面図である。
【発明を実施するための形態】
【0014】
以下、図面に基づいて、本発明の好適な実施の形態について説明する。図1は、本発明に係る回転電機の冷却構造の一実施の形態を示した回転電機の概略構成を示す断面図、図2は、図1のA−A’線に沿った断面図、図3は、図1においてB部の拡大図である。本実施形態においては、原動機として自動車に搭載される回転電機を例に挙げ、この構成について説明する。
【0015】
回転電機10は、ロータシャフト12に固定されたロータ14と、ロータ14の外側に配置され、回転電機10のケース(図示せず)に固定されたステータ16とを有する。
【0016】
ロータ14は、ロータシャフト12と同心の概略円柱形状の磁性体であり、例えば積層鋼板をロータシャフト12の軸線方向18に積層して構成されるコア20を有する。そして、コア20を形成する積層鋼板の両端、すなわちロータシャフト12の軸線方向18の両端には、エンドプレート22が設けられている。積層鋼板には軸線方向18に延びる孔が形成され、この孔に永久磁石(図示せず)が配置される。なお、永久磁石は、積層鋼板の内部ではなく、積層鋼板の外周に配置してもよい。
【0017】
ロータシャフト12は、ケースに設けられる軸受(図示せず)により回転可能に支持される。ロータシャフト12は、後述するが、軸線方向18に延びる孔が形成された中空軸である。軸線方向18は、図1に示されるように、車両進行方向と同一方向である。しかし、本発明はこの構成に限定されず、軸線方向18が車両進行方向に対して交差する方向であってもよい。
【0018】
ステータ16は、ロータ14の外側に配置される。ステータ16には、このステータ16の内周側に突出し、周方向に所定の間隔を空けて配置される磁極(図示せず)を有する。この磁極の間の空間であるスロット(図示せず)には、導線を磁極に巻きつけて形成されるコイル24が配置される。図1には、ステータ16の両端において、スロット間を橋渡しするコイルエンド26が示される。このコイル24の通電により、ステータ16に回転磁界が発生し、この回転磁界に吸引される力が、永久磁石を有するロータ14に発生して、ロータ14が回転する。
【0019】
回転電機10は、この回転電機10の駆動によりステータ16のコイル24が発熱する。これらが発熱して温度が上昇すると、回転電機10の運転効率が低下してしまう。この運転効率の低下を防ぐために、本実施の形態の車両においては、冷却媒体、例えば潤滑油(ATF)により回転電機10を冷却している。なお、以降の説明では、潤滑油を「冷却液」と記す。以下、本実施の形態における冷却構造について説明する。
【0020】
ケースには、冷却液を循環させるオイルポンプ28が収容される。このオイルポンプ28は、ロータシャフト12の回転と同期して廻る構成となっている。なお、本実施の形態において用いるポンプは、オイルポンプ28に限定されず、ポンプが専用モータにより駆動する電動ポンプであってもよい。
【0021】
ロータシャフト12には、前述したように、その内部に軸線方向18に沿って孔が形成される。この孔は、オイルポンプ28から送り出された冷却液が流れる流路30に相当する。ロータシャフト12には、流路30とロータシャフト12の外周面とを結ぶ貫通孔32が設けられている。
【0022】
ロータシャフト12とロータ14のコア20との間には、軸線方向18に沿って設けられた冷却液の供給路36が形成される。本実施の形態では、コア20の内周面に軸線方向18に沿って溝を形成し、この溝とロータシャフト12の外周面とで供給路36を形成する。供給路36は、貫通孔32の配置に対応した位置に設けられており、流路30から排出される冷却液が貫通孔32を介して流入されてくる。なお、本実施の形態では、図2に例示したようにコア20の内周面に形成した溝の断面をコの字状としたが、これに限定する必要はなく、例えばU字状としてもよい。本実施の形態においては、図2に例示したように、8本の供給路36を形成したが、この数はこれに限る必要はない。なお、供給路36の数については、追って詳述する。
【0023】
供給路36の両端には、エンドプレート22に設けられた油溜まり部38が配設されている。一般的なエンドプレート22は、コア20の内径と同じサイズで形成され、コア20と同様にその内周面がロータシャフト12と接して固定されるが、本実施の形態においては、エンドプレート22の内径をコア20の内径より大きくし、ロータシャフト12の外周面とエンドプレート22の内周面との間に空間を形成した。油溜まり部38は、この空間によって形成される。
【0024】
詳細は後述するように、油溜まり部38には供給路36から冷却液が供給されてくるが、この冷却液がエンドプレート22に設けられた流路40へ送られるガイド部として、本実施の形態では、コア20及びエンドプレート22を両側から挟み込む挟持部42及び挟持部材44を設けている。流路40は、油溜まり部38からエンドプレート22の径方向の外側に連通しており、冷却液は、流路40の下流端に設けられた吐出口48からステータ16へ向けて吐出される。
【0025】
ところで、回転電機10のロータ部分は、概略円盤形状の一対のエンドプレート22a,22bで概略円柱形状のコア20を挟み、その中心にロータシャフト12を通して形成される。本実施の形態では、ロータシャフト12の一部を加工して円環状の挟持部42を形成しておく。そして、エンドプレート22a、コア20、エンドプレート22bにロータシャフト12を嵌合し、更に、円環状の挟持部材44にロータシャフト12を嵌合する。更に、係止部材46で挟持部材44を係止する。このようにして、エンドプレート22a、コア20、エンドプレート22bを挟持部42及び挟持部材44で挟着する。係止部材46としては、かしめリングを用いてよい。あるいは、ロータシャフト12にネジ山を形成するのであれば、ナットを用いてもよい。
【0026】
なお、本実施の形態では、挟持部材44を取り付けるためにロータシャフト12の外周面の一部を切削して外径を小さくしたが、必ずしも切削しなくてもよい。また、挟持部42は、ロータシャフト12の一部を加工して形成するようにしたが、挟持部材44と同様に別部材にて形成してもよい。
【0027】
このようにして、挟持部42及び挟持部材44によって各エンドプレート22a,22bの両端から挟着することで、ロータシャフト12の外周面とエンドプレート22の内周面との間に形成された油溜まり部38に供給されてくる冷却液を、軸線方向18側に逃がすことなく油溜まり部38に溜め、エンドプレート22に設けられた流路40へ効率良く供給することができる。
【0028】
本実施の形態では、ロータシャフト12とエンドプレート22との間に空間を形成することから、エンドプレート22によるコア20の固定(面圧付与)が不安定になる傾向がある。これを解消するために、一体型ロータであれば、リベットピン等の固定部材を用いてもよい。ただ、分割型ロータでは、現在のところ遠心力による分解防止をのためにリベットピンを使用しているので、リベットピンを別途必要としない。
【0029】
次に、本実施の形態における作用について説明する。ロータシャフト12に形成された流路30を流れる冷却液は、図3に示した矢印Aのように貫通孔32を介して供給路36へ送られ、更に供給路36を通って油溜まり部38へ供給される。図2から明らかなように、供給路36はいずれもエンドプレートの流路40と不連続で直結されてなく、よって供給路36を流れる冷却液は、いったん油溜まり部38へ流入されてからエンドプレートの流路40へと送られる。そして、流路40を流れる冷却液は、遠心力により流路40の先端の吐出口48から図3に示した矢印Bのようにステータ16へ向けて吐出される。このようにして、本実施の形態においては、ステータ16の冷却を行う。
【0030】
ここで、低回転時においては、高回転時に比して冷却液の飛散量は少なくなるので、冷却効率は高回転時に比して期待できない。そこで、本実施の形態においては、供給路36の数を吐出口48の数より多くするように構成して飛散量を確保できるようにした。
【0031】
すなわち、遠心力は、回転数と回転物重量が影響してくる。低回転時において冷却液の飛散量を増やすためには、回転物重量、すなわち冷却液の排出量(吐出口48からの吐出量)を増やすことが有効である。なお、本実施の形態において、飛散量と吐出量は同義である。冷却液の排出量を増やすためには、まず冷却液の供給量を増やすことが考えられる。本実施の形態の場合、吐出口48へ続くエンドプレート22に設けられた流路40への供給量、すなわち油溜まり部38への供給量を増やすことが考えられる。冷却液の供給量を増やすための方法としては、供給路36の本数を増やすか、供給路36の断面積を大きくすることが考えられる。
【0032】
ただ、供給路36の1本当たりの断面積を増大させると、周辺鋼板の遠心力耐力が大幅に低下することによってコア20が変形しやすくなる。そこで、遠心力による耐変形能を保持したまま供給量を増やすには、断面積を大きくせずに供給路36の本数を増やすことが好適である。このような理由により、本実施の形態においては、供給路36の数を吐出口48の数より多くするように構成した。ただ、吐出口からの冷却液の供給量を増やしたからといって、特に低回転時においては、吐出口からの飛散量がこれに比例して単純に増えるとは限らない。これについて図を用いて説明する。
【0033】
図4は、従来と同様にエンドプレートとコアとの各内径が同じ場合において、図2に示した本実施の形態のように供給路の本数を増やした場合のエンドプレート部分の断面図である。図4から明らかなように供給路60の本数を本実施の形態と同様に8本に増やして冷却液の供給量を増やそうとしても、供給路60b,60c,60e,60g,60hはエンドプレート62の流路64につながっているとは言えない。よって、供給路の本数を単に増やすだけでは冷却液の供給量を増やすことにはならない。つまり、吐出口からの飛散量を増やすことにつながらない。冷却液の供給量を増やすためには、コア側の供給路とエンドプレート側の流路との位置合わせ、すなわちエンドプレートとコアの位相を合わせる必要があり、そのための手間がかかってくる。
【0034】
また、図5は、従来と同様にエンドプレートとコアとの各内径が同じであるものの、エンドプレート内に空間を形成した場合のエンドプレート部分の断面図である。なお、図5においても、供給路70の本数を増やしている。この構成においては、全ての供給路70からの冷却液は空間(本実施の形態の「油溜まり部38」に対応)72に送られるので、図4に示した構成とは異なり、供給路の本数を増やすことに伴い冷却液の供給量を増やすことが可能になる。しかしながら、エンドプレート74の内周部分とコア側の供給路70とが交互に配置されるような位置合わせ、すなわちエンドプレート74とコアの位相を合わせる必要があり、そのための手間がかかってくる。更に、空間72を形成するための加工がエンドプレート74に必要になってくる。
【0035】
そこで、本実施の形態の場合、エンドプレート22の内部ではなくエンドプレート22の内径をコア20の内径より大きくし、油溜まり部38をロータシャフト12の外周面とエンドプレート22の内周面との間に形成するようにした。このように、本実施の形態では、エンドプレート22の内部に加工を施すことなく油溜まり部38となる空間を形成するようにしたので、エンドプレート22を簡素な形状で形成することができる。また、図2から明らかなようにエンドプレート22とコア20との位相を合わせる必要もない。本実施の形態では、以上のように構成することで、全ての供給路36から送られてくる冷却液全てを油溜まり部38に供給することができる。
【0036】
以上説明したように、本実施の形態においては、エンドプレート22の流路40への冷却液の供給量の増大を図ることができ、これに伴い吐出口48からの吐出量(冷却液の排出量)を増大させることは可能になる。ただ、前述したように、遠心力は、回転数と回転物重量が影響してくるが、低回転時において冷却液の飛散量を増やすためには、冷却液の排出量(吐出口48からの吐出量)を増やす必要がある。吐出口1本当たりの吐出量が増えなければ、飛散距離は変わらないので飛散領域を増やすことにつながらない。
【0037】
そこで、本実施の形態においては、エンドプレート22の吐出口1本当たりの飛散量を増やすために、吐出口48の数を供給路36の本数より少なくし、更に各吐出口48の断面積を各供給路36の断面積より大きくした。すなわち、1本の供給路36から供給されてくる供給量に制限されずに、1本の吐出口48から吐出される吐出量を増大させるようにした。このような構成とすることで、各吐出口48からの吐出量(回転物重量)を増やすことができ、この結果、冷却液の飛散距離を伸ばすことができる。特に、本実施の形態においては、油溜まり部38を設けることで供給路36と流路40とを不連続に構成することができ、これにより、油溜まり部38に連なる供給路36及び流路40の断面積を異ならせるのに都合がよい。
【0038】
本実施の形態によれば、以上のように構成することで、コア20の強度の問題を解決しつつ、より多くの冷却液が排出可能となる。特に、低回転時における飛散量を確保することができ、これにより、低回転時においても冷却能力を従来に比して向上させることができる。
【符号の説明】
【0039】
10 回転電機、12 ロータシャフト、14 ロータ、16 ステータ、18 軸線方向、20 コア、22,22a,22b エンドプレート、24 コイル、26 コイルエンド、28 オイルポンプ、30 流路、32 貫通孔、36 供給路、38 油溜まり部、40 流路、42 挟持部、44 挟持部材、46 係止部材、48 吐出口。

【特許請求の範囲】
【請求項1】
冷却媒体が流れる流路を有するロータシャフトと前記ロータシャフトに固定されたコアとを有するロータと、前記ロータの外側に配置されたステータと、前記コアの軸線方向の両端に配設されたエンドプレートと、を有する回転電機の冷却構造において、
前記エンドプレートに設けられた冷却媒体溜まり部と、
前記流路を流れる冷却媒体を前記冷却媒体溜まり部へ供給する供給路と、
前記エンドプレートの外周面に設けられ、前記冷却媒体溜まり部内の冷却媒体を前記ステータへ向けて吐出する吐出口と、
を備え、
前記供給路の数を、前記吐出口の数より多くしたことを特徴とする回転電機の冷却構造。
【請求項2】
請求項1に記載の回転電機の冷却構造において、
前記供給路は、前記ロータシャフトと前記コアとの間に前記ロータシャフトの軸方向に沿って設けられ、前記ロータシャフトに設けられた貫通孔を介して前記流路から流入されてくる冷却媒体を前記冷却媒体溜まり部へ供給することを特徴とする回転電機の冷却構造。
【請求項3】
請求項1に記載の回転電機の冷却構造において、
前記エンドプレートの内径を前記コアの内径より大きくし、
前記冷却媒体溜まり部は、前記ロータシャフトの外周面と前記エンドプレートの内周面との間に形成されることを特徴とする回転電機の冷却構造。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−115848(P2013−115848A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−257196(P2011−257196)
【出願日】平成23年11月25日(2011.11.25)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】